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Welcome

We are pleased to welcome you to the 22nd International Conference on Digi-
tal Audio Effects (DAFx 2019) at Birmingham City University in Birmingham,
United Kingdom.

Since its inception in 1998, the conference has been a preeminent annual meet-
ing ground for researchers and practitioners from the fields of audio signal pro-
cessing, acoustics, and music-related disciplines.

We at Birmingham City University are proud to carry on the DAFx tradi-
tion and organise this year’s conference and are delighted to host delegates from
academia and industry alike in Birmingham. The event has been carefully planned
by the local organising committee, which is composed of members of the Digital
Media Technology Laboratory (DMT Lab) at Birmingham City University, in
collaboration with committee members from Queen Mary University of London,
The University of Wolverhampton and Semantic Audio Labs.

The program this year includes 4 tutorials, 3 keynote addresses, and 51 papers,
distributed across 7 oral sessions and 3 poster sessions. For the first time in
DAFx history, we will also host the 5th Workshop on Intelligent Music Production
(WIMP 2019) as a satellite event, in which 3 additional keynotes and 6 more
papers will be presented.

There has been a notable subset of this year’s papers that have focused on
the use of machine learning methods to approximate audio effects and synthesis
parameters. The use of machine learning is a noticeable trend in audio technology,
and is confluent with most other fields that use digital technologies. The DAFx
conferences have also been known for their emphasis on virtual analog modeling.
This year, a large subset of the papers are focused on modeling black and greybox
systems, with several contributions on physical modeling. Interestingly, there is a
cross-over this year, whereby machine learning methods are used to approximate
the parameters of complex virtual models.

Following on from the efforts by organisers of previous years’ DAFx conferences,
the organizing committee is committed to promoting diversity and is pleased to
introduce a code of conduct intended to promote a culture of inclusivity. The
conference has also offered inclusivity grants intended to assist participants who
might struggle to attend for financial reasons.

For our social programme, we have chosen events that we believe provide in-
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sight into the Birmingham experience. To this end we have incorporated the first
ever Great DAFx Pub Quiz, which promises to be a fun night of audio engi-
neering questions and prizes. Our banquet will be held in The Council House,
one of Birmingham’s oldest and most prestigious venues, and traditional home to
Birmingham’s Lord Mayor. To close the event, we will be hosting the first ever
DAFx Closing Party event, which will incorporate a trade-show and a night of
electronic music at one of Birmingham’s most vibrant art gallery spaces.

For DAFx 2019, we have had an overwhelming amount of sponsorship, and we
would like to thank all who provided support. The programme would not have
been possible without the kind contributions of our sponsors. We would also like
to thank last year’s organising committee in Aveiro, Portugal for providing us
with their excellent LaTeX template for the booklet and Gianpaolo Evangelista
for producing these proceedings. Finally, we would like to thank all those in
attendance for making this event a success.

The DAFx 2019 Local Organising Committee
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Keynotes
Keynote 1: Magenta
Jesse Engel

Abstract

Magenta is an open source research project exploring the role of machine learning as a tool in the
creative process. Our work spans the gamut of pure machine learning research, building developer
tools, and using those tools to create new musical instruments and interactions for creatives. In
this talk, I will give an overview of a variety of our projects in the realm of polyphonic transcription
(Onsets and Frames, MAESTRO, Wav2MIDI2Wav), composition (MusicVAE, GrooVAE, Music
Transformer), and audio synthesis (NSynth, GANSynth, RT-NSynth, DDSP). I will also integrate
our work on making models adaptive to users in real time (Latent Constraints, MIDI-Me), and
implemented in hardware and software platforms (NSynthSuper, magenta.js, Magenta Studio,
Fruit Genie). Finally, I’ll conclude with a discussion of future directions and lessons learned.

Keynote 2: Encouraging Randomness

Paul Weir

Abstract

Encouraging randomness using generative and procedural audio technology is at the heart of
much of Paul’s creative work, to achieve this goal, he has helped to develop several original tools.
Part opinion piece, part practical demonstration, Paul’s presentation will try and bring clarity to
definitions surrounding procedural audio to better have an informed discussion and in doing so
will present some of the tools that have formed an integral part of his work and lessons learned
as part of the development process.

Keynote 3: Intelligent Music Interfaces

Masataka Goto

Abstract

In this keynote I will present intelligent music interfaces demonstrating how end users can benefit
from automatic analysis of music signals (automatic music-understanding technologies) based on
signal processing and/or machine learning. I will also introduce our recent challenge of deploying
research-level music interfaces as public web services and platforms that enrich music experiences.
They can analyze and visualize music content on the web, enable music-synchronized control of
computer-graphics animation and robots, and provide an audience of hundreds with a bring-your-
own-device experience of music-synchronized animations on smartphones. In the future, further
advances in music signal analysis and music interfaces based on it will make interaction between
people and music more active and enriching.

xv



Tutorials

Tutorial 1: Creative applications of Music and Audio Research

Amélie Anglade and Ryan Groves

Abstract

The definition of Artificial Intelligence (AI) varies wildly depending on the context. In industry,
this term can be quite overused and misunderstood. This tutorial attempts to lift the veil on
companies who are using AI–or those who are building effective solutions in other ways. We
will showcase industry projects (such as apps, platforms, games, performances, pieces of music or
audio) that are not necessarily transparent and provide a “forensic” analysis of the research they
are using based on our own experience of this field. We will touch on the trend of creativity in the
machine learning community, with the challenges it poses to the scientific process. Additionally,
we will rely on our own extensive experience as MIR practitioners and consultants in the music
and audio creative space to detail the systematic process of creating machine learning products
when there is little or no existing research to rely on.

Tutorial 2: Creative Use of Audio Plugins in a Mix: A Live Mixing Session with
Grammy-Award Winner Stephen Roessner

Stephen Roessner

Abstract

Join a Grammy-Award Winning Audio Engineer as he uncovers his methods for mixing and use of
plugins to achieve creative sounds. The session will be a classroom-style lecture where attendees
are free to ask questions about his use of plugins, workflow, and terrible opinions about music –
much like what his students endure in his courses.

Tutorial 3: Room Response Equalization

Stefania Cecchi

Abstract

Room response equalization aims at improving the sound reproduction in rooms by applying
advanced digital signal processing techniques to design an equalizer on the basis of one or more
measurements of the room response. This topic has been intensively studied in the last 40 years,
resulting in a number of effective techniques facing different aspects of the problem. This tutorial
will review the existing methods following their historical evolution, and discussing pros and cons
of each approach with relation to the room characteristics, as well as instrumental and perceptual
measures.

Tutorial 4: Principles of Wave Digital Filter Modeling for Virtual Analog: A Tutorial

Kurt Werner
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NON-ITERATIVE PHASELESS RECONSTRUCTION FROM WAVELET TRANSFORM
MAGNITUDE

Nicki Holighaus, Günther Koliander, Luis Daniel Abreu ∗

Acoustics Research Institute
Austrian Academy of Sciences

Vienna, Austria
{nholighaus,gkoliander,labreu}@kfs.oeaw.ac.at

Zdeněk Průša

LEWITT GmbH
Vienna, Austria

zprusa@kfs.oeaw.ac.at

ABSTRACT

In this work, we present an algorithm for phaseless reconstruc-
tion from magnitude-only wavelet coefficients. The method relies
on an explicit relation between the log-magnitude and phase gradi-
ents of analytic wavelet transforms and an extension of the Phase-
Gradient Heap Integration (PGHI) algorithm recently introduced
for Gabor phaseless reconstruction. This relation is exact for a cer-
tain family of mother wavelets including Cauchy wavelets of arbi-
trary order, but only holds approximately otherwise. The presented
experiments show that, in practice, the proposed wavelet PGHI
method provides competitive quality for various mother wavelets.
Furthermore, wavelet PGHI is a non-iterative scheme and thus
computational performance is significantly better than established
alternate projection methods.

1. INTRODUCTION

The analysis of data utilizing time-frequency or time-scale rep-
resentations is prevalent in various scientific fields. Prominent
examples are medicine [1] and image [2, 3] and audio process-
ing [4, 5, 6]. Although these representations are often visualized
by using magnitude-only measurements, they are usually complex-
valued, i.e., provide an additional phase component. In general, re-
construction of the signal is only possible from the full complex-
valued representation. Since manipulations of the signal are of-
ten performed in the magnitude-only representation domain and in
some application we can even measure only the magnitudes, there
is a need to construct a phase that matches a given magnitude-only
representation.

This task is known as phase retrieval or phaseless reconstruc-
tion and has been considered from a theoretical [7, 8, 9, 10, 11]
as well as an algorithmic [12, 13, 14, 15, 16, 17, 18] viewpoint.
While theoretical results mainly deal with the feasibility of phase
retrieval, most algorithms are based on iterative projection meth-
ods. An important result we will build on, is that although in gen-
eral the full complex-valued representation is necessary for recon-
struction, there are settings where the phase and magnitude com-
ponents carry almost the same information. The first such case, the
STFT with Gaussian generator, was considered by Portnoff [19]
and later by Auger and Flandrin [20]. In this setting, the phase

∗ This work was supported by the Austrian Science Fund (FWF): Y 551-
N13, I 3067-N30, and P 31225-N32 and the Vienna Science and Technol-
ogy Fund (WWTF): MA16-053.
Copyright: c© 2019 Nicki Holighaus et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

gradient and the gradient of the (logarithmically scaled) magni-
tude are in a one-to-one relationship. Recently, it was shown [21]
that for certain mother wavelets ψ ∈ L2(R) this is true for wavelet
transforms (WT) as well. More specifically, the Fourier transform
of the mother wavelet must satisfy

ψ̂(ξ) =

{
cξ

α−1
2 e−2πγξeiβ log ξ ξ ∈ R+,

0 otherwise,
(1)

for some c ∈ C, α > −1, β ∈ R, and γ ∈ C with Re(γ) > 0.
Similar to the STFT case with Gaussian generator, the resulting
WTs give time-scale representations that are analytic functions for
the time-scale parameter pair being interpreted as a single complex
variable. This class includes the Cauchy wavelet (β = 0), see [22],
for which analyticity of the WT was already shown in [23].

In this paper, we propose an algorithm relying on the phase-
magnitude relationship of the WT to perform wavelet phaseless
reconstruction. On large scale data, such as audio, this problem
has previously been addressed with generic alternating projection
methods, such as [16] and its variations. More recently a wavelet-
adapted iterative scheme has been proposed in [12, 7]. By combin-
ing a discrete approximation of the phase-magnitude relationship
with an adaptive integration scheme in the spirit of [24, 25, 26],
we can forgo iteration and obtain a phase estimate directly from
the magnitude-only coefficients.

We will first recall the results of [21], in particular, the char-
acterization of the WT phase gradient by its log-magnitude gradi-
ent for wavelets of the form (1). To motivate the implementation
in the discrete domain, we briefly sketch the transition from the
continuous to the discrete realm, as well as the invertible WT im-
plementation used in the experiments. Before proceeding to the
experiments, which are the main focus of this work and, in co-
trast to [21], also consider other mother wavelets beside Cauchy
wavelets, we formally introduce the wavelet phase gradient heap
integration algorithm (WPGHI) for phaseless reconstruction.

Although the phase-magnitude relationship only holds exactly
for Cauchy wavelets, we demonstrate that for a broad class of
mother wavelets the relations hold approximately and our phase
reconstruction algorithm works surprisingly well. At the center
of the manuscript is an extensive evaluation that demonstrates the
performance of wavelet PGHI under variations of the mother wave-
let, its time-frequency resolution trade-off and the oversampling
rate. The dependence of reconstruction performance on the param-
eters is investigated and a comparison with the widely used (fast)
Griffin-Lim algorithm [27] is performed. Furthermore, we also
consider WPGHI as an initialization for fast Griffin-Lim. In a final
experiment, we consider wavelet PGHI for a wavelet with com-
pact support in the time domain. This can be considered the first
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step towards a bounded delay implementation of wavelet PGHI in
the vein of RTPGHI [28] for the short-time Fourier transform. To
complement this experiment, we further present a causal variant
of wavelet PGHI that processes the wavelet coefficients one time
position at a time, assuming that the phase at previous positions is
already known. In conjunction with a bounded delay framework
for wavelet analysis and synthesis, this algorithm can serve as the
central building block for a real-time implementation in the future.

Notation: In this contribution, we consider signals as finite en-
ergy functions in a continuous or discrete variable, i.e. s ∈ L2(R)
or s ∈ CL for some natural number L ∈ N. For a differen-
tiable function, we denote partial derivatives by ∂

∂• , where the
variable with respect to which we differentiate is substituted for
the placeholder •. The Fourier transform on L2(R) is the uni-
tary operator derived in the usual way from the integral transform
ŝ(ξ) = F(s)(ξ) =

∫
R s(t)e

−2πiξt dt that is defined for integrable
signals s ∈ L1(R). Finally, for a complex scalar z ∈ C, we denote
its real and imaginary parts by Re(z) and Im(z), respectively.

2. THE PHASE-MAGNITUDE RELATIONSHIP

Fix a function ψ ∈ L2(R) such that its Fourier transform ψ̂ van-
ishes almost everywhere on R−. The continuous WT (CWT) of a
function (or signal) s ∈ L2(R) with respect to the mother wavelet
ψ is defined as

Wψs(x, y) = 〈s,TxDyψ〉 =
1
√
y

∫
R
s(t)ψ

(
t− x
y

)
dt, (2)

for all x ∈ R, y ∈ R+. Here, Tx and Dy denote the translation
and dilation operators, respectively, given by (Txs)(t) = s(t−x),
and (Dys)(t) = y−1/2s(t/y) for all t ∈ R.

The CWT can be represented in terms of its magnitudeMs
ψ :=

|Wψs| ≥ 0 and phase φsψ := arg(Wψs) ∈ R as usual. With this
convention, log(Wψs) = log(Ms

ψ) + iφsψ .
In [21], it was shown that, with ψ as in (1), the function

x+ iy 7→ y−
α
2 eiβ log yWψs

(
x− Im(γ)

Re(γ)
y,

y

Re(γ)

)
. (3)

considered as a function in the complex variable z = x + iy
(y > 0) is analytic, i.e., complex differentiable on the upper half-
plane. In this case, the following expressions linking the partial
derivatives of the log-magnitude and phase components, hold:

Theorem 1 ([21, Th. 1]). Let ψ ∈ L2(R) be a function that satis-
fies

ψ̂(ξ) =

{
ξ
α−1
2 e−2πγξeiβ log ξ ξ ∈ R+,

0 otherwise,
(4)

for some α > −1, β ∈ R, and γ ∈ C with Re(γ) > 0. Then

∂

∂x
φsψ =

α

2yRe(γ)
−

∂
∂y

log
(
Ms
ψ

)
Re(γ)

+
Im(γ) ∂

∂x
log
(
Ms
ψ

)
Re(γ)

(5)

and
∂

∂y
φsψ =

α Im(γ)− 2β

2yRe(γ)
+
|γ|2 ∂

∂x
log
(
Ms
ψ

)
Re(γ)

−
Im(γ) ∂

∂y
log
(
Ms
ψ

)
Re(γ)

. (6)

For γ = 1, these relations simplify to

∂

∂x
φsψ(x, y) = − ∂

∂y
log(Ms

ψ)(x, y) +
α

2y
(7)

and
∂

∂y
φsψ(x, y) =

∂

∂x
log(Ms

ψ)(x, y)− β

y
. (8)

The wavelets ψ specified by (4) are also known as “Klauder
wavelets” and minimize a time-scale counterpart of Heisenberg
uncertainty [29, Prop. 16]. They are a minor generalization of
Cauchy wavelets [22], which are recovered for the choice β = 0
and γ = 1. Because a change in γ results only in a scale change,
dependent on Re(γ), and a time shift, dependent on Im(γ), we
will only consider the case γ = 1. For most of this contribution,
we will in fact consider only Cauchy wavelets.

In the following, ψ will refer to the wavelet specified by (4)
with γ = 1. We can also interpret the wavelet coefficients as time-
frequency measurements. More specifically, the Fourier transform
of ψ has quick decay around its unique peak (or center frequency),
located at ξb = α−1

4π
. Considering the L1-normalized dilation

D̃ys(t) = y−1s(t/y), we can define W̃ψs by

W̃ψs(x, ξ) = 〈s,TxD̃ξb/ξψ〉 =

√
ξ

ξb
Wψs(x, ξb/ξ).

For this form of the WT, straightforward calculations show that the
phase-magnitude relations read as follows:

∂

∂x
φ̃sψ(x, ξ) =

4πξ2

α− 1

∂

∂ξ
log(M̃s

ψ)(x, ξ) + 2πξ, (9)

∂

∂ξ
φ̃sψ(x, ξ) = −α− 1

4πξ2
∂

∂x
log(M̃s

ψ)(x, ξ) +
β

ξ
, (10)

where M̃ψ and φ̃ψ denote the magnitude and phase of W̃ψ , respec-
tively. In the following, we will discretize this form of the phase-
magnitude relations to derive a discrete approximation for appli-
cation within our proposed phaseless reconstruction algorithm.

It is notable that the formulas (9)–(10) almost exactly corre-
spond to the phase-magnitude relations in the STFT case with a
dilated Gaussian [24, Sec. III]. In particular, for β = 0 the only
difference is that the constant time-frequency ratio λ is replaced
by the frequency-dependent term α−1

4πξ2
.

3. PHASELESS RECONSTRUCTION

To perform phaseless reconstruction, we have to assume that the
given magnitude coefficients originate from an invertible wavelet
system, i.e., a wavelet frame, see [30] and references therein. In
this case, we can perform phase estimation followed either by di-
rect synthesis via a dual frame [31, 32, 33, 34] or iterative synthesis
via, e.g., conjugate gradient iteration [35, 6].

Although the performance of phaseless reconstruction should
be largely independent of the particular implementation of the anal-
ysis and synthesis operations, we briefly sketch a potential imple-
mentation for illustrative purposes, largely following [36, 37, 38,
6]. We will denote discretizations of continuous signals by brack-
ets, e.g., the discretized signal sd[l] ∈ C for l ∈ {1, . . . , L − 1}
and some L ∈ N. In this discrete domain, the translation operator
acts circularly, i.e., sd[l−m] is interpreted as sd[mod(l−m,L)].
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We mimic the dilation operator by sampling the continuous fre-
quency response of the mother wavelet ψ ∈ L2(R)∩L1(R) at the
appropriate density: Assuming the sampling rate ξs, the frequency
response of the wavelet at scale y = ξb/ξ is simply

ψ̂y[k] = ψ̂

(
yξsk

L

)
= ψ̂

(
ξbξs
L

k

ξ

)
,

for k ∈ {−bL/2c, . . . , dL/2e − 1}. In practice, we only cover
a finite range of scales and to cover the entire frequency range,
we introduce an additional low-pass function in the style of [6,
Sec. 3.1.2].

The entire wavelet system is characterized by the minimum
scale ym ∈ R+, the scale step 21/B , with B ∈ R+, the number of
scalesK ∈ N, and the decimation1 factor ad ∈ N, with ad|L. The
corresponding scaled and shifted wavelets are given as

ψn,k = Tnadψ2k/Bym
(11)

for k ∈ {0, . . . ,K − 1} and n ∈ {0, . . . , L/ad − 1}. A plateau
function Plp ∈ CL, centered at 0, specifies the low-pass function
as

ψ̂lp = a−1
d PlpΨlp, (12)

where

Ψlp =
√

max(Ψ)−Ψ, Ψ =

K−1∑
k=0

|ψ̂0,k|2. (13)

An analysis with the constructed system yields LK/ad com-
plex-valued coefficients for the wavelet scales and additionalL/ad
real-valued coefficients for the low-pass function, for a total redun-
dancy of (2K + 1)/ad when analyzing signals with no negative
frequency content. With a slight abuse of terminology, we will
from now on refer to the proportional, but simpler quantity K/ad
as the redundancy.

In the following, we will assume that ψ satisfies (4) with β =
0 and γ = 1. The adaptation to general β and γ is straightforward,
but lowers readability, so we leave it to the reader. For general
wavelets, we have to determine the appropriate value of α by com-
paring the chosen mother wavelet to ψ(α) for varying α and select
the best match, see Section 4.

Assume that the continuous-time signal s is approximately
band- and time-limited on [0, ξs[ and [0, L/ξs[, respectively. Then,
with sd[l] = s(l/ξs), for l ∈ {0, . . . , L− 1}, ad = aξs ∈ N, and
ξk = 2−k/Bξb/ym, we obtain the approximation

Ms[n, k] := |〈sd, ψn,k〉| ≈ ξsM̃s
ψ(na, ξk). (14)

Using (14), we can formulate a discrete approximation of the phase-
magnitude relations (9) and (10). Note that normalization by ξs
becomes irrelevant after taking the logarithmic derivative in (14).
As a substitute for the continuous partial derivatives, we take ∆n

and ∆k to be an appropriate discrete differentiation scheme. Our
implementation relies on (weighted) centered differences:

∆n(Ms)[n, k] :=
ξs(Ms[n+ 1, k]−Ms[n− 1, k])

2ad
, (15)

∆k(Ms)[n, k] :=
Ms[n, k + 1]−Ms[n, k]

2(ξk+1 − ξk)

+
Ms[n, k]−Ms[n, k − 1]

2(ξk − ξk−1)
. (16)

1For simplicity, we restrict here to uniform decimation.

Here, weighted centered differences are used in ∆k, since the sam-
pling step in the scale coordinate changes depends on k. For border
points, i.e., n ∈ {0, N − 1} and k ∈ {0,K − 1}, respectively, the
appropriate forward or backward differences are used instead.

If we combine (14) with the phase-magnitude relations (9) and
(10), we obtain

∂

∂x
φ̃sψ(na, ξk) =

4πξ2k
α− 1

∂

∂ξ
log(M̃s

ψ)(na, ξk) + 2πξk

≈ ∆φ̃,x,s
ψ [n, k] :=

4πξ2k
α− 1

∆k(log(Ms))[n, k] + 2πξk, (17)

and

∂

∂ξ
φ̃sψ(na, ξk) =− α− 1

4πξ2k

∂

∂x
log(M̃s

ψ)(na, ξk)

≈ ∆φ̃,ξ,s
ψ [n, k] :=− α− 1

4πξ2k
∆n(log(Ms))[n, k]. (18)

Now, from ∆φ̃,x,s
ψ and ∆φ̃,ξ,s

ψ , an estimate of the phase of
W̃ψs at the sampling points {(na, ξk)}n,k can be obtained us-
ing a quadrature rule considering the variable sampling intervals.
The provided implementation relies on simple 1-dimensional trap-
ezoidal quadrature. This results in the following integration rule
on the set of neighbors of (n, k), i.e., (nn, kn) ∈ Nn,k := {(n ±
1, k), (n, k ± 1)} ∩ {0, . . . N − 1} × {0, . . . ,K − 1}.

(φ̃sψ)est[nn, kn]

= (φ̃sψ)est[n, k] +
ξkn − ξk

2

(
∆φ̃,ξ,s
ψ [n, k] + ∆φ̃,ξ,s

ψ [nn, kn]
)

+
ad(nn − n)

2ξs

(
∆φ̃,x,s
ψ [n, k] + ∆φ̃,x,s

ψ [nn, kn]
)
. (19)

When inserting (15) and (16) into (19), the absolute scale of the
center frequencies ξk and sampling rate ξs becomes unimportant
and only their ratio enters the quadrature (19). Hence, by consider-
ing relative frequencies ξk/ξs, the algorithm is valid independent
of the assumed sampling rate.

However, the integration step itself is not entirely straightfor-
ward. As discussed in [7] and [10], phase estimation from mag-
nitude-only measurements is generally highly unstable when the
coefficients are close to 0. To avoid these instabilities, the work
[24] introduced the Phase Gradient Heap Integration (PGHI) algo-
rithm, originally for Gabor phase reconstruction. The algorithm
adaptively applies a given integration rule, starting at coefficients
of large magnitude and avoiding areas of low magnitude. In the
pseudo-code shown in Algorithm 1 it is assumed that all wavelet
coefficients are available at all times, similar to [24] and [26].

Once the phase estimate (φ̃sψ)est has been computed, it is com-

bined with the magnitude by Ws := Mse
i(φ̃sψ)est and a time-

domain signal is obtained by performing a regular synthesis step.

4. EXPERIMENTS

The performance of wavelet PGHI with Cauchy WTs was exten-
sively evaluated on the EBU SQAM database [40] in [21], see also
http://ltfat.github.io/notes/053/. Here, we eval-
uate the performance of wavelet PGHI with mother wavelets dif-
fering from the Cauchy wavelet. To this end, we selected a var-
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Algorithm 1: Wavelet Phase Gradient Heap Integration
Input: Magnitude Ms of wavelet coefficients, estimates

∆φ̃,x,s
ψ and ∆φ̃,ξ,s

ψ of the partial phase derivatives,
relative tolerance tol .

Output: Phase estimate (φ̃sψ)est.
1 abstol ← tol ·max (Ms[n, k]);
2 Create set I = {(n, k) : Ms[n, k] > abstol};
3 Assign random values to (φ̃sψ)est(n, k) for (n, k) /∈ I;
4 Construct a self-sorting max heap [39] for (n, k) pairs;
5 while I is not ∅ do
6 if heap is empty then
7 Move (nm, km) = arg max

(n,k)∈I
(Ms[n, k]) from I

into the heap;
8 (φ̃sψ)est(nm, km)← 0;
9 end

10 while heap is not empty do
11 (n, k)← remove the top of the heap;
12 foreach (nn, kn) inNn,k ∩ I do
13 Compute (φ̃sψ)est(nn, kn) by means of (19);
14 Move (nn, kn) from I into the heap;
15 end
16 end
17 end

ied subset of 15 signals from the EBU SQAM database,2 includ-
ing signals that were reported as critical in previous contributions
[24, 21]. The chosen subset contains synthetic signals, solo instru-
ments, speech, and music.

We performed 3 experiments, derived from the experimen-
tal protocol in [21] so that results are comparable between stud-
ies. The experiments are described and discussed below. For
wavelet analysis and synthesis, we used the filter bank methods
in the open source Large Time-Frequency Analysis Toolbox (LT-
FAT [41], http://ltfat.github.io/), where our imple-
mentation of wavelet PGHI is available by using the ’wavelet’
flag in filterbankconstphase. A function to generate the
wavelet filters and scripts for generating the individual experiments
are provided on http://ltfat.github.io/notes/055/,
together with audio examples for all experiment conditions. The
functionality represented by the supplied code is to be integrated
into the next release of the LTFAT Toolbox.

In Experiments I and II, we consider the following wavelet
types in addition to the Cauchy wavelet: Morlet wavelets, gener-
alized Morse wavelets [42] with symmetry parameter γ ∈ {2, 3}
and bandlimited wavelets generated in the Fourier domain as car-
dinal B-spline of order m ∈ {3, 5}. The latter have previously
been called frequency B-spline wavelets [43]. Note that Cauchy
wavelets are generalized Morse wavelets with γ = 1. For γ = 3,
the generalized Morse wavelet is also known as Airy wavelet. In
each case, the remaining parameters were adapted to match the
bandwidth of Cauchy wavelets of the desired order (α− 1)/2. In
Experiment III, we consider wavelets with compact support in the
time domain, namely exponentially modulated B-splines. Here,
we fixed the B-spline order m = 4. In Table 1, we list all the used

2The chosen signals are as follows: 01, 02, 04, 14, 15, 16, 27, 39, 49,
50, 51, 52, 53, 54, 70. For each signal, tests were performed on the first 5
seconds of the signal.

wavelet types, their parameters and their Fourier transform ψ̂.
The decimation step ad and the number of frequency channels

K (without the lowpass filter) were chosen equal to those used for
the matched Cauchy wavelet. As quantitative error measure, we
employ (wavelet) spectral convergence [44], i.e., the relative mean
squared error (in dB) between the wavelet coefficient magnitude
of the target signal st and the proposed solution sp:

SC(sp, st) = 20 log10

‖Msp −Mst‖
‖Mst‖

.

It should be noted that the wavelet coefficient magnitude in the
above formula was computed using the same parameter set for
which phaseless reconstruction was attempted. There is no unique
method to match the Cauchy wavelet parameter α to another type
of mother wavelet. We use a procedure that determines α such
that the peak-normalized frequency responses of a given mother
wavelet ψ and a Cauchy wavelet ψ(α) of order (α− 1)/2 with the
same central frequency have the same width at a given threshold
height hthr > 0. The value of α is computed by the MATLAB
function wpghi_findalpha.m, supplied on the project web-
page http://ltfat.github.io/notes/055/.

4.1. Experiment I—Comparison to Fast Griffin-Lim

To study the performance of the proposed algorithm for various
mother wavelets and parameter settings, we compare wavelet PGHI
to the iterative fast Griffin-Lim [16, 27] algorithm. The experimen-
tal protocol is similar to Experiment I in [21]. The Cauchy WT
serves as a baseline comparison, it is specified by the parameter
tuple (α, ad,K). In this experiment, we considered the follow-
ing settings: (30, 10, 100), (300, 24, 240), and (3000, 40, 400),
leading to a fixed redundancy3 K/ad = 10. For all settings,
the channel center frequencies where geometrically spaced in ξs

20
·

[2−6, 23.3]. Matching the other wavelet types to the given values
of α, we obtained the parameters given in Table 2.

We compare three different methods: wavelet PGHI (WPGHI,
proposed), fast Griffin-Lim with zeros initialization (0-FGLIM,
[27]) and fast Griffin-Lim initialized with the result of WPGHI
(W-FGLIM). Fast Griffin-Lim was restricted to at most 40 iter-
ations. Nonetheless, it should be noted that the execution time of
WPGHI is a small fraction of the time required for either 0-FGLIM
or W-FGLIM. Maximum, median, and minimum values for spec-
tral convergence of the three methods are shown in Figure 1 for the
different parameter sets (α, ad,K).

The 0-FGLIM baseline shows the most stable performance
across conditions, with little dependence on the mother wavelet or
the parameter α. On the tested signals, it also shows the least de-
pendence on the signal content, with 7–10 dB difference in spectral
convergence between the best and worst result on any fixed con-
dition. Notably, 0-FGLIM performs slightly better for the lowest
value of α, i.e., the wavelets with worst frequency resolution.

The median performance of WPGHI is better than 0-FGLIM
for α ∈ {300, 3000}, but not for α = 30, except when the Cauchy
wavelet is used. At low values of α, the Cauchy wavelet is very
asymmetric, and thus most different from the other considered
mother wavelets. That the Morse wavelet with γ = 3 performs
second best for α = 30 gives further indication that the perfor-
mance of WPGHI depends, as expected, on the closeness of the

3In [21], the redundancy K/ad = 20 was used, but Experiment II in
[21] suggests that K/ad = 10 still provides excellent performance of all
methods.
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Wavelet name Parameters Fourier transforms ψ̂(ξ)

Generalized Morse (M•) α > 1, γ > 0 cα,γ · ξ(α−1)/2e−2πξγ

Morlet (M) σ > 0 cσ · (e−(σ−ξ)2/2 − e−(σ2+ξ2)/2)

Frequency B-spline (FB•) m ∈ N, ξfb ≥ 2 cm,ξfb ·Bm(ξ −mξfb/4)

Modulated B-spline (MB•) m ∈ N, ξfm ∈ N cm,ξfm · sin(π(ξ − ξfm))m/(π(ξ − ξfm))m

Table 1: Wavelets used in the experiments. The symbol • is a placeholder for γ or m in the Generalized Morse and B-Spline wavelets, i.e.,
M3 denotes a Morse wavelet with γ = 3. For γ = 1, the generalized Morse wavelet yields the Cauchy wavelet. The parameter σ of the
Morlet wavelet is related to the center frequency and controls the time/frequency resolution trade-off. The parameter m of the B-Spline
type wavelets denotes the order of the generating B-spline (a B-Spline of order m is a piecewise polynomial of order m− 1). ξfb and ξfm
denote the center frequency to bandwidth and center frequency to main lobe width, respectively. The restriction ξfm ∈ N guarantees that
the modulated B-spline satisfies ψ̂(0) = 0 and is admissible.

Wavelet / Cauchy α ≈ 30 ≈ 300 ≈ 3000 ≈ 1000

M2, α = 28.93 298.93 2998.93 999

M3, α = 28.45 298.55 2998.45 999

M, σ = 3.79 12.25 38.78 22.38

FB3, ξfb = — 4.32 13.70 7.90

FB5, ξfb = — 3.25 10.30 5.94

Table 2: Wavelets parameters to match a given Cauchy parameter
α ∈ {30, 300, 3000} used in Experiment I and α = 1000 used
in Experiment II. Note that α ≈ 30 cannot be achieved with the
frequency B-Spline wavelet of order m ∈ {3, 5}.

mother wavelet to the Cauchy wavelet with the value of α, for
which the phase-magnitude relations (17) and (18) are invoked.

As expected, WPGHI performs worse when the Cauchy wavelet
is not used, but at large values of α, the difference in median and
worst values is small. Over all values of α, the Frequency B-Spline
wavelet of order m = 3 performs worst, and the Morse wavelet
with γ = 2 performs closest to the Cauchy wavelet. The large
range of values for WPGHI corroborates the observations from
[21] that WPGHI performance can depend significantly on the
signal content, for all chosen mother wavelets. Furthermore, the
best performance seems to depend heavily on the chosen mother
wavelet and its closeness to the Cauchy wavelet. Initializing fast
Griffin-Lim with the result of WPGHI (W-FGLIM) shows signifi-
cant improvements over either WPGHI or 0-FGLIM in all consid-
ered scenarios. In most cases, the final performance of W-FGLIM
seems to be proportional to the quality of the WPGHI initializa-
tion.

Informal listening mostly confirmed the numerical results. At
α ∈ {300, 3000}, all methods produce little to no audible distor-
tion, with the exception of 0-FGLIM for simple signals such as
synthetic sine waves where the defect is still clearly audible. At
α = 30, WPGHI sometimes produces results that are perceptually
worse when the Cauchy wavelet is not used, but nonetheless, dis-
tortions were often more severe in 0-FGLIM, despite contradict-
ing numerical results. The results of W-FGLIM provide excellent
quality, even at α = 30, where the individual methods may fail to
do so.

4.2. Experiment II—Changing the Redundancy

In a second set of experiments, we investigate the influence of the
redundancy K/ad on the performance of the proposed methods
WPGHI and W-FGLIM. Once more, the experiment follows the

protocol established in Experiment II in [21], but with the main
aim to compare performance across different mother wavelets. We
fix α = 1000 and once more match the parameters of all alter-
native mother wavelets, see Table 2. The considered redundan-
cies are K/ad ∈ {3, 5, 10}. In contrast to [21], we do not con-
sider K/ad = 30, as the results were rather close to the case
K/ad = 10 and the same is expected here.

We fix the following parameter sets (α, ad,K) for the Cauchy
wavelet baseline: low redundancy (1000, 30, 90), medium redun-
dancy (1000, 25, 125), high redundancy (1000, 18, 180). Simi-
lar to Experiment I, median value, maxima, and minima over the
test set are presented in Figure 2 for all parameter sets and mother
wavelets. As expected, performance of both proposed methods
decreases at lower redundancy, but median performance at low
redundancy is still decent. Both median and worst performance
shows little dependence on the mother wavelet, due to the cho-
sen large value of α, at which all considered mother wavelets are
reasonably close to the Cauchy wavelet. Some influence of the
mother wavelet is still apparent in the best values of spectral con-
vergence. Especially for plain WPGHI, the Cauchy wavelet is still
at an advantage. At any redundancy, W-FGLIM yields a significant
improvement over plain WPGHI, but at low redundancy, the addi-
tional Griffin-Lim iteration only marginally improves the recon-
struction on signals for which WPGHI performs badly. Perceptual
quality is excellent over all redundancies. Only at low redundancy,
minor distortions were observed.

4.3. Experiment III—Towards WPGHI with Bounded Delay

The implementation of a bounded delay framework for wavelet
analysis and synthesis is more involved than for the short-time
Fourier transform and not the objective of this contribution. Nonethe-
less, we want to indicate some steps that can be taken to enable the
use of WPGHI within such a framework. First, we need to show
that WPGHI produces good results in conjunction with mother
wavelets that are compactly supported in the time domain and thus
necessarily ψ̂(ξ) = 0 for all ξ ∈ R− cannot be satisfied.

To this end, we repeat Experiment I with a modulated B-spline
of fixed order 4 as mother wavelet ψ. Due to the restriction of
the parameter ξfm to positive integers, it is not possible to con-
struct complex-modulated B-spline wavelets that match a Cauchy
wavelet of arbitrary order (α−1)/2. Instead we choose values for
the center frequency to main lobe width ratio ξfm and compute the
matching Cauchy parameter α. The resulting parameter values are
shown in Table 3.

The Fourier transform ψ̂ of the modulated B-Spline is sym-
metric around its peak. Hence, the lowest value of ξfm corre-
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−50 −40 −30 −20

C α30

M α30

M2 α30

M3 α30

C α300

M α300

M2 α300

M3 α300

FB3 α300

FB5 α300

C α3000

M α3000

M2 α3000

M3 α3000

FB3 α3000

FB5 α3000

Spectral Convergence

WPGHI 0-FGLIM W-FGLIM

Figure 1: Results of Experiment I for wavelet PGHI and fast Grif-
fin Lim for Cauchy α ∈ {30, 300, 3000} and all tested wavelets.
The minimal, median, and maximal spectral convergences over the
15 test signals are depicted.

sponds to a small Cauchy wavelet parameter α, i.e., a rather asym-
metric Cauchy wavelet. Thus, the average performance of WPGHI
is expected to be inhibited for the modulated B-Spline. While this
is certainly apparent in the results, see Figure 3, reconstruction
quality is still decent. At higher values of ξfm, the difference be-
tween WPGHI performance for the two tested mother wavelets
becomes increasingly negligible and reconstruction performance
becomes competitive with or even better than the iterative fast
Griffin-Lim algorithm. For the sake of completeness, we also
show results for W-FGLIM, which continues to outperform both
competing methods. Generally speaking, the results are, not unex-
pectedly, very similar to those obtained in Experiment I. The same
is true for perceptual performance, where differences between the
wavelets (in line with numerical results) have been observed al-
most exclusively for ξfm = 1.

Both 0-FGLIM and W-FGLIM involve iteration relying on
many wavelet analysis and synthesis steps. On the other hand,
the computations necessary for WPGHI are elementary and can be
adapted to a real-time (bounded delay) setting easily. This has pre-
viously been shown for the short-time Fourier transform in [28].

−50 −40 −30 −20 −10

C R10

M R10

M2 R10

M3 R10

FB3 R10

FB5 R10

C R5

M R5

M2 R5

M3 R5

FB3 R5

FB5 R5

C R3

M R3

M2 R3

M3 R3

FB3 R3

FB5 R3

Spectral Convergence

WPGHI W-FGLIM

Figure 2: Results of Experiment II for wavelet PGHI and all tested
wavelets at redundancies K/ad ∈ {10, 5, 3}. The minimal, me-
dian, and maximal spectral convergences over the 15 test signals
are depicted.

We close this contribution with Algorithm 2, which demonstrates
the changes necessary to adapt WPGHI to such a setting. This al-
gorithm computes a phase estimate (φ̃sψ)est[n, ·] using the phase
gradient at time positions n − 1 and n and relying on a previ-
ously computed phase estimate for (φ̃sψ)est[n − 1, ·], for n =
1, . . . , N − 1. Assuming that the phase and phase derivative at
time−1 are identically 0, it can also be used to initialize the phase
estimate for (φ̃sψ)est[0, ·] from scratch.

5. CONCLUSION

We have presented a non-iterative method for reconstruction from
magnitude-only wavelet coefficients, relying on the phase-magnitude
relations for WTs with Cauchy-type mother wavelet, recently in-
troduced in [21]. The resulting algorithm is computationally highly
efficient and often performs on par or better than previous itera-
tive schemes, for which it can also serve as an initialization. The
latter initialization has been shown to boost the performance of
either method used individually. In the presented experiments we
showed that the theoretical restriction to Cauchy-type mother wavelets
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Cauchy, α = 29.7 257.0 2841.7

Mod. B-spline, m = 4, ξfm = 1 3 10

Table 3: Wavelet parameters used in Experiment III. Each col-
umn lists matching parameters between the Cauchy wavelet and
the modulated B-spline of order m = 4.
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Figure 3: Results of Experiment III for wavelet PGHI and fast
Griffin Lim for Cauchy and complex modulated B-spline wavelets.
The minimal, median, and maximal spectral convergences over the
15 test signals are depicted.

becomes a soft restriction in practice. In other words, the method
can be successfully applied for other types of mother wavelet, pro-
vided they are reasonably close to some Cauchy wavelet. Although
this closeness to a Cauchy wavelet limits the performance of the
algorithm when other wavelets are used, the obtained results for
a small, but varied corpus of audio data are very promising. Fi-
nally, we indicated the steps that are necessary for introducing the
proposed method into a bounded delay wavelet analysis/synthesis
system, similar to what has been done for the short-time Fourier
transform in [28].
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ABSTRACT

This paper presents a novel technique for producing high-
definition time-frequency representations by combining differ-
ent instances of short-time fan-chirp transforms. The proposed
method uses directional information provided by an image pro-
cessing technique named structure tensor, applied over a spectro-
gram of the input signal. This information indicates the best anal-
ysis window size and chirp parameter for each time-frequency bin,
and feeds a simple interpolation procedure, which produces the fi-
nal representation. The method allows the proper representation
of more than one sound source simultaneously via fan-chirp trans-
forms with different resolutions, and provides a precise reproduc-
tion of transient information. Experiments in both synthetic and
real audio illustrate the performance of the proposed system.

1. INTRODUCTION

Time-Frequency Representations (TFRs) of audio signals have
been used for decades in all sorts of audio processing tasks. Such
representations allow to observe the temporal evolution of the fre-
quency content present in a given signal by applying a time-to-
frequency mapping, e.g. the Fourier transform, to time frames of
the signal [1]. In this context, the availability of an appropriate
time-frequency representation for a song recording can improve
several tasks in Music Information Retrieval (MIR) [2, 3], e.g. au-
tomatic transcription, rhythmic analysis, identification of instru-
ments, sound source separation, etc.

The main problem concerning TFRs is the incapability of rep-
resenting both time and frequency content with arbitrarily high
resolutions simultaneously, which is dictated by the uncertainty
principle [1]. For instance, by increasing the length of the anal-
ysis window of a spectrogram, a higher frequency resolution is
achieved, while the time resolution decreases. Therefore, one
should choose the analysis window’s length within a compromise.

Having high-definition TFRs is essencial for many MIR
tasks [2, 3]. Although the uncertainty principle holds true, the
TFR field has been receiving several contributions aiming at pro-
viding better time-frequency resolution (i.e. sparser representa-

∗ The authors thank CAPES and CNPq Brazilian agencies for funding
this work.
Copyright: c© 2019 Maurício do Vale Madeira da Costa et al. This is an open-

access article distributed under the terms of the Creative Commons Attribution 3.0

Unported License, which permits unrestricted use, distribution, and reproduction in

any medium, provided the original author and source are credited.

tions) for audio tasks. A common approach is to perform some
sort of combination of TFRs, taking advantage of characteristics
of audio signals, in an attempt to locally optimize their representa-
tion [4, 5, 6, 7, 8, 9].

The Fan-Chirp Transform (FChT) [10, 11], in its discrete
short-time version, can provide a sparse representation for signals
containing harmonic content with fast fundamental frequency vari-
ation. This transform, presented here in Section 2, uses a basis
composed of complex exponentials whose frequency varies lin-
early in time, hence assuming linearity within the excerpts (time
frames) under analysis. When the transform properly models the
variation present in the signal, its tonal frequency content can be
sparsely described. This potentially overcomes the problem of en-
ergy smearing observed when a signal with fast frequency varia-
tions is represented by a spectrogram.

The main disadvantage of this transform is that it may only
well represent one sound source at a time, since the whole expo-
nential basis used follows a unique fundamental frequency varia-
tion rate. Unless the sources share the same slope parameter, an
only source will be sparsely represented in detriment to the oth-
ers. Therefore, the problem of dealing with multiple sources can
only be tackled by combining multiple instances of Short-Time
Fan-Chirp Transform (STFChTs), in a way that the best represen-
tations for each time-frequency bin remain in the final TFR.

To the authors’ knowledge, unfortunately no TFR found in the
literature seems capable of precisely representing polyphonic sig-
nals containing fast frequency variation and still preserve a nat-
ural and smooth representation of the magnitude of frequency
lines. When the standard spectrogram is used for this matter, espe-
cially with large analysis windows, a blurred representation results
whenever a frequency line presents a steep slope. For instance, this
undesired effect is frequently observed in vocal signals, whose fre-
quency content changes considerably fast. Having an appropriate
representation is an obvious requirement of tasks involving signals
with such characteristics.

In this work, we combine bins of different precomputed TFRs
using the information provided by an image processing technique,
namely, the structure tensor. This technique (presented in Sec-
tion 3) allows to compute the predominant orientation angle of
edges present in a given image [12, 13, 14, 15]. In the case of
musical signals, the frequency lines found in a spectrogram can be
interpreted as edges, whose direction can then be estimated. This
procedure has two outputs, for each time-frequency bin (pixel): a
priority angle, which indicates the direction of the edge; and the
anisotropy measure, which informs how relevant is that direction
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in terms of edginess. We use the information provided by the struc-
ture tensor to choose the best TFRs available (in terms of window
size and slope parameter) and combine them bin-wise. This proce-
dure allows one to attain a TFR with high resolution in frequency
lines with any desired slope and in sharp transient information.

A flow-chart of the proposed method is depicted in Figure 1.
Firstly, the audio signal x is processed to generate a set of differ-
ent STFChTs using predetermined sets of chirp slopes and analy-
sis window sizes, α and K, respectively. Then, all TFRs are in-
terpolated1 and assembled in a four-dimensional tensor X. From
the structure tensor of the standard spectrogram X, parameters A,
containing the preferable chirp rates (directional information), and
C, containing the preferable window sizes, are computed. Finally,
a simple linear combination of the set of TFRs is performed ac-
cording to A and C for each time-frequency bin (as described in
Section 4), resulting in the combined TFR XComb.

Structure 
tensor STFT 

Lin. 
comb. STFChT 

x

XComb

A,C
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Figure 1: Flow-chart of the proposed method.

A set of experiments presented in Section 5 attest the method’s
performance, and conclusions are drawn in Section 6.

2. TIME-FREQUENCY REPRESENTATIONS

2.1. The Spectrogram

The most used time-frequency transform is the popular spectro-
gram, which is comprised of the magnitude2 of the Short-Time
Fourier Transform (STFT):

X(τ, f) ,

∣∣∣∣∫ ∞
−∞

x(t)w(t− τ)e−j2πftdt

∣∣∣∣ , (1)

where | · | denotes the magnitude of its complex argument, w is
a real-valued analysis window, and x is a real valued signal. The
window w can be continuously shifted in time, providing a spec-
trum for each instant τ of the windowed version of x(t).

The discrete version of the spectrogram, X ∈ RK×M , follows
the same principle of using a window to focus on some part of the
signal. Considering that the time support of the analysis window
is limited toK samples, the discrete spectrogram can be described
by

Xk,m ,

∣∣∣∣∣
K−1∑
n=0

xn−hmwne−j
2π
K
kn

∣∣∣∣∣ , (2)

where k ∈ K , {0, 1, 2, ...,K/2} is the frequency index,
m ∈ M , {1, 2, 3, ...,M} is the time index of the STFT, wn
is the analysis window with K samples used for computation of
the spectrogram, and h ∈ N is the analysis hop.

As mentioned, this method, as well as any other TFR, has the
limitation stated by the uncertainty principle [1]: a signal cannot

1The different TFRs must be interpolated not only to have the same
dimensions, but also share the same time and frequency axes.

2The spectrogram can also be defined as the squared-magnitude of the
STFT.

be represented with arbitrarily high time and frequency resolutions
simultaneously. As the length of the analysis window grows, a
greater frequency resolution is achieved, as longer excerpts of the
signal are projected into the complex exponentials. For the same
reason, the time resolution decreases. Parts of the signal with fast
variations become blurred in the time-frequency map, for they are
integrated with their neighborhood. Another issue is related to fre-
quency variation within the period of the analysis window, which
spreads the energy frequency-wise.

In order to address this issue, the fan-chirp transform can be
used, allowing for representing harmonic signals whose funda-
mental frequency varies linearly in time. As long as the analysis
window is short enough for the signal to fit this model, a sparse
representation of fast frequency variations is attained.

2.2. The Fan-Chirp Transform

In the continuous time domain, the fan-chirp transform
XFChT(f, α) of a given signal x(t) is defined in [11] as

XFChT(f, α) ,

∞∫
−∞

x(t)φ′α(t)e−j2πfφα(t)dt, (3)

where φα(t) is a time linear warping function given by

φα(t) =

(
1 +

1

2
αt

)
t, (4)

and α is the chirp rate parameter.
This transform can be interpreted as a modification of the

Fourier transform (which corresponds to α = 0). By applying
the variable change τ = φα(t) to Equation (3), the time domain
itself can be warped:

XFChT(f, α) =

∞∫
−1/α

x(φ−1
α (τ))e−j2πfτdτ, (5)

where

φ−1
α (t) = − 1

α
+

√
1 + 2αt

α
. (6)

In Equation (5), it is possible to observe that the FChT has
the same formulation of the Fourier transform (Equation (1)), with
the differences that the input signal x(t) is pre-warped in time, and
the inferior integration limit is changed—in order to avoid aliasing,
x(t) = 0 for t ≤ −1/α [10] should be assured. This constrains
the usable values of α inside an analysis window with K samples
to be within the interval

− 2Fs/K ≤ α ≤ 2Fs/K. (7)

The Short-Time Fan-Chirp Transform (STFChT) XFChT is
implemented by applying the same windowing procedure em-
ployed to compute the spectrogram, after resampling [11] the input
signal x, and can be described as

XFChT
k,m,α ,

∣∣∣∣∣
K−1∑
n=0

x̃α,n−hmwne−j
2π
K
kn

∣∣∣∣∣ , (8)

where x̃n is the discrete version of the time warped signal
x(φ−1

α (τ)), as long as the aliasing condition has been satisfied.
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In practice, since x(t) is not available, x̃n must be obtained by re-
sampling xn. With this formulation, the FChT can profit from a
fast implementation of the Discrete Fourier Transform (DFT), i.e.
an FFT algorithm [11].

By applying this procedure, the input signal is modeled as a
sum of linear chirps for each time frame, and to this end, a value
of α must be estimated. This step is originally performed via an
exhaustive search, in which a predetermined set of values of α is
tested, and the choice of the best one is made by searching for the
α which provides maximum sparsity. Another reliable and signif-
icantly faster way to perform this estimation is proposed in [15],
which consists in using the structure tensor [12, 13] technique to
estimate priority directions. This procedure can also be used to es-
timate multiple simultaneous directions, which is useful for signals
with more than one sound source [15]. In this paper, the structure
tensor will also be used to estimate the target α’s; however, dif-
ferently from what is done in [15], the estimations are performed
locally in the TFR, and are used to guide a combination procedure.

3. THE STRUCTURE TENSOR

The structure tensor technique allows the computation of angles
of edges present in a given image [12, 13, 14, 15]. The idea is to
interpret the spectrogram3 as an image whose pixels are its time-
frequency bins. In this work, the absolute value of the spectrogram
compressed by the fourth-root X̂ = X

1
4 is used instead of the

logarithm, which will be explained latter in this section.

3.1. Computation of the Structure Tensor

Initially, two derivative versions of X̂ are computed by the ap-
plication of partial derivatives with respect to time index m and
frequency index k:

X̂m = X ∗D, (9)
X̂k = X ∗DT, (10)

where D is a discrete differentiation operator, more specifically
the Sobel-Operator

D =

 1 0 −1
2 0 −2
1 0 −1

 , (11)

and ∗ denotes the 2-dimensional convolution.
Then, X̂m and X̂k are combined, producing 4 other matrices:

T11 = [X̂m � X̂m] ∗G (12)

T12 = T21 = [X̂k � X̂m] ∗G (13)

T22 = [X̂k � X̂k] ∗G, (14)

where operator � denotes the Hadamard product (i.e., point-wise
matrix multiplication), and matrix G is a 2-D Gaussian smoothing
filter with standard deviations σm and σk in time- and frequency-
index directions, respectively, intended to reduce noise interfer-
ence. Matrix T11 contains information related to temporal (hor-
izontal) variation in the image, T22 contains information about
frequency (vertical) variation, and T12 and T21 convey both.

3In order to have more consistent results, the input signal is energy-
normalized.

Now, each time frequency bin (k,m) has a group of four other
values related to it: T 11

k,m, T 12
k,m, T 21

k,m, and T 22
k,m. Together, such

bins form a structure tensor element Tk,m, which is a 2× 2 sym-
metric and positive semi-definite matrix:

Tk,m =

[
T 11
k,m T 12

k,m

T 21
k,m T 22

k,m

]
. (15)

This matrix, whose values depend on the time-frequency bin
under analysis of the given spectrogram, has interesting properties,
since it carries information regarding amplitude variation in differ-
ent directions. By computing its eigenvalues and eigenvectors, the
direction of frequency lines near the analyzed time-frequency bin
can be estimated, as well as the anisotropy measure, which in-
dicates the degree of edginess of the given bin, as shown in the
following section.

3.2. Computation of Angles and Anisotropy Measure

As mentioned, the information required to compute the angle and
the anisotropy of a given time-frequency bin (k,m) is embedded
in the eigenvalues and eigenvectors of the structure tensor element
Tk,m. Consider the eigenvalues λk,m and µk,m of Tk,m, with
λk,m ≤ µk,m, and their respective eigenvectors vk,m and wk,m.
Since vk,m = [v1k,m, v

2
k,m]T is related to the smallest eigenvalue,

it is pointing in the direction of the smallest change, i.e. parallel to
the direction of a frequency line near bin (k,m). Then, the angle
of orientation θk,m, in a horizontal perspective, is given by

θk,m = arctan

(
v2k,m
v1k,m

)
∈ [−π/2, π/2], (16)

with v1k,m being the horizontal (temporal) component and v2k,m
being the vertical (frequency) component of vk,m.

The eigenvalues can also indicate the edginess of each bin
(k,m) by informing how different from each other are the changes
in the directions of the eigenvectors. This is called the anisotropy
measure Ck,m ∈ [0, 1], defined as

Ck,m =


(
µk,m − λk,m
µk,m + λk,m

)2

, µk,m + λk,m ≥ ε

0, else,

where ε ∈ R+ is a threshold used to limit the range of what
should be considered anisotropic [14], in order to increase robust-
ness against background noise.

Bins within a more homogeneous neighborhood yield smaller
values of Ck,m, while bins close to frequency lines in the spectro-
gram yield higher values of Ck,m. Here is where the use of the
fourth-root compression is useful, since it presents much reduced
dynamic range for amplitude variations at bins with small magni-
tude, when compared to the logarithm. With the fourth root com-
pression, small magnitude values in the spectrogram, e.g. back-
ground noise, will lead to much smaller anisotropy values. A sim-
ilar result could be obtained by applying an offset of 1 to the mag-
nitude spectrogram before applying the logarithm.

3.3. Computation of α

Since the angles θ are related to the time-frequency bins of the
given spectrogram, they live in the discrete time-frequency do-
main. Nevertheless, the fan-chirp transform is computed using α,
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which is related to the analog time-frequency domain; therefore, a
transformation must be performed in order to compute the set of
α’s from a set of θ’s.

Let the angle ϑ be the continuous time-frequency domain ver-
sion of the angle θ, and vector ν = [ν1, ν2]T the continuous time-
frequency domain version of vector v = [v1, v2]T. This last con-
version can be computed by ν1 = v1h/Fs and ν2 = v2Fs/K,
where Fs is the sampling rate, h is the hop-size of the STFT, and
K is the number of samples used in the Fourier transform. Figure 2
depicts the geometrical relation between ϑ and α.

0
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Figure 2: Geometrical relation between the orientation angle ϑ
and variable α, in the continuous time-frequency domain.

By analyzing the triangle highlighted in green in Figure 2, one
can verify that

tanϑ = fα, (17)

which using the aforementioned conversions is written as

tanϑ =
ν2

ν1
=
v2Fs/K

v1h/Fs
= tan θ

F 2
s

Kh
. (18)

Using the relation f = kFs/K,

αk,m = tan θk,m
Fs

hk
. (19)

Therefore, by performing this conversion one has a set of α pa-
rameters for each time-frequency bin (k,m) of the spectrogram.

4. COMBINATION METHOD

4.1. Principles of the Method

The structure tensor outputs, i.e. the set of angles θ and the set
anisotropy measures C, comprise the information of direction and
proximity to a straight edge of each time-frequency bin. Figure 3
depicts a small region of the spectrogram of an audio signal with
blue arrows representing vectors pointing at direction θ, and hav-
ing magnitude C. It is possible to observe that the arrows cor-
rectly follow the direction of frequency lines, and that the regions
presenting only background noise, far from the frequency lines,
exhibit no arrows (C = 0). In Figure 3, two different regions are
highlighted: the arrows inside region 1 present smaller magnitude
than the ones inside region 2. This occurs because the latter is
surrounded by a much more linear frequency line excerpt than the
former, and linear edges provide maximum difference between the
eigenvalues. This effect depends on the dimensions of the smooth-
ing filter G (Section 3.1): a small-dimension G induces smaller
regions, which favor a linear model, and thus decreases the effect.
Also, it is worth noting that the magnitudes vary smoothly over
the whole time-frequency domain, which will assure smooth tran-
sitions between different TFRs in the combined result.

Figure 3: Vectors in θk,m directions with magnitudes Ck,m.

Note that the discrete fan-chirp transform models the input
signal as a series of harmonically related linear frequency chirps,
which means that the resulting TFR will present sparse results
when the input signal matches this model within the analysis win-
dow period. As a result, using a larger analysis window allows the
increase of the number of frequency chirp bins in the transform,
providing minimum energy smearing only if the signal under anal-
ysis is indeed linearly varying with slope α for a longer period.

Such observations are key to the strategies used in the pro-
posed combination procedure. The idea is to use the anisotropy
measure as an indicator of the local linearity of frequency lines,
and therefore an indicator of the analysis window length to be ap-
plied; and, in order to choose the best fan-chirp representation for
each time-frequency bin, parameter α can then be inferred from
the angle θ obtained for each bin. In the end, the method consists
in performing a linear combination of time-frequency bins of the
best candidates among a set of STFChTs with different α’s and
analysis window lengths K.

4.2. Computation of Tensor X

The tensor X comprises TFRs which will be used in the combi-
nation. The objective is to span a broad variety of TFRs for audio
signals. Three general situations can be observed in musical audio
signals: (i) some sort of broadband noise produced, for instance,
by blows, brushes in drums, fricative syllables in vocals, or just
background noise; (ii) percussive information, as that contained in
the attack of a note or a drum hit; and (iii) tonal information, pos-
sibly varying continually over time, as in the case of an instrument
performing a vibrato. Figure 4 depicts the spectrogram of the on-
set of a harmonic pulse, zoomed in a region close to the attack.
From left to right, it is possible to observe three distinct regions:
background noise, the attack, and tonal information. Note that the
angles computed by the structure tensor are very close to π/2 or
−π/2 at the attack, indicating that the energy is distributed verti-
cally.

Since the attacks are much better defined by transforms using
short analysis windows, it is useful to define a maximum angle
above which transient information should be considered predom-
inant. This angular threshold ϑmax is then chosen in order to de-
fine two different regions: angles that represent attacks, for which
STFTs with short windows will be used in the combination pro-
cedure, and angles that indicate the presence of tonal information,
which will be represented by STFChTs with proper window length
and parameter α. These two angular regions are indicated in Fig-
ure 5, similarly to what is done in [14].

For computation of the optimum α’s distribution, an equally
spaced distribution of angles ϑ is adopted, in order to minimize
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Figure 4: Spectrogram: onset of a harmonic pulse. Vectors in θk,m
directions with magnitudes Ck,m.
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Figure 5: Angular regions associated to transients and tonal infor-
mation.

the energy smearing in tonal regions. Consider that the angular
region [0, ϑmax] will be divided in I parts. This maximum analog
angle is related to an αmax by the same relation described in Equa-
tion (17), which indicates that the analog angle ϑ is proportional to
tanα. Since parameter α better describes the behavior of varying
harmonic frequency content,4 instead of setting a global maximum
angle, it is better to consider a global αmax. This parameter can be
set, for instance, considering Equation (7), since there is a range of
α values that can be used given the analysis window size and the
sampling frequency.

Now, angles ϑk,m that produce αk,m > αmax will be con-
sidered transient information, while the others will be considered
tonal information. Considering again the relation in Equation (17),

tan(ϑmax) = fαmax. (20)

Considering a generic f , e.g. f = 1, and given αmax and the
number of α’s I ,

ϑmax = arctan(αmax), (21)

and

ϑi = i
ϑmax

I
= i

arctan(αmax)

I
. (22)

Finally, we can project a linear distribution of ϑ into α by comput-
ing αi as

αi = tan(ϑi) = tan(i arctan(αmax)/I), (23)

and the set of α’s that we shall use to compute the STFChT sym-
metrically spans this distribution with positive and negative values:

α = [−ᾱI ,−ᾱI−1, . . . ,−ᾱ1, ᾱ0, ᾱ1, . . . , ᾱI−1, ᾱI ]. (24)

4Lower frequencies will have much smaller frequency variation than
higher frequencies, for they follow a proportional relation.

For choosing the best distribution of K = [K1,K2, . . . ,KJ ],
since the FFT algorithm is used, having analysis window lengths
of powers-of-two is desirable. This criterion is used to choose
the elements of K, optimizing this way the computational cost
of this step. The parameters to be set are, then, K following the
aforementioned criterion and the number of α values I . A set of
TFRs is then composed of several instances of STFChTs using
the combinations of K and α and an STFT computed with K1

(for the transients). Note that the sets of STFChTs also include
spectrograms, since XFChT

α=0 = X.
Then, all the representations suffer two-dimensional linear in-

terpolation in such a way that the highest time and frequency res-
olutions are preserved. All representations must have KJ fre-
quency bins after the interpolation, and must be synchronized. In
the present implementation, the same hop size is used for comput-
ing all TFRs, but this does not guarantee by itself the correct time
alignment between analysis windows, reason why the time-wise
interpolation (or a previous time shift in x) is also necessary. The
set of parameters α andC computed via structure tensor procedure
must also be interpolated, generating matrices A and C, respec-
tively. The best results are obtained when the conversion from θ to
α is performed before the interpolation.

The last step is to equalize the energy of the TFRs and store
them in a four-dimensional tensor X, with the element Xk,m;j,i

being related to the k-th frequency bin, at the m-th time frame,
from a representation that has been computed with an analysis
window of length Kj and a chirp rate parameter ᾱi. Since the
transient information will be represented by a spectrogram com-
puted with K1, it is allocated at the first and at the last positions
in dimension α, and therefore it will not be necessary to compute
STFChTs using the first and the last values of α, i. e. ᾱI and−ᾱI .
Figure 6 depicts the tensor X, where groups of TFRs with differ-
ent α’s are illustrated clustered according to the original length of
their analysis windows, Kj .
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Figure 6: Scheme of the four-dimensional TFR tensor X.

4.3. Combination Procedure

The combination procedure is independently performed for each
time-frequency bin (k,m), using αk,m, from A, and Ck,m, from
C. A linear combination is performed using two different weights,
one being related to αk,m, and another being related to Ck,m. The
idea is to combine the representations that best suit these two pa-
rameters by using a simple linear interpolation, which can be rep-
resented as triangular complementary functions.

Figure 7 depicts an example of the weights related to the α
parameters, λα, for I = 2. The weight λαi is applied to the i-th
layer of X, so the centered weight in the image, λα0 , in black, is
related to the layers in X which were computed with ᾱ0, the others
in blue, λα1 and λα−1, are related to the layers computed with ᾱ1

and ᾱ−1, and the last ones, λα2 and λα−2, in orange, are related to
the STFT, which is used to represent the transients. For this reason,
these last curves have a plateau in 1 for representing ‖α‖ ≥ ᾱ2.
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Analogously, λC (depicted in Figure 8) will be used for weighting
the layers of X along dimension j, which is related to K.
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<latexit sha1_base64="1CaV4coS0Fpqx7mAXCAcLvjC2gg=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHERUlU0GXBjcsK9gFNWm4mk3bo5MHMRCmh/+HGhSJu/Rd3/o3TNgttPTBwOOdc7p3jp4Irbdvf1srq2vrGZmmrvL2zu7dfOThsqSSTlDVpIhLZ8VExwWPW1FwL1kklw8gXrO2Pbqd++5FJxZP4QY9T5kU4iHnIKWoj9VxhogH2XBTpEPuVql2zZyDLxClIFQo0+pUvN0hoFrFYU4FKdR071V6OUnMq2KTsZoqlSEc4YF1DY4yY8vLZ1RNyapSAhIk0L9Zkpv6eyDFSahz5JhmhHqpFbyr+53UzHd54OY/TTLOYzheFmSA6IdMKSMAlo1qMDUEqubmV0CFKpNoUVTYlOItfXiati5pzWbPvr6r186KOEhzDCZyBA9dQhztoQBMoSHiGV3iznqwX6936mEdXrGLmCP7A+vwBf3eSbQ==</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

�↵
1

<latexit sha1_base64="b+IkurI8REgfOjwDi7xEKsZkJoc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0UQFyVRQZcFNy4r2Ac0MdxMJu3QySTMTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zwowzpR3n26qsrW9sblW3azu7e/sH9uFRR6W5JLRNUp7KXgiKciZoWzPNaS+TFJKQ0244upv53TGViqXiUU8y6icwECxmBLSRAtv2uAlH8OQBz4YQuIFddxrOHHiVuCWpoxKtwP7yopTkCRWacFCq7zqZ9guQmhFOpzUvVzQDMoIB7RsqIKHKL+aXT/GZUSIcp9I8ofFc/T1RQKLUJAlNMgE9VMveTPzP6+c6vvULJrJcU0EWi+KcY53iWQ04YpISzSeGAJHM3IrJECQQbcqqmRLc5S+vks5lw71qOA/X9eZFWUcVnaBTdI5cdIOa6B61UBsRNEbP6BW9WYX1Yr1bH4toxSpnjtEfWJ8/JwCTQg==</latexit>

�↵
2

<latexit sha1_base64="/sDgLm3rNH9ik1xjB9Oj0nT2gts=">AAAB+XicbVBNS8NAFNzUr1q/oh69LBZBPJSkCnosePFYwdZCE8PLZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NaBhWFmHu/thBlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjrkpzSWiHpDyVvRAU5UzQjmaa014mKSQhp4/h6HbmP46pVCwVD3qSUT+BgWAxI6CNFNi2x004gicPeDaEoBnYdafhzIFXiVuSOirRDuwvL0pJnlChCQel+q6Tab8AqRnhdFrzckUzICMY0L6hAhKq/GJ++RSfGSXCcSrNExrP1d8TBSRKTZLQJBPQQ7XszcT/vH6u4xu/YCLLNRVksSjOOdYpntWAIyYp0XxiCBDJzK2YDEEC0aasminBXf7yKuk2G+5lw7m/qrcuyjqq6ASdonPkomvUQneojTqIoDF6Rq/ozSqsF+vd+lhEK1Y5c4z+wPr8ASiEk0M=</latexit>

�↵
�2

<latexit sha1_base64="IoyzfWLh8G7tufH9F8fWQKkSGcE=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgiWJIq6LLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NlZW19Y3Nitb1e2d3b198+CwK5NMYNLBCUtEPwBJGOWko6hipJ8KAnHASC8Y30z93iMRkib8XuUp8WIYchpRDEpLvllzmQ6H8OACS0fgF+fNiW/W7YY9g7VMnJLUUYm2b365YYKzmHCFGUg5cOxUeQUIRTEjk6qbSZICHsOQDDTlEBPpFbPjJ9aJVkIrSoR+XFkz9fdEAbGUeRzoZAxqJBe9qfifN8hUdO0VlKeZIhzPF0UZs1RiTZuwQioIVizXBLCg+lYLj0AAVrqvqi7BWfzyMuk2G85Fw767rLfOyjoq6Agdo1PkoCvUQreojToIoxw9o1f0ZjwZL8a78TGPrhjlTA39gfH5A2ewlIY=</latexit>

�↵
�1

<latexit sha1_base64="FHPFSc30WIal2h+EFpE2geVlqJM=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwY0lUqMuCG5cV7AOaGG4mk3boZBJmJkII9VfcuFDErR/izr9x2mahrQcGDuecy71zgpRRqWz726isrW9sblW3azu7e/sH5uFRTyaZwKSLE5aIQQCSMMpJV1HFyCAVBOKAkX4wuZn5/UciJE34vcpT4sUw4jSiGJSWfLPuMh0O4cEFlo7BL86dqW827KY9h7VKnJI0UImOb365YYKzmHCFGUg5dOxUeQUIRTEj05qbSZICnsCIDDXlEBPpFfPjp9apVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvmi7BWf7yKuldNJ3Lpn131Wi3yjqq6BidoDPkoBZqo1vUQV2EUY6e0St6M56MF+Pd+FhEK0Y5U0d/YHz+AGoUlJI=</latexit>

�↵
0

<latexit sha1_base64="f2dSo9pcjk+ryCCZbVAj47FClds=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUSFuiy4cVnBPqCN4WYyaYdOJmFmIpaQX3HjQhG3/og7/8Zpm4W2Hhg4nHMu984JUs6Udpxva219Y3Nru7JT3d3bPzi0j2pdlWSS0A5JeCL7ASjKmaAdzTSn/VRSiANOe8HkZub3HqlULBH3eppSL4aRYBEjoI3k27UhN+EQHobA0zH4uVP4dt1pOHPgVeKWpI5KtH37axgmJIup0ISDUgPXSbWXg9SMcFpUh5miKZAJjOjAUAExVV4+v73AZ0YJcZRI84TGc/X3RA6xUtM4MMkY9FgtezPxP2+Q6ejay5lIM00FWSyKMo51gmdF4JBJSjSfGgJEMnMrJmOQQLSpq2pKcJe/vEq6Fw33suHcXdVbzbKOCjpBp+gcuaiJWugWtVEHEfSEntErerMK68V6tz4W0TWrnDlGf2B9/gD4dpRa</latexit>

�↵
3

<latexit sha1_base64="G0kfmftnZ0GUuMmdNVCfSkOfQEE=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRIV6rLgxmUF+4AmhpvJpB06mYSZSaGE/okbF4q49U/c+TdO2yy09cDA4ZxzuXdOmHGmtON8W5WNza3tnepubW//4PDIPj7pqjSXhHZIylPZD0FRzgTtaKY57WeSQhJy2gvHd3O/N6FSsVQ86mlG/QSGgsWMgDZSYNseN+EInjzg2QiC68CuOw1nAbxO3JLUUYl2YH95UUryhApNOCg1cJ1M+wVIzQins5qXK5oBGcOQDgwVkFDlF4vLZ/jCKBGOU2me0Hih/p4oIFFqmoQmmYAeqVVvLv7nDXId3/oFE1muqSDLRXHOsU7xvAYcMUmJ5lNDgEhmbsVkBBKINmXVTAnu6pfXSfeq4V43nIebeqtZ1lFFZ+gcXSIXNVEL3aM26iCCJugZvaI3q7BerHfrYxmtWOXMKfoD6/MHLfGTUQ==</latexit>

�↵
�3

<latexit sha1_base64="hzuVuqjhvFgv0kc7jIb+v/JLiys=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAhuLIkV6rLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NtbWNza3tis71d29/YND8+i4J5NMYNLFCUvEIABJGOWkq6hiZJAKAnHASD+Y3Mz8/iMRkib8XuUp8WIYcRpRDEpLvllzmQ6H8OACS8fgFxfNqW/W7YY9h7VKnJLUUYmOb365YYKzmHCFGUg5dOxUeQUIRTEj06qbSZICnsCIDDXlEBPpFfPjp9aZVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvqi7BWf7yKuldNpxmw767qrdbZR0VdIJO0TlyUAu10S3qoC7CKEfP6BW9GU/Gi/FufCyia0Y5U0N/YHz+AG0elJQ=</latexit>

...
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

�↵̄3
<latexit sha1_base64="z7lzk2ezNzJKppAHi+1APdwQ8d0=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJYoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+T9nXVrVXdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACNlkaY=</latexit>

↵̄3
<latexit sha1_base64="/kRpZpCa+CQV3jgTgyqVMINFN+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxxcD6o1t+4uQNaJV5AaFGgNql/+MKFZzKShArXue25qghyV4VSwWcXPNEuRTnDE+pZKjJkO8sXNM3JhlSGJEmVLGrJQf0/kGGs9jUPbGaMZ61VvLv7n9TMT3QY5l2lmmKTLRVEmiEnIPAAy5IpRI6aWIFXc3kroGBVSY2Oq2BC81ZfXSeeq7l3XvYebWrNRxFGGMziHS/CgAU24hxa0gUIKz/AKb07mvDjvzseyteQUM6fwB87nD7gMkW8=</latexit>

↵̄2<latexit sha1_base64="1FBy6yNReo8ejI+V8yV9wsMQvHQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHgxWMF+wFNKJPtpl262YTdjVBC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXpoJr47rfzsbm1vbObmmvvH9weHRcOTnt6CRTlLVpIhLVC1EzwSVrG24E66WKYRwK1g0nd3O/+8SU5ol8NNOUBTGOJI84RWMl3w9R+SjSMQ7qg0rVrbkLkHXiFaQKBVqDypc/TGgWM2moQK37npuaIEdlOBVsVvYzzVKkExyxvqUSY6aDfHHzjFxaZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JjKNgRv9eV10qnXvOua93BTbTaKOEpwDhdwBR40oAn30II2UEjhGV7hzcmcF+fd+Vi2bjjFzBn8gfP5A7aIkW4=</latexit>

↵̄1<latexit sha1_base64="25g3YalXDrOjV3kqJRcbjFvAstA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxx4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7UEkW0=</latexit>

↵̄0
<latexit sha1_base64="F14Mgz0WlM3ks7+pOEEEvmHdk+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxy4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7OAkWw=</latexit>

�↵̄1<latexit sha1_base64="5FDYzWYwIvF7vY1Tlf5oobS6cCQ=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRoR4LXjxWsLXQhDLZbtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlk4yRVmTJiJR7RA1E1yypuFGsHaqGMahYI/h8HbmP46Y0jyRD2acsiDGvuQRp2isFFz4ISofRTrArtctV9yqOwdZJV5OKpCj0S1/+b2EZjGThgrUuuO5qQkmqAyngk1LfqZZinSIfdaxVGLMdDCZHz0lZ1bpkShRtqQhc/X3xARjrcdxaDtjNAO97M3E/7xOZqKbYMJlmhkm6WJRlAliEjJLgPS4YtSIsSVIFbe3EjpAhdTYnEo2BG/55VXSuqx6V1Xv/rpSr+VxFOEETuEcPKhBHe6gAU2g8ATP8Apvzsh5cd6dj0VrwclnjuEPnM8fIF2RpA==</latexit>

�↵̄2<latexit sha1_base64="Vbh5NojphCo25QczGpesVuHFJJU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJUoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+Tdq3qXlfdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACHhkaU=</latexit>

. . .
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

↵
<latexit sha1_base64="cGNb8TUXW1gbCNWj85P6A4sOrIY=">AAAB7XicbVDLSgNBEOz1GeMr6tHLYBDEQ9hVQY8BLx4jmAckS+idzCZjZmeWmVkhhPyDFw+KePV/vPk3TpI9aGJBQ1HVTXdXlApurO9/eyura+sbm4Wt4vbO7t5+6eCwYVSmKatTJZRuRWiY4JLVLbeCtVLNMIkEa0bD26nffGLacCUf7ChlYYJ9yWNO0Tqp0UGRDrBbKvsVfwayTIKclCFHrVv66vQUzRImLRVoTDvwUxuOUVtOBZsUO5lhKdIh9lnbUYkJM+F4du2EnDqlR2KlXUlLZurviTEmxoySyHUmaAdm0ZuK/3ntzMY34ZjLNLNM0vmiOBPEKjJ9nfS4ZtSKkSNINXe3EjpAjdS6gIouhGDx5WXSuKgElxX//qpcPc/jKMAxnMAZBHANVbiDGtSBwiM8wyu8ecp78d69j3nripfPHMEfeJ8/hPOPAg==</latexit>

�↵
<latexit sha1_base64="1CaV4coS0Fpqx7mAXCAcLvjC2gg=">AAAB9XicbVDLSsNAFL3xWeur6tLNYBHERUlU0GXBjcsK9gFNWm4mk3bo5MHMRCmh/+HGhSJu/Rd3/o3TNgttPTBwOOdc7p3jp4Irbdvf1srq2vrGZmmrvL2zu7dfOThsqSSTlDVpIhLZ8VExwWPW1FwL1kklw8gXrO2Pbqd++5FJxZP4QY9T5kU4iHnIKWoj9VxhogH2XBTpEPuVql2zZyDLxClIFQo0+pUvN0hoFrFYU4FKdR071V6OUnMq2KTsZoqlSEc4YF1DY4yY8vLZ1RNyapSAhIk0L9Zkpv6eyDFSahz5JhmhHqpFbyr+53UzHd54OY/TTLOYzheFmSA6IdMKSMAlo1qMDUEqubmV0CFKpNoUVTYlOItfXiati5pzWbPvr6r186KOEhzDCZyBA9dQhztoQBMoSHiGV3iznqwX6936mEdXrGLmCP7A+vwBf3eSbQ==</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

�↵
1

<latexit sha1_base64="b+IkurI8REgfOjwDi7xEKsZkJoc=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0UQFyVRQZcFNy4r2Ac0MdxMJu3QySTMTAol9E/cuFDErX/izr9x2mahrQcGDuecy71zwowzpR3n26qsrW9sblW3azu7e/sH9uFRR6W5JLRNUp7KXgiKciZoWzPNaS+TFJKQ0244upv53TGViqXiUU8y6icwECxmBLSRAtv2uAlH8OQBz4YQuIFddxrOHHiVuCWpoxKtwP7yopTkCRWacFCq7zqZ9guQmhFOpzUvVzQDMoIB7RsqIKHKL+aXT/GZUSIcp9I8ofFc/T1RQKLUJAlNMgE9VMveTPzP6+c6vvULJrJcU0EWi+KcY53iWQ04YpISzSeGAJHM3IrJECQQbcqqmRLc5S+vks5lw71qOA/X9eZFWUcVnaBTdI5cdIOa6B61UBsRNEbP6BW9WYX1Yr1bH4toxSpnjtEfWJ8/JwCTQg==</latexit>

�↵
2

<latexit sha1_base64="/sDgLm3rNH9ik1xjB9Oj0nT2gts=">AAAB+XicbVBNS8NAFNzUr1q/oh69LBZBPJSkCnosePFYwdZCE8PLZtMu3WzC7qZQQv+JFw+KePWfePPfuG1z0NaBhWFmHu/thBlnSjvOt1VZW9/Y3Kpu13Z29/YP7MOjrkpzSWiHpDyVvRAU5UzQjmaa014mKSQhp4/h6HbmP46pVCwVD3qSUT+BgWAxI6CNFNi2x004gicPeDaEoBnYdafhzIFXiVuSOirRDuwvL0pJnlChCQel+q6Tab8AqRnhdFrzckUzICMY0L6hAhKq/GJ++RSfGSXCcSrNExrP1d8TBSRKTZLQJBPQQ7XszcT/vH6u4xu/YCLLNRVksSjOOdYpntWAIyYp0XxiCBDJzK2YDEEC0aasminBXf7yKuk2G+5lw7m/qrcuyjqq6ASdonPkomvUQneojTqIoDF6Rq/ozSqsF+vd+lhEK1Y5c4z+wPr8ASiEk0M=</latexit>

�↵
�2

<latexit sha1_base64="IoyzfWLh8G7tufH9F8fWQKkSGcE=">AAAB/HicbVDLSsNAFJ34rPUV7dJNsAgiWJIq6LLgxmUF+4AmhpvJpB06mYSZiRBC/RU3LhRx64e482+ctllo64GBwznncu+cIGVUKtv+NlZW19Y3Nitb1e2d3b198+CwK5NMYNLBCUtEPwBJGOWko6hipJ8KAnHASC8Y30z93iMRkib8XuUp8WIYchpRDEpLvllzmQ6H8OACS0fgF+fNiW/W7YY9g7VMnJLUUYm2b365YYKzmHCFGUg5cOxUeQUIRTEjk6qbSZICHsOQDDTlEBPpFbPjJ9aJVkIrSoR+XFkz9fdEAbGUeRzoZAxqJBe9qfifN8hUdO0VlKeZIhzPF0UZs1RiTZuwQioIVizXBLCg+lYLj0AAVrqvqi7BWfzyMuk2G85Fw767rLfOyjoq6Agdo1PkoCvUQreojToIoxw9o1f0ZjwZL8a78TGPrhjlTA39gfH5A2ewlIY=</latexit>

�↵
�1

<latexit sha1_base64="FHPFSc30WIal2h+EFpE2geVlqJM=">AAAB/HicbVDLSsNAFJ3UV62vaJdugkVwY0lUqMuCG5cV7AOaGG4mk3boZBJmJkII9VfcuFDErR/izr9x2mahrQcGDuecy71zgpRRqWz726isrW9sblW3azu7e/sH5uFRTyaZwKSLE5aIQQCSMMpJV1HFyCAVBOKAkX4wuZn5/UciJE34vcpT4sUw4jSiGJSWfLPuMh0O4cEFlo7BL86dqW827KY9h7VKnJI0UImOb365YYKzmHCFGUg5dOxUeQUIRTEj05qbSZICnsCIDDXlEBPpFfPjp9apVkIrSoR+XFlz9fdEAbGUeRzoZAxqLJe9mfifN8xUdO0VlKeZIhwvFkUZs1RizZqwQioIVizXBLCg+lYLj0EAVrqvmi7BWf7yKuldNJ3Lpn131Wi3yjqq6BidoDPkoBZqo1vUQV2EUY6e0St6M56MF+Pd+FhEK0Y5U0d/YHz+AGoUlJI=</latexit>

�↵
0

<latexit sha1_base64="f2dSo9pcjk+ryCCZbVAj47FClds=">AAAB+3icbVDLSsNAFJ34rPUV69LNYBFclUSFuiy4cVnBPqCN4WYyaYdOJmFmIpaQX3HjQhG3/og7/8Zpm4W2Hhg4nHMu984JUs6Udpxva219Y3Nru7JT3d3bPzi0j2pdlWSS0A5JeCL7ASjKmaAdzTSn/VRSiANOe8HkZub3HqlULBH3eppSL4aRYBEjoI3k27UhN+EQHobA0zH4uVP4dt1pOHPgVeKWpI5KtH37axgmJIup0ISDUgPXSbWXg9SMcFpUh5miKZAJjOjAUAExVV4+v73AZ0YJcZRI84TGc/X3RA6xUtM4MMkY9FgtezPxP2+Q6ejay5lIM00FWSyKMo51gmdF4JBJSjSfGgJEMnMrJmOQQLSpq2pKcJe/vEq6Fw33suHcXdVbzbKOCjpBp+gcuaiJWugWtVEHEfSEntErerMK68V6tz4W0TWrnDlGf2B9/gD4dpRa</latexit>

↵̄2<latexit sha1_base64="1FBy6yNReo8ejI+V8yV9wsMQvHQ=">AAAB83icbVBNS8NAEJ34WetX1aOXxSJ4KkkV6rHgxWMF+wFNKJPtpl262YTdjVBC/4YXD4p49c9489+4bXPQ1gcDj/dmmJkXpoJr47rfzsbm1vbObmmvvH9weHRcOTnt6CRTlLVpIhLVC1EzwSVrG24E66WKYRwK1g0nd3O/+8SU5ol8NNOUBTGOJI84RWMl3w9R+SjSMQ7qg0rVrbkLkHXiFaQKBVqDypc/TGgWM2moQK37npuaIEdlOBVsVvYzzVKkExyxvqUSY6aDfHHzjFxaZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JjKNgRv9eV10qnXvOua93BTbTaKOEpwDhdwBR40oAn30II2UEjhGV7hzcmcF+fd+Vi2bjjFzBn8gfP5A7aIkW4=</latexit>

↵̄1<latexit sha1_base64="25g3YalXDrOjV3kqJRcbjFvAstA=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxx4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7UEkW0=</latexit>

↵̄0
<latexit sha1_base64="F14Mgz0WlM3ks7+pOEEEvmHdk+w=">AAAB83icbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqMeCF48V7Ac0oUy2m3bpZhN2N0IJ/RtePCji1T/jzX/jts1BWx8MPN6bYWZemAqujet+O6WNza3tnfJuZW//4PCoenzS0UmmKGvTRCSqF6JmgkvWNtwI1ksVwzgUrBtO7uZ+94kpzRP5aKYpC2IcSR5xisZKvh+i8lGkYxy4g2rNrbsLkHXiFaQGBVqD6pc/TGgWM2moQK37npuaIEdlOBVsVvEzzVKkExyxvqUSY6aDfHHzjFxYZUiiRNmShizU3xM5xlpP49B2xmjGetWbi/95/cxEt0HOZZoZJulyUZQJYhIyD4AMuWLUiKklSBW3txI6RoXU2JgqNgRv9eV10rmqe9d17+Gm1mwUcZThDM7hEjxoQBPuoQVtoJDCM7zCm5M5L86787FsLTnFzCn8gfP5A7OAkWw=</latexit>

�↵̄1<latexit sha1_base64="5FDYzWYwIvF7vY1Tlf5oobS6cCQ=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69LBbBiyVRoR4LXjxWsLXQhDLZbtqlm03c3RRK6e/w4kERr/4Yb/4bt20O2vpg4PHeDDPzwlRwbVz32ymsrW9sbhW3Szu7e/sH5cOjlk4yRVmTJiJR7RA1E1yypuFGsHaqGMahYI/h8HbmP46Y0jyRD2acsiDGvuQRp2isFFz4ISofRTrArtctV9yqOwdZJV5OKpCj0S1/+b2EZjGThgrUuuO5qQkmqAyngk1LfqZZinSIfdaxVGLMdDCZHz0lZ1bpkShRtqQhc/X3xARjrcdxaDtjNAO97M3E/7xOZqKbYMJlmhkm6WJRlAliEjJLgPS4YtSIsSVIFbe3EjpAhdTYnEo2BG/55VXSuqx6V1Xv/rpSr+VxFOEETuEcPKhBHe6gAU2g8ATP8Apvzsh5cd6dj0VrwclnjuEPnM8fIF2RpA==</latexit>

�↵̄2<latexit sha1_base64="Vbh5NojphCo25QczGpesVuHFJJU=">AAAB9HicbVBNS8NAEJ3Ur1q/qh69BIvgxZJUoR4LXjxWsB/QhDLZbtqlm03c3RRK6O/w4kERr/4Yb/4bt20O2vpg4PHeDDPzgoQzpR3n2ypsbG5t7xR3S3v7B4dH5eOTtopTSWiLxDyW3QAV5UzQlmaa024iKUYBp51gfDf3OxMqFYvFo54m1I9wKFjICGoj+VdegNJDnoywX+uXK07VWcBeJ25OKpCj2S9/eYOYpBEVmnBUquc6ifYzlJoRTmclL1U0QTLGIe0ZKjCiys8WR8/sC6MM7DCWpoS2F+rviQwjpaZRYDoj1CO16s3F/7xeqsNbP2MiSTUVZLkoTLmtY3uegD1gkhLNp4YgkczcapMRSiTa5FQyIbirL6+Tdq3qXlfdh5tKo57HUYQzOIdLcKEODbiHJrSAwBM8wyu8WRPrxXq3PpatBSufOYU/sD5/ACHhkaU=</latexit>

...
<latexit sha1_base64="cDM6hKdSYEnC4yK9Yy3lMduf1VE=">AAAB7XicbVBNS8NAEJ34WetX1aOXYBHEQ0lU0GPBi8cK9gPaUDabTbt2sxt2J0IJ/Q9ePCji1f/jzX/jts1BWx8MPN6bYWZemApu0PO+nZXVtfWNzdJWeXtnd2+/cnDYMirTlDWpEkp3QmKY4JI1kaNgnVQzkoSCtcPR7dRvPzFtuJIPOE5ZkJCB5DGnBK3U6g0jhaZfqXo1bwZ3mfgFqUKBRr/y1YsUzRImkQpiTNf3UgxyopFTwSblXmZYSuiIDFjXUkkSZoJ8du3EPbVK5MZK25LoztTfEzlJjBknoe1MCA7NojcV//O6GcY3Qc5lmiGTdL4ozoSLyp2+7kZcM4pibAmhmttbXTokmlC0AZVtCP7iy8ukdVHzL2ve/VW1fl7EUYJjOIEz8OEa6nAHDWgChUd4hld4c5Tz4rw7H/PWFaeYOYI/cD5/AK9xjx4=</latexit>

Figure 7: Example of the weights used for combining TFRs with
different α’s (I = 2).

C
<latexit sha1_base64="OWkZ1NdzsV4hHcHcLn2OWmQTBio=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WevHYgv2ANpTNdtKu3WzC7kYowV/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHbR2nimGLxSJW3YBqFFxiy3AjsJsopFEgsBNM6jO/84hK81jem2mCfkRHkoecUWOlZn1QrrhVdw6ySrycVCBHY1D+6g9jlkYoDRNU657nJsbPqDKcCXwq9VONCWUTOsKepZJGqP1sfugTObPKkISxsiUNmau/JzIaaT2NAtsZUTPWy95M/M/rpSa89TMuk9SgZItFYSqIicnsazLkCpkRU0soU9zeStiYKsqMzaZkQ/CWX14l7cuqd1V1m9eV2kUeRxFO4BTOwYMbqMEdNKAFDBCe4RXenAfnxXl3PhatBSefOYY/cD5/AI9XjLE=</latexit>

�C
<latexit sha1_base64="FboxwcuJJU3XXO0WtfRAe/mrcDQ=">AAAB8HicbVDLSgMxFL1TX7W+qi7dBIsgLsqMFXRZ6MZlBfuQdiyZTKYNTTJDkhHK0K9w40IRt36OO//GtJ2Fth4IHM45l9x7goQzbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TRWiLxDxW3QBrypmkLcMMp91EUSwCTjvBuDHzO09UaRbLezNJqC/wULKIEWys9NDnNhrix8agXHGr7hxolXg5qUCO5qD81Q9jkgoqDeFY657nJsbPsDKMcDot9VNNE0zGeEh7lkosqPaz+cJTdGaVEEWxsk8aNFd/T2RYaD0RgU0KbEZ62ZuJ/3m91EQ3fsZkkhoqyeKjKOXIxGh2PQqZosTwiSWYKGZ3RWSEFSbGdlSyJXjLJ6+S9mXVq1Xdu6tK/SKvowgncArn4ME11OEWmtACAgKe4RXeHOW8OO/OxyJacPKZY/gD5/MHegSQHA==</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

�C
1

<latexit sha1_base64="8clcOKJrx5J8Y6ihFOQvgE/Te30=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIsgLsqMCrosdOOygn3AdCyZTKYNzSRDkhHK0M9w40IRt36NO//GtJ2Fth4IHM45l9x7wpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjjpaZIrRNJJeqF2JNORO0bZjhtJcqipOQ0244bs787hNVmknxYCYpDRI8FCxmBBsr+X1uoxF+bA68QbXm1t050CrxClKDAq1B9asfSZIlVBjCsda+56YmyLEyjHA6rfQzTVNMxnhIfUsFTqgO8vnKU3RmlQjFUtknDJqrvydynGg9SUKbTLAZ6WVvJv7n+ZmJb4OciTQzVJDFR3HGkZFodj+KmKLE8IklmChmd0VkhBUmxrZUsSV4yyevks5l3buqu/fXtcZFUUcZTuAUzsGDG2jAHbSgDQQkPMMrvDnGeXHenY9FtOQUM8fwB87nD6VYkMA=</latexit>

�C
2

<latexit sha1_base64="c+N4npDkfYhZX/xsnDe8IARq2n8=">AAAB8nicbVDLSgMxFM3UV62vqks3wSKIizJTBV0WunFZwT5gOpZMJtOGZpIhuSOUwc9w40IRt36NO//GtJ2Fth4IHM45l9x7wlRwA6777ZTW1jc2t8rblZ3dvf2D6uFR16hMU9ahSijdD4lhgkvWAQ6C9VPNSBIK1gsnrZnfe2TacCXvYZqyICEjyWNOCVjJHwgbjchDa9gYVmtu3Z0DrxKvIDVUoD2sfg0iRbOESaCCGON7bgpBTjRwKthTZZAZlhI6ISPmWypJwkyQz1d+wmdWiXCstH0S8Fz9PZGTxJhpEtpkQmBslr2Z+J/nZxDfBDmXaQZM0sVHcSYwKDy7H0dcMwpiagmhmttdMR0TTSjYliq2BG/55FXSbdS9y7p7d1VrXhR1lNEJOkXnyEPXqIluURt1EEUKPaNX9OaA8+K8Ox+LaMkpZo7RHzifP6bckME=</latexit>

�C
3

<latexit sha1_base64="cFfClmvcc5LyPvrKscfa9/wA72g=">AAAB8nicbVDLSgMxFL1TX7W+qi7dBIsgLsqMFXRZ6MZlBfuA6VgymUwbmkmGJCOUwc9w40IRt36NO//GtJ2Fth4IHM45l9x7wpQzbVz32ymtrW9sbpW3Kzu7e/sH1cOjrpaZIrRDJJeqH2JNORO0Y5jhtJ8qipOQ0144ac383iNVmklxb6YpDRI8EixmBBsr+QNuoxF+aA0bw2rNrbtzoFXiFaQGBdrD6tcgkiRLqDCEY619z01NkGNlGOH0qTLINE0xmeAR9S0VOKE6yOcrP6Ezq0Qolso+YdBc/T2R40TraRLaZILNWC97M/E/z89MfBPkTKSZoYIsPoozjoxEs/tRxBQlhk8twUQxuysiY6wwMbalii3BWz55lXQv616j7t5d1ZoXRR1lOIFTOAcPrqEJt9CGDhCQ8Ayv8OYY58V5dz4W0ZJTzBzDHzifP6hgkMI=</latexit>

1<latexit sha1_base64="kyBNFlMyrTinn7YTmVwlB1dTFL0=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDa9frrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fdA+Mnw==</latexit>

0
<latexit sha1_base64="6mvrX2X/SnliCiuP1IHDwg7GX5s=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDbdfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcouMng==</latexit>

0
<latexit sha1_base64="6mvrX2X/SnliCiuP1IHDwg7GX5s=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBZBPJREBT0WvHhswX5AG8pmO2nXbjZhdyOU0F/gxYMiXv1J3vw3btsctPXBwOO9GWbmBYng2rjut1NYW9/Y3Cpul3Z29/YPyodHLR2nimGTxSJWnYBqFFxi03AjsJMopFEgsB2M72Z++wmV5rF8MJME/YgOJQ85o8ZKDbdfrrhVdw6ySrycVCBHvV/+6g1ilkYoDRNU667nJsbPqDKcCZyWeqnGhLIxHWLXUkkj1H42P3RKzqwyIGGsbElD5urviYxGWk+iwHZG1Iz0sjcT//O6qQlv/YzLJDUo2WJRmApiYjL7mgy4QmbExBLKFLe3EjaiijJjsynZELzll1dJ67LqXVXdxnWldpHHUYQTOIVz8OAGanAPdWgCA4RneIU359F5cd6dj0VrwclnjuEPnM8fcouMng==</latexit>

0.5
<latexit sha1_base64="U3oKy9p1Btatx74UWJ/Y3/kYFHM=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgadn1QTwGvHiMaB6QLGF20psMmZ1dZmaFEPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dYSq4Np737RTW1jc2t4rbpZ3dvf2D8uFRUyeZYthgiUhUO6QaBZfYMNwIbKcKaRwKbIWj25nfekKleSIfzTjFIKYDySPOqLHSg+de98oVz/XmIKvEz0kFctR75a9uP2FZjNIwQbXu+F5qgglVhjOB01I305hSNqID7FgqaYw6mMxPnZIzq/RJlChb0pC5+ntiQmOtx3FoO2NqhnrZm4n/eZ3MRDfBhMs0MyjZYlGUCWISMvub9LlCZsTYEsoUt7cSNqSKMmPTKdkQ/OWXV0nzwvUvXe/+qlKr5nEU4QRO4Rx8qEIN7qAODWAwgGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNW540i</latexit>

Figure 8: Example of the weights used for combining TFRs with
different K’s (J = 3).

The combined TFR XComb is then described by the following
two-dimensional interpolation for each time-frequency bin (k,m):

XComb
k,m =

J∑
j=1

I∑
i=−I

λCk,m;jλ
α
k,m;iXk,m;j,i. (25)

4.4. Practical Considerations

In practice, CPU processing can be saved by using only α = 0
for small window sizes, e.g. K = 1024 (≈ 21 ms), achieving
very similar results. Another practical consideration is regarding
the storage of X in memory. Since several TFRs may be stored,
it is useful to process the combined TFRs in small excerpts of x,
and then concatenate the results, giving a certain time margin to
guarantee the proper computation of all TFRs and the structure
tensor parameters. Once the combined TFR is processed for that
given excerpt, its tensor X is no longer needed, and therefore the
memory space can be freed up. Also, in order to reduce back-
wards smearing of attacks, asymmetrical analysis windows having
a longer tail on the left side can be used.

5. EXPERIMENTS

Experiments were conducted in order to assess the performance
of the proposed method, using both synthetic and real-world au-
dio signals. All input signals had sampling rate Fs = 48000 Hz.
The system was set according to the following configuration. In
the structure tensor procedure, the analysis windows of the spec-
trogram had length K = 1024 (21.3 ms); in the smoothing two-
dimensional filter G, σk corresponded to 90 Hz and σm to 15 ms;
and the threshold used in the anisotropy measure computation was
ε = 1. The analysis window sizes for the STFChTs were cho-
sen as K = [1024, 2048, 4096] (21.3, 42.6 and 85.3 ms); in order

to reduce backwards energy smearing, asymmetric5 analysis win-
dows were used for the computation of STFChTs withK2 andK3;
αmax = 23.4 resulted from the application of Equation (7); and
all TFRs were computed with hop size h = 256 samples.

5.1. Proof of Concept

As a proof of concept, synthetic signals were selected to asses the
method’s performance in specific challenging scenarios with re-
gards to time-frequency representations.

First, a pulse comprised of harmonically related sinusoids,
with onset at 0.1 s and offset at 0.5 s, contaminated by additive
white Gaussian noise (SNR = 50 dB), was used. Figures 9(a)
and (b) depict the spectrograms obtained for this signal, using
K1 = 1024 and K3 = 4096, respectively the shortest and longest
window sizes; and Figures 9(c) and (d) depict the resulting TFRs
using the proposed combination procedure, with I = 1 and I = 5
respectively. Red dashed lines indicate the onset and offset instants
to facilitate the visualization. As can be clearly observed, the two
TFRs computed with the proposed method yielded nearly identical
results, combining the time precision provided by the first spectro-
gram with the frequency resolution of the second one. Since the
frequency lines present in this signal are well represented by an
STFChT with α = 0 (i.e. a spectrogram), increasing the num-
ber of STFChTs available does not affect the result. This could be
the case of representing signals of instruments with stable f0, e.g.
piano or harp.

The second example uses a harmonic series whose f0 varies
in a sinusoidal fashion with increasing amplitude, also contami-
nated by additive white Gaussian noise (SNR = 50 dB). This sig-
nal allows one to verify the capability of handling a wide variety
of α’s. The results are depicted in Figure 10, where it is possible to
see the original spectrogram, and three resulting TFRs, computed
with I = 1, I = 3 and I = 5. As expected, increasing I also in-
creases the time-frequency resolution, yielding more concentrated
and consistent frequency lines. For instance, the results obtained
for I = 3 and I = 5 differ only in the steeper slopes, mainly on
the right side of the pictures.

Finally, the last synthetic signal is a sum of two harmonic
signals having different sinusoidal variations of f0, with additive
white Gaussian noise (SNR = 50 dB). Figure 11 depicts the spec-
trogram used for the computation of the structure tensor and the
combined TFR, for which I = 5 was used. The resulting TFR
represents the input signal with a much higher definition, and very
smooth transitions can be observed. It is worth highlighting that
even at places where more than one frequency line crosses the
same bin, the signal is fairly well represented.

5.2. Real-World Signals

The experiments with real-world signals used the MedleyDB [16]
dataset. From each track, an excerpt of 10 s containing part of the
main melody was selected, so that each song contributed the same
amount of data. These signals were divided into 1-s segments, to-
talling 1210 excerpts. In order to assess the method’s performance,
the Gini index6 [17] was chosen as an objective figure-of-merit.

5The asymmetric windows are computed by concatenation of the first
half of a Hanning window computed with K samples, and the second half
of a Hanning window computed with K/2 samples.

6The Gini index is a measure of sparsity that indicates within the range
[0, 1] how concentrated is the energy in a given set of bins.
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(a) K = 1024. (b) K = 4096. (c) I = 1. (d) I = 5.

Figure 9: Spectrograms for different K values and combined TFRs with different I values computed for a pulse composed of harmonically
related sinusoids. Onset and offset are indicated by the red dashed lines.

(a) K = 1024. (b) I = 1. (c) I = 3. (d) I = 5.

Figure 10: Varying vibrato: spectrogram and the combined TFRs with different I values.

Figure 11: Simultaneous vibratos: spectrogram (K = 1024) and
combined TFR (I = 5).

Each audio excerpt was then processed using the proposed method
and standard spectrograms (using K = 1024,K = 2048 and
K = 4096), and the Gini index was computed for each resulting
TFR.

Figure 12 depicts the percentage of times each representation
was ranked in each position according to the Gini index. The com-
bined TFR is by far the most effective in terms of sparsity, ranking
first in about 80% of the time. The STFT-1024 accounts for 50%
of the second position, the STFT-2048 for 65% of the third, and
the STFT-4096 for 50% of the fourth.

Finally, an excerpt from a piano and vocal recording was se-
lected to illustrate how the TFR of a real-world audio signal can
be improved by the proposed strategy. Figure 13 depicts its orig-
inal spectrogram next to its combined TFR. It is possible to ver-
ify that in the spectrogram the piano is barely noticeable, while
the TFR generated by the proposed method clearly represents both
the piano and the singing vocal—which is performing a very fast
melisma.

6. CONCLUSIONS

This paper presented a method for producing sparse TFRs by com-
bining different STFChTs using the information provided by the
structure tensor. We extract directional information from a spec-
trogram of the input signal, which guides an interpolation proce-
dure. Experiments comprising synthetic and real recorded audio
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Figure 12: Rank of different representations in terms of Gini Index
for the MedleyDB.

Figure 13: Vocal and piano: spectrogram (K = 1024) and com-
bined TFR (I = 5).

signals suggest that the proposed method provides high-definition
TFRs, improving the concentration of frequency lines with various
slopes and the definition of transient information, when compared
to standard TFRs, e.g. spectrograms. Given the method’s ability
to provide refined inputs for MIR tasks, such as main melody and
multi-pitch extraction, the natural continuation of this research is
the reformulation of state-of-the-art methods in MIR to take ad-
vantage of such representations in real application scenarios.
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ABSTRACT

Nonlinearity is a key feature in musical instruments and electronic
circuits alike, and thus in simulation, for the purposes of physics-
based modeling and virtual analog emulation, the numerical so-
lution of nonlinear differential equations is unavoidable. Ensur-
ing numerical stability is thus a major consideration. In general,
one may construct implicit schemes using well-known discretisa-
tion methods such as the trapezoid rule, requiring computationally-
costly iterative solvers at each time step. Here, a novel family of
provably numerically stable time-stepping schemes is presented,
avoiding the need for iterative solvers, and thus of greatly reduced
computational cost. An application to the case of the collision in-
teraction in musical instrument modeling is detailed.

1. INTRODUCTION

Computer simulation of physical systems is at the core of many
disciplines, and physical modeling sound synthesis is no excep-
tion. The scope of research into physical modeling has expanded to
include the simulation of very complex musical systems, including
lumped as well as fully-distributed nonlinearities; musically, many
perceptually important phenomena can be viewed as originating
from this nonlinear behaviour. A specialised approach is often re-
quired at the simulation stage, particularly in ensuring numerical
stability—a major concern in the modeling of systems with strong
nonlinearities. One approach to the design of numerically-stable
schemes is through the use of energy methods. With rare excep-
tions, however, such designs require the use of iterative numerical
schemes, thus increasing computational costs.

Recently, non-iterative numerical integrators for a class of non-
linear ordinary differential equations have been devised through
the port-Hamiltonian approach for virtual-analog simulations [1,
2, 3]. The schemes employ a suitable quadratisation of the non-
linear potential [4] which gives, ultimately, an update which can
be performed without the use of an iterative method such as, e.g.,
Newton-Raphson.

In the current work, the possibility of using non-iterative solvers
for nonlinear problems is developed further, to the case of a non-
invertible potential, and for fully distributed systems described
by partial differential equations (PDEs). The focus here will be
on collisions, a topic of longstanding attraction for researchers in
physical modeling sound synthesis [5, 6, 7, 8, 9, 10, 11, 12, 13].

∗ The author’s work was supported by the Leverhulme Trust with an
Early Career Fellowship
Copyright: c© 2018 Michele Ducceschi et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

Collisions here serve as useful and practically important test case,
because the method can be applied in the current form to any
second-order-in-time system with a non-negative potential energy,
and can be extended to higher-order systems. The current method
leads to significant speedups, in some cases of one order of mag-
nitude, see [14]. Moreover, with respect to iterative methods, exis-
tence and uniqueness of the numerical solution are proven trivially
by inspection of the update equation.

The method is described in detail in Section 2. There, an
overview is given, along with a numerical experiment dealing with
a mass-spring system colliding against a barrier. In Section 3, a
case of interest in musical acoustics is studied, i.e. the collision
of a musical string against a distributed barrier. Iterative schemes,
developed in previous works, are used for bench marking. Novel
non-iterative finite difference schemes and modal schemes are de-
veloped, showing convergence of all the methods to a common
solution. Stability is proven mathematically by energy arguments,
and illustrated in a number of numerical experiments.

2. PRELIMINARIES

Before examining a fully distributed system, it is useful to explore
the method in the case of a typical lumped system in a mechanical
setting, described by a single time-dependent ordinary differential
equation (ODE):

Mü+ φ′(u) = 0 (1)

Here, u = u(t) is a displacement of a lumped object of mass M ,
and as a function of time t. Dots represent derivatives with respect
to t. φ = φ (u) is a function representing the potential energy of
the system, and φ′ = dφ/du. (Note that if φ(u) = Bu2/2, for
some constant B > 0, then (1) represents the equation of motion
of a simple harmonic oscillator.)

Using the chain rule, it is possible to rewrite (1) as

Mü+ φ̇/u̇ = 0 (2)

Conservation of energy may be achieved by directly multiplying
both sides of (2) by u̇, yielding

d

dt

(
Mu̇2

2
+ φ

)
︸ ︷︷ ︸

,H(t)

= 0 (3)

and hence
H(t) = H(0) , H0. (4)

Non-negativity of the potential energy φ reflects a condition for
passivity of (1). Under such a condition, the total conserved energy
H0 is non-negative, and one may bound the growth of the state as

0 ≤ |u̇| ≤
√

2H0/M (5)
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More restrictive conditions on φ (such as radial unboundedness)
allow for global asymptotic stability, but the above non-negativity
condition will suffice for the present purposes, and allows physically-
reasonable solution growth (i.e., inertial drift).

The new schemes proposed in this work are based on an equiv-
alent expression for (1):

Mü+ ψψ′ = 0 with ψ =
√

2φ (6)

By means of the chain rule, (6) may be written as

Mü+ ψ (ψ̇/u̇) = 0 (7)

and energy conservation is obtained by multiplication by u̇, on
both sides, yielding

d

dt

(
Mu̇2

2
+
ψ2

2

)
︸ ︷︷ ︸

,H(t)

= 0 (8)

This form of the energy function is analogous to the form given
in [3] developed within the Port-Hamiltonian framework. Clearly,
(8) is equivalent to (3), given the definition in (6). Hence, (7) is
equivalent to (2), and bounds (5) hold.

Passivity and equivalence of (7) and (2) are possible only un-
der non-negativity of the potential φ—an entirely natural require-
ment. Though various forms of the potential appear in musical
acoustics, here, one particular form will be explored, namely:

φ(η) =
K

(α+ 1)
[η]α+1

+ , K ≥ 0, α ≥ 1 (9)

where [η]+ , 0.5(η + |η|) is the positive part of η. This poten-
tial is clearly non-negative. It has been employed as a penalty-
potential in collision models in musical acoustics [15, 8], and it is
derived from Hertz’s contact law.

2.1. Linear Oscillator With Barrier

In preparation to the fully distributed case, (1) is now equipped
with a linear restoring force. Hence

Mü = −φ′(η)−Mω2
0u (10)

with φ given by (9), and where

η = u− b (11)

This model describes a mass-spring system, with linear radian fre-
quency ω0 = 2πf0, with f0 measured in Hz, colliding from below
against a barrier placed at b. This differential equation can be cast
in the two equivalent forms, as seen above. These are

Mü = −φ̇/η̇ −Mω2
0u (12a)

Mü = −ψ (ψ̇/η̇)−Mω2
0u (12b)

Energy conservation for the above equations reads, respectively,

d

dt

(
Mu̇2

2
+
Mω2

0u
2

2
+ φ

)
= 0 (13a)

d

dt

(
Mu̇2

2
+
Mω2

0u
2

2
+
ψ2

2

)
= 0 (13b)

and thus the same bounds as (5) hold in both cases.

2.2. Time Difference Operators

Solutions to (12a) and (12b) are sought by means of appropriate fi-
nite difference schemes. Time is discretised by means of a sample
rate fs, yielding a time step k = 1/fs. un represents an approxi-
mation to the continuous function u(t) at time t = nk, for integer
n. Finite time difference operators are now introduced.

The identity and temporal shift operators are defined as

1un = un, et+u
n = un+1, et−u

n = un−1 (14)

Notice that the similar definitions hold for operators acting on in-
terleaved grid functions [16], as in

et+ψ
n−1/2 = ψn+1/2, et−ψ

n+1/2 = ψn−1/2 (15)

From these, it is possible to define the forward, backward and cen-
tred time differences, all approximating a first time derivative, as

δt+ =
et+ − 1

k
, δt− =

1− et−
k

, δt· =
et+ − et−

2k
(16)

An approximation to the second time derivative is constructed by
composition of the operators presented above, as

δtt = δt+δt− (17)

Finally, forward and backward averaging operators may be defined
as

µt+ =
et+ + 1

2
, µt− =

1 + et−
2

(18)

2.2.1. Iterative Conservative Finite Difference Scheme

Following the derivation in [8], a suitable discretisation of (12a) is

Mδttu
n = −Mω2

0u
n − δt+φ

n−1/2

δt·ηn
(19)

where
φn−1/2 , µt−φ(un − b︸ ︷︷ ︸

ηn

) (20)

Stability of the scheme may be inferred from energy analysis, after
multiplication of both sides of (19) by δt·un. This gives

δt+

M(δt−u
n)2

2
+
Mω2

0u
nun−1

2
+ φn−1/2︸ ︷︷ ︸

Hn−1/2

 = 0

This is clearly a discrete counterpart of (13a). In this case, the non-
negativity of the total energy can be assured if and only if [16]

ω0 < 2fs (21)

Under such condition, one may write

0 ≤ |δt−un| ≤
√

2H1/2/M (22)

and hence the boundedness of the state follows. Scheme (19) can
be written as

r − 2un + 2un−1 + k2ω2
0u
n +

k2

M

φ(r + a)− φ(a)

r︸ ︷︷ ︸
G(r)

= 0,

(23)
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where

r , un+1 − un−1, a , b− un−1.

Because the unknown r appears implicitly as the argument of φ, an
iterative root finder (such as Newton-Raphson) must be employed
in order to solve G(r) = 0 as per (23). The solution to the scheme
can be shown to be unique — see [13, 8].

2.2.2. Non-iterative Conservative Finite Difference Scheme

A novel, non-iterative finite difference scheme follows as a suit-
able discretisation of (12b), as

Mδttu
n = −Mω2

0u
n −

(
µt+ψ

n−1/2
) δt+ψn−1/2

δt·ηn
(24)

This may be rewritten as the following system:

Mδttu
n = −Mω2

0u
n −

(
µt+ψ

n−1/2
)
gn (25a)

δt+ψ
n−1/2 = gnδt·η

n (25b)

where gn may be explicitly computed as

gn = ψ′

∣∣∣∣∣
η=ηn

=
φ′√
2φ

∣∣∣∣∣
η=ηn

(26)

Here, we may use the analytic expressions for ψ and φ directly
in the computation of gn. Stability of the scheme can be deduced
from an energy conservation law, obtained after multiplication of
(24) by δt·un. Energy is thus conserved according to

δt+

M(δt−u
n)2

2
+
Mω2

0u
nun−1

2
+

(ψn−1/2)2

2︸ ︷︷ ︸
Hn−1/2

 = 0

Inspection of the energy function allows to infer the same stability
condition as (21). Thus, the same bounds as (22) hold in this case.
Using the identity

µt+ψ
n−1/2 =

k

2
δt+ψ

n−1/2 + ψn−1/2 (27)

one may insert the value of δt+ψn−1/2 from (25b) into (25a), to
get

Aun+1 = v (28)

where

A =
M

k2
+

(gn)2

4

v =
M

k2
(2un − un−1)−Mω2

0u
n +

(gn)2

4
un−1 − ψn−1/2gn

This scheme can thus be solved by division, and once un+1 is
computed, from (25a), one can update ψn+1/2 using (25b).

Figure 1: For all panels, the red line is the solution obtained via the
iterative scheme (with 20 iterations), and the blue line is the solu-
tion obtained via the new scheme. A particle of mass M = 10g
is launched with initial speed v0 = 1m/s from u0 = −0.5m
against a rigid barrier with α = 1.1, K = 5 · 104, located at
b = 0.2m. The particle is subjected to a linear restoring po-
tential of frequency f0 = 10Hz. The sample rate is chosen as
fs = 44100Hz. (a)-(b): displacement vs time, at times indicated.
(c)-(d): potential φ, at times indicated. (e)-(f): energy variation
∆H = (Hn−1/2 − H1/2)/H1/2, at times indicated.

2.3. Numerical Examples

The finite difference schemes given above are now compared in
cases of practical use. In particular, two barriers with different
stiffness constants are considered here. Fig. 1 depicts the case
with a softer barrier. From panels (a)-(b), it is seen that the two
schemes yield a converged solution for a long period of time. The
value of the potential φ, visible in panels (c)-(d) is also the same
over the same period. Finally, panels (e)-(f) show the variation of
the total energy.

Fig. 2 considers the same oscillator, with a harder barrier. In
this case, the two schemes yield a different solution. For the non-
iterative scheme, the excess kinetic energy is converted to potential
energy, so to guarantee energy conservation overall, keeping the
scheme stable within the bounds (22), as visible in Fig.2(c)-(d).
This is reflected in lower-than-expected collision output velocities.
The variation of the total energy for the two schemes is visible
in Fig.2(e)-(f). As expected, increasing the sample rate yields a
converged solution, as can be seen in Fig. (3).

3. DISTRIBUTED SYSTEMS

In this section, the model schemes illustrated in the previous sec-
tion are applied to cases of interest in musical acoustics, for ad-
vanced sound synthesis of string instruments. The system under
study is composed of a taut string with stiffness, and of a rigid bar-
rier. The motion of the string, of length L, can be described by
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Figure 2: Same as Fig. 1, but with K = 7 · 107.

either one of the following equivalent equations

ρ∂2
t u = ∂2

xT0u− ∂4
xEIu+

∂tφ

∂tη
+ δ(x− xF )F (t) (29a)

ρ∂2
t u = ∂2

xT0u− ∂4
xEIu+ ψ

∂tψ

∂tη
+ δ(x− xF )F (t) (29b)

where again
ψ =

√
2φ (30)

In the equations, u = u(x, t) is the displacement of the string,
now a function of both time and space. Notice that, having to
deal with partial differentiation, the notation for derivatives has
changed compared to the lumped case. The string is defined over
D : x ∈ [0, L]. Constants appear as: ρ, the linear density; T0, the
applied tension; E, Young’s modulus; I , the moment of inertia of
the cross section. The potential φ has now units of potential energy
per unit length (i.e. energy density) , but its formal definition is
again of the form (9), where

η = b− u (31)

In the above, b = b(x) is the height of barrier, supposed unmov-
able. Finally, δ(x − xF ) is a Dirac delta function. F (t) will be
here expressed as a raised cosine function, i.e.

F (t) =

{
F0
2

(
1− cos

(
2π(t−t0)
twid

))
, t0 ≤ t ≤ t0 + twid

0, otherwise
.

where F0 and twid are input parameters controlling, respectively,
the maximum amplitude of the forcing, and the contact duration,
and t0 is the activation time.

An inner product of two functions f, g, and the associated
norm, are defined as

〈f, g〉D ,
∫ L

0

f g dx, ‖f‖2D , 〈f, f〉D (32)

Figure 3: Same as Fig. 2, but with fs = 5 · 44100Hz

Under unforced conditions, i.e. for F (t) = 0, energy conserva-
tion and boundary conditions can be extracted after taking an inner
product of (29a) and (29b) with ∂tu. This gives, respectively,

d

dt

ρ‖∂tu‖2D2
+
T0‖∂xu‖2D

2
+
EI‖∂2

xu‖2D
2

+ 〈φ, 1〉D︸ ︷︷ ︸
H(t)

 = 0

(33a)

d

dt

ρ‖∂tu‖2D2
+
T0‖∂xu‖2D

2
+
EI‖∂2

xu‖2D
2

+
‖ψ‖2D

2︸ ︷︷ ︸
H(t)

 = 0

(33b)

where the identities above hold only under a choice of appropri-
ate boundary conditions. Here, conditions of the simply-supported
kind are enforced, hence

u = ∂2
xu = 0 at x = 0, L (34)

Given the non-negativity of the energy functions above, one may
bound the norm of the state, as

0 ≤ ‖∂tu‖D ≤
√

2H0/ρ (35)

where H0 is the value of the conserved energy (i.e. its initial
value).

3.1. Iterative and Non-Iterative Finite Difference Schemes

Finite difference schemes are now constructed for the solution of
(29a), (29b). Hence, both time and space are discretised along ap-
propriate grids, and the grid function unm is regarded as an approx-
imation to the solution u(x, t) at the time nk, and at mh, where
k is the time step, h is the grid spacing, and m and n are inte-
gers. Time difference operators appear as in Section 2.2. Spatial
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difference operators have analogous definitions, and hence

1unm = unm, ex+u
n
m = unm+1, ex−u

n
m = unm−1 (36)

From these, it is possible to define the forward and backward spa-
tial differences, as

δx+ =
ex+ − 1

h
, δx− =

1− ex−
h

(37)

Approximations to the second and fourth spatial differences are
constructed from the above, as

δxx = δx+δx−, δxxxx = δxxδxx (38)

The spatial grid is defined for M : m ∈ {0, 1...,M}. Sets of
points lacking at least one end point will also be used: they are
M : m ∈ {0...,M − 1}, and M : m ∈ {1...,M − 1}. A dis-
crete version of (32), the inner product and associated norm, can
be realised using summation. Hence

〈f, g〉B ,
∑
b∈B

h fnb g
n
b , ‖f‖2B , 〈u, u〉B (39)

Finally, δ(x − xF ) is approximated by a zeroth-order spreading
operator:

Im (xF ) =

{
1/h, m = mF = round (xF /h)
0, otherwise

(40)

3.1.1. Iterative Conservative Finite Difference Scheme

Following the derivation in [8], a conservative, iterative finite dif-
ference scheme is constructed as

ρδttu
n
m = Lunm +

δt+φ
n−1/2
m

δt·ηnm
+ Im (xF )Fn (41a)

Lunm = T0δxxu
n
m − EIδxxxxunm (41b)

ηnm = bm − unm (41c)

Numerical boundary conditions, a discrete version of (34), are
given as

unm = δxxu
n
m = 0 m = 0,M (42)

The stability of the scheme can be inferred by energy analysis.
Under unforced conditions, taking an inner product of (41a) with
δt·u

n
m gives the following energy balance

δt+

H
n−1/2
k + Hn−1/2

p + Hn−1/2
c︸ ︷︷ ︸

Hn−1/2

 = 0 (43a)

H
n−1/2
k =

ρ‖δt−un‖2M
2

(43b)

Hn−1/2
p =

T0

〈
δx+u

n, δx+u
n−1
〉
M

2
+
EI
〈
δxxu

n, δxxu
n−1
〉
M

2
(43c)

Hn−1/2
c =

〈
1, φn−1/2

〉
M

(43d)

Because φ is non-negative, the total conserved energy will be non-
negative under the standard stability condition for the stiff string,
i.e. for

h2 ≥
T0k

2 +
√
T 2
0 k

4 + 16EIρk2

2ρ
(44)

Under such condition, the bounds on the state read

0 ≤ ‖δt−un‖M ≤
√

2H1/2/ρ (45)

Scheme (41a) can be cast in the following form, resembling the
form for the lumped case of section 2.2.1

rm − sm +
k2

ρ

φ(−rm + am)− φ(am)

rm︸ ︷︷ ︸
G(rm)

= 0, m = 1, ...,M−1

where

sm , 2unm − 2un−1
m +

k2

ρ
Lunm +

k2Im(xF )

ρ
Fn

rm , un+1
m − un−1

m , am , bm − un−1
m

As this is an uncoupled system of nonlinear equations, the scheme
can be shown to have a unique solution, as per the lumped system
discussed in section 2.2.1. The solution to the system can be found
using iterative solvers, such as Newton-Raphson—see [8, 5, 13].

3.1.2. Non-Iterative Conservative Finite Difference Scheme

A novel, non-iterative finite difference scheme arises as a discreti-
sation of (29b). Hence

ρδttu
n
m = Lunm +

(
µt+ψ

n−1/2
m

) δt+ψn−1/2
m

δt·ηnm
+ Im(xF )Fn

(46)
where Lunm and ηnm are as per (41b) and (41c). The stability of
the scheme can be inferred by energy analysis. Under unforced
conditions, taking an inner product of (46) with δt·un gives the
same energy balance as (43a), where H

n−1/2
k , Hn−1/2

p are as per
(43b), (43c), and where

Hn−1/2
c =

1

2
‖ψn−1/2‖2M (47a)

Hence, the total energy is non-negative under a choice of the
grid spacing h as per (44), in which case the same bounds as (45)
hold. As for the lumped case, described earlier in section 2.2.2,
an extra equation relating u and ψ is needed. Again, one may
conveniently use

δt+ψ
n−1/2
m

δt·ηnm
= ψ′

∣∣∣∣∣
η=ηnm

=
φ′√
2φ

∣∣∣∣∣
η=ηnm

, gnm (48)

Making use of the following identity

µt+ψ
n−1/2
m =

k

2
δt+ψ

n−1/2
m + ψn−1/2

m (49)

one can cast (46) in the following update form

Amu
n+1
m = vm (50)

where

Am =
ρ

k2
+

(gnm)2

4

vm =
2ρ

k2
unm −

ρ

k2
un−1
m +

(gnm)2

4
un−1
m − gnmψn−1/2

m + Lunm

The whole system can be solved by a simple vector division.
Once un+1

m is known, one may update ψn+1/2
m , using (48).
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3.2. Non-Iterative Conservative Modal Scheme

A modal decomposition is readily available for the string described
by (29a). The solution u(x, t) is now expanded onto the eigen-
modes for simply-supported boundary conditions, in the following
way [17]

u(x, t) =
P∑
p=1

Xp(x)qp(t) (51)

The modal shapes and frequencies are given as

Xp(x) = sin
pπx

L
, ωp =

√
p2π2

L2

(
T0

ρ
+
EI

ρ

p2π2

L2

)
(52)

Here, for practical purposes, the number of modes has been trun-
cated to P (which is set by stability considerations, as per (61).)
Inserting (51) into (29b), and taking an inner product with Xp(x)
results in p = 1, .., P projected modal equations, of the form

q̈p + ω2
pqp +

Xp(xF )

ρ‖Xp‖2
F (t) +

〈ψg,Xp〉D
ρ‖Xp‖2

= 0 (53)

where

g =
∂tψ

∂tη
, η = b−

P∑
p=1

Xp(x)qp(t) (54)

It is possible to define a modal energy conservation law, by insert-
ing the modal expansion above into (33b), and by using the fact
that ‖Xp‖2 = L

2
∀p. Hence

d

dt


ρL

2

P∑
p=1

(
(q̇p)

2

2
+

(ωpqp)
2

2

)
+
‖ψ‖2D

2︸ ︷︷ ︸
H(t)

 = 0 (55)

From the above, it is possible to extract a bound on a single
mode p, as

0 ≤ |∂tqp| ≤
√

4H0/ρL (56)

Discretisation of (53) and (54) follows as

δttq
n
p + ω2

pq
n
p +

Xp(xF )

ρ‖Xp‖2
Fn +

〈
(µt+ψ

n−1/2)gn, Xp
〉
D

ρ‖Xp‖2
= 0

(57)

δt+ψ
n−1/2

δt·ηn
= gn , ψ′

∣∣∣∣∣
η=ηn

(58)

Making use of identity (27), one may rewrite the first equation
above as

δttq
n
p +Qp + ω2

pq
n
p +

Xp(xF )

ρ‖Xp‖2
Fn +

〈
ψn−1/2gn, Xp

〉
D

ρ‖Xp‖2
= 0

(59)
where Qp is a coupling term, i.e.

Qp =
k

2ρ‖Xp‖2
〈
(gn)2δt·η

n, Xp
〉
D (60)

The modal coordinates qp can then be solved using (59), which
is in the form of a non-sparse linear system with non-sparse ele-
ments given by Qp. Notice that the resulting non-sparse matrix is

in the form of a rank-one perturbation, resolvable very efficiently
using the Sherman-Morrison formula [18]. One can then update ψ
using (58). The stability of the scheme can once again be under-
stood in terms of its energy-preserving properties. For this scheme,
in fact, energy conservation reads

δt+


ρL

2

P∑
p=1

(
(δt−q

n
p )2

2
+
ω2
pq
n
p q

n−1
p

2

)
+
‖ψn−1/2‖2D

2︸ ︷︷ ︸
Hn−1/2

 = 0

and hence, remembering (21), the largest eigenfrequency allowed
for this scheme is such that

ωP < 2fs (61)

Notice that the contribution of a single mode p to the total energy
is non-negative. Hence, boundedness can be stated mode by mode,
as

0 ≤ |δt−qnp | ≤
√

4H1/2/ρL (62)

3.3. Numerical Examples and Discussion

The three schemes described in the previous sections are now com-
pared in cases of interest in musical acoustics. A first experiment
takes into account the case of a point barrier, located at the centre
of the domain. Fig. 4 shows a few snapshots of the dynamics of the
string, before, during and after contact with the barrier. The three
schemes yield consistent solutions, although some differences are
also observed.

As for the lumped case of section 2.3, a closer look at the
energy components can be revealing. Fig. 5 shows the kinetic, po-
tential and collision energies of the three schemes over time. The
non-iterative schemes tend to transform the excess kinetic energy
during a collision into extra collision energy, so that bounds (45)
are indeed verified. This allows to keep the scheme stable, but it
also results in a deterioration of the kinetic and potential energy
components. This is particularly evident for the non-iterative fi-
nite difference scheme, whereas the modal scheme is somewhat
better behaved: this may be a reflection of the modal bounded-
ness property (62). Notice, however, that the total energy of the
three schemes is conserved after the forcing vanishes, with the
three schemes having the same total energy overall, as expected.
Of course, one may increase the sample rate, and observe con-
vergence of the three schemes toward a unique solution, which
therefore can be identified as the solution to the original problem.
The energy components of Fig. 6 are much more consistent, and
the recorded outputs shown in Fig. 7 seem to have converged.
Certainly, the solution computed via the classic iterative scheme
is characterised by a faster convergence rate. In other words, for
the same sample rate, the classic iterative scheme yields a solution
closer to the converged solution than the non-iterative schemes.
On the other hand, the non-iterative solvers are extremely efficient
in this case: the non-iterative finite difference scheme is fully ex-
plicit, a rarity in the realm of nonlinear problems. One may exploit
this feature in a number of ways, most noticeably using parallel in-
structions on CPUs and GPUs, alleviating the extra computational
burden coming from oversampling. Basic experiments in Matlab
show significant speedups: for the experiment of Fig. 8, the new
non-iterative finite difference scheme with an oversampling factor
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Figure 4: Snapshots of a simulated string colliding against a point barrier. For all panels, the red line is the benchmark (iterative) scheme,
the blue line is the non-iterative finite difference method, and the green line is the modal non-iterative method. The point barrier has
K = 5 · 106, α = 1.4, b = 10−4m and is located at x = 0.5m. The string has L = 1m, ρ = 0.063kg/m, radius r = 5 · 10−4m,
T0 = 500N, E = 2 · 1011Pa. The string is set into motion by a raised cosine input force, with F0 = 10N, and twid = 1ms. The sample
rate for this simulation is fs = 44100Hz.

Figure 5: Energy components for the simulations of Fig. 4, where
Hk stands is the kinetic energy, Hc is the collision energy, Hp is
the potential energy, and H is total energy. Colour scheme as Fig.
4

Figure 6: Same as Fig. 5, but with fs = 5 · 44100Hz.

Figure 7: Recorded output at xo = 0.9L. (a): fs = 44100Hz, (b):
fs = 5 · 44100Hz. All other parameters as per Fig. 4

of 5 is faster than the iterative finite difference scheme at audio
rate (using a fixed number of 20 iterations per collision). A more
consistent comparison, in C++, is drawn in the companion paper
[14], highlighting time gains of up to an order of magnitude. As-
sessing the efficiency of the modal non-iterative scheme requires
some care. For collisions, modal methods have been successfully
implemented in the past. In [12], a non-iterative modal scheme is
given, for α = 1. In [11], all values of α are allowed, and a spatial
grid is used along with an iterative procedure . The novel non-
iterative modal schemes presented here can be implemented effi-
ciently, for all values of α, using the Sherman-Morrison formula
[18]. Whether or not the non-iterative modal scheme are “faster”
than the non-iterative finite difference schemes depends on a num-
ber of factors, such as number of modes, sample rate, and number
of barrier points. In general, for smaller sizes, the modes can be
extremely fast, but in the case of many barrier points, such as the
example of Fig. 8, the modal scheme requires the calculation of as
many reduced sums, and this has a significant impact of the overall
efficiency. The relative efficiency of the schemes proposed will not
be discussed further here, but it certainly deserves a closer investi-
gation. As a concluding experiment, the three schemes are used to
solve the case of a string colliding against a fairly rigid bent dis-
tributed obstacle, as per Fig. 8. This is similar to what happens
in tanpuras, and other string instruments, although the simulation
parameters are here only meant for illustrative purposes. The three
schemes yield the consistent solutions after multiple collisions.
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Figure 8: Snapshots of a simulated string colliding against a dis-
tributed barrier. For all panels, the red line is the benchmark (it-
erative) scheme, the blue line is the non-iterative finite difference
methods, and the green line is the modal non-iterative method. The
barrier hasK = 5 ·106, α = 1.4, b = −10−4−10−4x−10−3x2.
For the modal scheme, the barrier was created by placing point
obstacles at locations corresponding to the grid points of the finite
difference schemes. The string has L = 1m, ρ = 0.063kg/m,
r = 5 · 10−4m, T0 = 500N, E = 2 · 1011Pa. The string is set into
motion by a raised cosine input force, with F0 = 10N, and twid =
1ms. The sample rate for this simulation is fs = 5 · 44100Hz.

4. CONCLUSIONS

In this work, a novel family of schemes was presented for the so-
lution of collisions in musical acoustics. The case of collisions
represents but one of a very large class of nonlinear problems that
can be treated within the illustrated framework. The new schemes
are non-iterative, and they require at most the solution of a lin-
ear system. In particular, for the fully distributed case, a finite-
difference non-iterative scheme and a modal non-iterative scheme
have been given, with the former being completely explicit. Sta-
bility and convergence of the proposed methods have been demon-
strated formally, using energy arguments, and via numerical exper-
iments. The new schemes have a slower convergence rate than the
benchmark iterative schemes obtained via implicit methods, but
they are also much more efficient. Basic experiments in Matlab
show that the non-iterative oversampled schemes can be faster than
the benchmark iterative schemes run at audio rate. Oversampling
was employed here as a corrective measure, but different strategies
could and should be investigated in future works.
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ABSTRACT

A family of spectrally-flat noise sequences called “Velvet Noise”
have found use in reverb modeling, decorrelation, speech syn-
thesis, and abstract sound synthesis. These noise sequences are
ternary—they consist of only the values −1, 0, and +1. They
are also sparse in time, with pulse density being their main design
parameter, and at typical audio sampling rates need only several
thousand non-zero samples per second to sound “smooth.”

This paper proposes “Crushed Velvet Noise” (CVN) general-
izations to the classic family of Velvet Noise sequences includ-
ing “Original Velvet Noise” (OVN), “Additive Random Noise”
(ARN), and “Totally Random Noise” (TRN). In these generaliza-
tions, the probability of getting a positive or negative impulse is a
free parameter. Manipulating this probability gives Crushed OVN
and ARN low-shelf spectra rather than the flat spectra of standard
Velvet Noise, while the spectrum of Crushed TRN is still flat. This
new family of noise sequences is still ternary and sparse in time.
However, pulse density now controls the shelf cutoff frequency,
and the distribution of polarities controls the shelf depth.

Crushed Velvet Noise sequences with pulses of only a single
polarity are particularly useful in a niche style of music called “1-
bit music”: music with a binary waveform consisting of only 0s
and 1s. We propose Crushed Velvet Noise as a valuable tool in 1-
bit music composition, where its sparsity allows for good approx-
imations to operations, such as addition, which are impossible for
signals in general in the 1-bit domain.

1. INTRODUCTION

In 2007, Karjalainen and Järveläinen defined a new type of sparse
noise sequences which they called “Velvet Noise” [1]. This was
later more specifically termed “Original Velvet Noise” (OVN) by
Välimäki et al. [2]. These noise sequences have some similarities
to sparse noise investigated by Schreiber in 1960 [3] and have a
few peculiar qualities. First, they are sparse in time—most of their
samples are actually zero. Second, the non-zero samples only take
the values −1 and +1. Specifically, OVN is produced by defin-
ing a pulse density, splitting time into equal-length windows, and
distributing a single impulse into each window, with both its ex-
act position within the window and its sign (±) randomized. OVN
is clearly not i.i.d. (independent and identically distributed), since
the value of each sample within a window is related to the values
of all other samples in the window. Despite this, OVN remark-
ably has a flat magnitude spectrum and an autocorrelation which
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is nearly zero everywhere except at zero-lag, making it very similar
to Gaussian white noise (an i.i.d. process which is neither sparse
in time nor limited to particular values). With a sufficiently high
pulse density, Velvet Noise can even sound just as “smooth” as
Gaussian noise [2].

One fascinating property of Velvet Noise sequences is that
they are very efficient to convolve by, since they are very sparse
(mostly 0s) and the non-zero values (±1) don’t require an actual
multiplication during convolution [4, 5]. These properties have led
Velvet Noise to be used in reverb modeling [1, 5, 6, 7, 8, 9], the
design of decorrelation filters [10, 11], speech synthesis [12, 13],
and abstract sound synthesis [14, 15].

Related to OVN, several other sparse ternary noise sequences
have been proposed, including Additive Random Noise (ARN),
Totally Random Noise (TRN), Extended Velvet Noise (EVN), Ran-
dom Integer Noise (RIN) [2]. ARN randomizes the spacing be-
tween pulses rather than distributing a single pulse per window.
TRN has a random chance of generating a pulse of a random sign
for every single sample. EVN takes OVN and restricts the sample
location to only a portion of each window, enforcing a second level
of sparsity. RIN is identical to ARN, although both the pulse off-
sets and sign are read from a precomputed table of integer random
numbers rather than independent random numbers [2].

In this paper, I propose generalizations to the family of Velvet
Noise sequences which are called “Crushed Velvet Noise” (CVN).
Specifically, I propose new variants of OVN, ARN, and TRN now
called COVN, CARN, and CTRN (the “C” denoting “Crushed”
for each). In Crushed Velvet Noise Sequences, the signs of each
pulse is not assigned based on a 50% probability, but rather this
probability is exposed as a free parameter that can be manipulated
along with the pulse density. This small change allows the creation
of a variety of spectra with different properties. COVN and CARN
both have low-shelf-like Power Spectral Densities (PSDs), with
their cuttoff frequency controlled by the pulse density and their
shelf attenuation controlled by the free parameter determining the
probability of a positive or negative sign for each pulse.

Adjusting this probability to extreme settings gives sequences
where either −1s or +1s do not appear1. Variants of CVN which
only have 0s and 1s are of particular use to a niche approach to
electronic music composition called “1-bit music,” where the only
allowable signal levels are 0 and 1. In the end of this paper, I ex-
plain how Velvet Noise and the proposed novel variants can be
used in 1-bit composition, specifically highlighting their poten-

1The case where there is a 100% chance of a +1 and no chance of a
−1 has already been investigated briefly in [13], where a unipolar variant
of OVN is called Unipolar Velvet Noise (UVN). The sparse noise sequence
explored by Schreiber [3] was also unipolar. With these in mind, we can
say that this paper fills in the gaps between the proposed unipolar variant
and the bipolar OVN sequence.
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tial for spectral shaping, volume control, and layering of signals.
These procedures are not possible in general in the 1-bit domain,
since even the simplest operations like addition of signals do not
exist in that domain, and so it is very hard to do anything LTI (lin-
ear and time-invariant). So, being able to control the spectrum and
volume of a particular type of 1-bit signal, Crushed Velvet Noise,
is extremely useful.

The prefix “crushed” refers both to bitcrushing (the classic lo-
fi audio effect) and crushed velvet (the soft fabric). Bitcrushing
involves reducing the number of possible signal levels of an au-
dio signals, for instance down to 28 = 256 levels for an 8-bit
bitcrusher. Velvet Noise’s ternary character is related to bitcrush-
ing, and the proposed “crushed” variants, at their extreme set-
tings, further reduce the set of possible sample values down to
two. Crushed velvet is a particular kind of velvet fabric whose cut
threads have been pressed in different directions in specific ways.
Once the reader has understood the construction of Crushed Velvet
Noise, a loose metaphorical connection is not hard to imagine.

In the rest of the paper I review the classic definitions of OVN,
ARN, and TRN (§2), define and study the novel COVN, CARN,
and CTRN sequences (§3), and explain an application to “1-bit
music” (§4). §5 concludes and proposes avenues for future work.

2. CLASSIC VELVET NOISE DEFINITIONS

In this section, we will briefly review the classic Velvet Noise se-
quences: Original Velvet Noise (OVN), Additive Random Noise
(ARN), and Totally Random Noise (TRN).

2.1. Original Velvet Noise (OVN)

Original Velvet Noise (OVN), proposed in [1] and termed OVN
in [2], is defined by

sovn(n) =

{
2 ‖r2(m)‖ − 1 , if n = kovn(m)

0 , otherwise
, (1)

where n = 0, 1, 2, . . . is the discrete-time sample index, ‖·‖ is a
function that rounds to the nearest integer, r2(m) is a sequence
of random numbers uniformly distributed between 0 and +1, and
kovn is a sequence of impulse locations defined by

kovn(m) = ‖mTd + r1(m)(Td − 1)‖ , (2)

where m = 0, 1, 2, . . . is a discrete pulse index, Td is window
width in samples, and r1(m) is another sequence of random num-
bers uniformly distributed between 0 and +1. Td is related to the
pulse density and sampling rate fs by

Nd = fs/Td . (3)

The sampling rate used throughout this paper is fs = 96 kHz.
The definition (1)–(2) of OVN is used widely [2, 9, 5, 10].

However, another variant exists [1, 7, 11] and actually precedes
(1)–(2) [1]. Its definition of kovn(m) is slightly different:

kovn,alt(m) = ‖mTd + r1(m)Td‖ = ‖(r1(m) +m)Td‖ . (4)

The second definition (4) has the potential to rarely have an im-
pulse in the last sample of one window collide with an impulse in
the first sample of the next window, if the pulse should occur on a
window boundary.

Figure 1: Crushed Original Velvet Noise (COVN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

Finally, we can mention that [11] reformulates (4) using a ceil-
ing function d·e rather than ‖·‖.

An example of an OVN sequence (Nd = 2000) is shown in
Fig. 1 (top).

2.2. Additive Random Noise (ARN)

Additive Random Noise (ARN) is defined by [2]

sarn(n) =

{
2 ‖r2(m)‖ − 1 , if n = ‖karn(m)‖
0 , otherwise

, (5)

where karn is a sequence of impulse locations defined by

karn(m) = karn(m− 1) + 1 . . .

+ (1−∆)(Td − 1) + 2∆(Td − 1)r1(m) .
(6)

The parameter ∆ ∈ [0, 1] controls a tradeoff between advancing
time by a fixed amount and a random amount.

An example of an ARN sequence (Nd = 2000) is shown in
Fig. 6 (top).

2.3. Totally Random Noise (TRN)

Totally Random Noise (TRN) is defined by [2]

strn(n) =

∥∥∥∥( Td

Td − 1

)(
r1(n)− 1

2

)∥∥∥∥ . (7)

TRN was originally investigated by Rubak and Johansen [16, 17].
An example of a TRN sequence (Nd = 2000) is shown in

Fig. 9 (top).
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(a) COVN, Nd = 1000. (b) COVN, Nd = 2000. (c) COVN, Nd = 4000. (d) COVN, Nd = 8000.

Figure 2: Power Spectral Density (PSD) of COVN at various pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

3. CRUSHED VELVET NOISE (CVN)

In this section, novel “Crushed” variants of OVN, ARN, and TRN
are introduced.

3.1. Crushed Original Velvet Noise (COVN)

Crushed Original Velvet Noise (COVN) is defined by

scovn(n) =

{
2 · c(r2(m), p)− 1 , if n = kcovn(m)

0 otherwise
, (8)

which is identical to the traditional OVN sequence except the stan-
dard rounding function ‖·‖ has been replaced by the function c(x, p),
defined as

c(x, p) =

{
1 , if x > p

0 , otherwise
. (9)

The pulse timings kovn(m) are given by

kcovn(m) = ‖(r1(m) +m)Td‖ , (10)

which is identical to the alternate definition from OVN (4). The
reason for basing COVN off of the alternate definition is that the
timing equation (2) introduces periodicities into COVN sequences
(when p 6= 0.5), negatively affecting their noisy character.

Five examples of COVN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
are shown in Fig. 1. Notice that p = 0.5 is identical to traditional
OVN, and that p = 1.0 is fully unipolar—it has only 0s and +1s,
and no −1s. In this figure, the window boundaries are shown with
vertical gray lines.

Power Spectral Density (PSD) estimates of COVN sequences
with various pulse densities Nd ∈ {1000, 2000, 4000, 8000} are
shown in Fig. 2. In each case, a family of many polarity prob-
abilities p between 0.5 and 1.0 are shown, where the solid blue
lines show the PSDs, with p = 0.5 on the top, and increasing to
p = 1.0 below2. The polarity probabilties which are plotted follow

2In this paper, we will always deal with probabilities between 0.5 and
1.0, biasing the distribution towards +1s. Of course, all of the conisdera-
tions of the paper would be identical (except for an opposite dc bias) if we
instead considered probabilities between 0.5 and 0.0.

Figure 3: Low shelf amplitude of COVN at various pulse densities
Nd ∈ {1000, 2000, 4000, 8000}.

the following pattern:

p =


1/2 τ = 0

1− (1/2)τ τ = 1, 2, . . . 16

1 τ = 17

. (11)

PSD estimates are produced using Welch’s method with a win-
dow size of NFFT = 218 = 262 144 samples, an overlap size of
NFFT/2, and Hamming windows, and are plotted on a 20 log10(·)
scale rather than a 10 log10(·) scale to facilitate comparison with
shelf filter magnitude responses. Noise sequences used to gener-
ate PSD estimates in this paper are 24 hours long, i.e., 24× 60×
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Figure 4: Relationship between probability of positive sign p and
“warped probability” q.

Figure 5: dc offset of COVN at various pulse densities Nd ∈
{1000, 2000, 4000, 8000}.

60 × fs = 8.2944× 109 samples. The purpose of this length,
which may seem excessive, is simply to get better PSD estimates
by having more frames to average using Welch’s method, i.e., a
better estimate of the shape of the PSD curves without using any
artificial smoothing.

It is clear from Fig. 2 that, unlike OVN with its flat spectrum,
COVN sequences have a low-shelf characteristic, where the low
shelf has some attenuation but never a boost. These PSDs have
a transition band slope of +12 dB/octave (+40 dB/decade), im-
plying that they are similar in some way to white noise through
a second-order shelf filter. There are various second-order shelf-
filters defined in the literature [18, 19, 20]. The family of noise
spectra produced by the COVN noise are similar to the second-
order low-shelf filters proposed by Holters and Zölzer in [19].
They propose low-shelf filters with transfer function HLS(s) de-

Figure 6: Crushed Additive Random Noise (CARN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

fined in pole-zero form on the s-plane by:

HLS,L(s) =
L∏
l=1

s+ L
√
gωce

j( 1
2
− 2l−1

2L )

s+ ωce
j( 1

2
− 2l−1

2L )
, (12)

where L ≥ 1 is an integer defining the order of the shelf filter, g
is the shelf level, and ωc is the cutoff frequency in radians (fc =
ωc/2π is the cutoff frequency in Hz). Here we are specifically
interested in the 2nd-order case (L = 2):

HLS,2(s) =

(
s+
√
gωce

j/4
)(

s+
√
gωce

−j/4
)

(s+ ωcej/4) (s+ ωce−j/4)
. (13)

Relating to this family of shelf filter, the cutoff frequency of our
PSDs is roughly fc = Nd/2. Shelf filter responses that approx-
imate the COVN sequences are shown on Fig. 2 by dashed red
lines.

The shelf attenuation, obviously zero for p = 0.5, increases as
p approaches 1.0. For the various pulse densities tested, the spe-
cific relationship between pulse density and shelf level, g in (13),
is shown in Fig. 3. Plotting against p would overly compress the
visual display of these traces near p = 1, so the horizontal axis is
instead a “warped probability scale” q, defined simply as

q = tanh−1(p) . (14)

The relationship between p and q is shown graphically in Fig. 4.
Finally, it is worth mentioning that disturbing the relative prob-

abilities of −1s and +1s using p introduces a small dc offset of
(2p − 1)Nd/fs to the signal. Notice that when p = 0.5, no dc
offset is introduced, and that the maximum offset that can be in-
troduced is ±Nd/fs. This is shown graphically in Fig. 5.
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(a) CARN, Nd = 1000. (b) CARN, Nd = 2000. (c) CARN, Nd = 4000. (d) CARN, Nd = 8000.

Figure 7: Power Spectral Density (PSD) of CARN at various pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

3.2. Crushed Additive Random Noise (CARN)

Crushed Additive Random Noise (CARN) is defined by

scarn(n) =

{
2 · c(r2(m), p)− 1 , if n = ‖kcarn(m)‖
0 , otherwise

, (15)

where kcarn is a sequence of impulse locations defined by

kcarn(m) = kcarn(m− 1) + 1 . . .

+ (1−∆)(Td − 1) + 2∆(Td − 1)r1(m) ,
(16)

which is identical to the traditional ARN (5)–(6), except that the
rounding function ‖·‖ has again been replaced by the new func-
tion (9). In this paper, we will only consider the case ∆ = 1, i.e.,
the case where time advances by purely random steps.

Five examples of CARN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
are shown in Fig. 6. Notice that p = 0.5 is identical to traditional
ARN, and that p = 1.0 is again fully unipolar.

PSD estimates of CARN sequences with pulse densities Nd ∈
{1000, 2000, 4000, 8000} are shown in Fig. 7. Again, a family
of many polarity probabilities p between 0.5 and 1.0 are shown,
where the solid blue lines show the PSDs, with p = 0.5 on the top,
and increasing to p = 1.0 below. The polarity probabilities which
are plotted follow the following pattern:

p =


1/2 τ = 0

1− (1/2)τ τ = 1, 2, . . . 6

1 τ = 7

. (17)

As with COVN, shelf filter responses that approximate the CARN
sequences are shown on Fig. 7 by dashed red lines.

As with COVN, the PSDs of CARN sequences look a bit like
the PSDs of low-shelf-filtered white noise. CARN sequences, how-
ever, have a more pronounced ripple around the cutoff frequency,
and much less pronounced shelf attenuation than COVN. Again,
the sheld attenuation, obviously zero for p = 0.5, increases as p
approaches 1.0. For CARN, the relationship between p and shelf
level is shown in Fig. 8. The dc offset considerations for COVN,
which were based purely on pulse density Nd, apply identically to
CARN.

Figure 8: Low shelf amplitude of CARN at various pulse densities
Nd ∈ {1000, 2000, 4000, 8000}.

3.3. Crushed Totally Random Noise (CTRN)

Crushed Totally Random Noise (CTRN) is defined by

strn(n) = c(r2(n), p) ·

∣∣∣∣∣
∥∥∥∥ Td

Td − 1

(
r1(n)− 1

2

)∥∥∥∥
∣∣∣∣∣ , (18)

where | · | represents the absolute value function, which is identical
to traditional TRN (7), except that the polarity is defined by the
new function (9) and another random noise sequence r2(n) rather
than the rounding function ‖·‖.

Five examples of CTRN with pulse density Nd = 2000 and
different polarity probabilities p ∈ {0.5, 0.625, 0.75, 0.875, 1.0}
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Figure 9: Crushed Totally Random Noise (CTRN), with various
probability percentages p ∈ {50%, 62.5%, 75%, 87.5%, 100%}.

are shown in Fig. 9. Notice that p = 0.5 is identical to traditional
TRN, and that p = 1.0 is fully unipolar—it has only 0s and +1s,
and no −1s.

PSD estimates of CTRN sequences with pulse densities Nd ∈
{1000, 2000, 4000, 8000} are shown in Fig. 10. The polarity prob-
abilities which are plotted are the same as for COVN. Unlike COVN
and CARN, the PSDs for CTRN seem not to depend on p hardly
at all—rather then are all entirely flat, just like traditional TRN.

The dc offset considerations for COVN and CARN apply iden-
tically to CTRN.

4. APPLICATIONS TO 1-BIT MUSIC

1-bit music is a style of electronic music production where only
waveforms composed of 0s and 1s are allowed. To put it mathe-
matically, anM -second-long 1-bit music composition with a sam-
pling rate of fs is defined by

x(n) ∈ {0, 1} , n = 0, 1, 2, . . . ,M · fs . (19)

1-bit music (also called PC “beeper music”) has its origins in retro
computing platforms like the Apple //e and the Sinclair ZX Spec-
trum, whose sound systems consisted of a single digital CPU pin
wired straight to a small speaker or output jack [21, 22, 23]. Con-
ceptually, 1-bit music has some relationship to the idea of com-
position using “sieves,” as developed by Iannis Xenakis [24, 25],
digital audio effects and synthesizers based on manipulating bi-
nary data [26, 27], and especially to Σ-∆ modulator encoding [28,
29, 30, 31, 32, 33].

Today 1-bit music is still widely created, for instance by mu-
sicians such as Richard Hollins (Tufty) [34], utz with his “irrlicht
project” [35], Mister Beep [36], and Blake Troise (Protodome).
Composer Tristan Perich did a lot for popularizing 1-bit music
with his albums “1-bit music” (2004) [37] and the very positively

Figure 10: Power Spectral Densities (PSD) of CTRN at various
pulse densities Nd ∈ {1000, 2000, 4000, 8000}.

reviewed “1-bit Symphony” [38], both of which create stereo 1-bit
music from microcontrollers mounted inside of clear compact disc
jewel cases. 1-bit music has even made a recent appearance in pop-
ular culture, in the ZX Spectrum software NOHZDYVE featured
in the film “Bandersnatch” [39].

At first, it may seem that 1-bit music should have a very lim-
ited palette, perhaps consisting solely of square waves, pulse waves,
impulse trains, and 1-bit noise. But in fact there are a wide vari-
ety of timbres that can be made in the 1-bit domain. Composers
have managed to come up with a wide variety of techniques and
some synthesisers use oscillators that essentially produce 1-bit sig-
nals. For example we can mention the Television Interface Adap-
tor (TIA) chip from Ataric VCS [21], which produces sounds by
logical operations on binary signals, and the Korg MS-20 and ARP
Odyssey which use “ring modulators” which are actually XOR
chips operating on two square waves. The same technique of
“ring-modulating” pulse waves is also used in “metallic noise”
generators found in some analog drum machines [40, 41], for in-
stance the Korg KR-55. Some old video game systems produce 1-
bit noise, for example the Nintendo NES (Nintendo Entertainment
System) and Commodore 64, which produce 1-bit noise using Lin-
ear Feedback Shift Register (LFSR) circuits [21].

Nonetheless, composing in the 1-bit domain is still incredibly
difficult. Signal addition does not in general exist, which means
linear operations like mixing and attenuating signals, filtering, etc.
are difficult or impossible to achieve in general and must be ac-
complished through clever composition, construction of suitable
signals to fake them, or other clever means. Here I’ll explain how
sparse noise sequences, including the unipolar (p = 1.0) version
of the proposed family of Crushed Velvet Noise sequences, can
be particularly useful in the 1-bit music context, and can actually
solve a few of these issues.

4.1. (Noise) Problems in 1-bit Music

One of the biggest challenges in 1-bit music is combining multiple
signals. Traditionally, this was handled for tonal sounds by using
logical operations (e.g. XOR) to combine multiple streams of pulse
waves with very narrow pulses (down to a single impulse, i.e. to
an impulse train) [42]. Since the pulses would only rarely line up,
XOR acts essentially like addition, and you can get the sound of
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signals added together without technically being able to perform
addition on binary signals in general.

This technique could not be used so well with 1-bit noise,
which is not sparse. So, for noise, this problem would be usu-
ally handled on the compositional level, leveraging masking phe-
nomenon in human hearing. For instance, it is possible to over-
write very short 1-bit noise bursts onto another 1-bit musical sig-
nal without producing a perceived interruption, giving the illusion
of two simultaneous musical lines3. If the interruption is short
enough, the illusion can be very effective. However, this technique
is obviously limited to short noise bursts and is no help at all for
layering longer noisy sounds.

Another issue with noise in 1-bit music is that its spectrum is
not easy to control. Setting each sample to 0 or 1 randomly pro-
duces a flat spectrum. This has its uses, but is timbrally limiting.
Since LTI signal processing essentially does not exist in the 1-bit
domain, it is difficult to filter a white signal like this further, as
you would in traditional sound synthesis. However, it is possible
to produce a somewhat passable imitation of lowpass-filtered noise
by downsampling a 1-bit noise signal. None of these signals will
be sparse in time, making them hard to layer with other signals.
Furthermore, it’s not obvious how to produce an approximation of
noise with a highpass quality.

Finally, the lack of any waveform levels beyond 0 and 1 means
that there is not usually a good way to control the perceived am-
plitude of a 1-bit signal. It turns out that this is an issue with many
different 1-bit signals, not only noise. For pulse waves, it can be
possible to trick your ear into hearing pulse width modulation to-
wards a pulse train as a level shift, but this also introduces a timbre
shift and does not generalize well.

4.2. Solution Using Crushed Velvet Noise

These limitations of noise in 1-bit music—limitations on layer-
ing with noise, noise spectra, and noise amplitude—can all be ad-
dressed somewhat using various Crushed Velvet Noise sequences.

In general, the sparsity of CVN makes it relatively easy to
layer with other 1-bit signals using logical operations such as XOR
(⊕). This works by the same mechanism as for impulse trains—
since the impulses only happen very rarely, they aren’t likely to
line up with ones from another stream. The 1⊕1 = 0 case of XOR
rarely occurs, so it largely sounds like addition. This is true for all
three proposed varieties of CVN: COVN, CARN, and CTRN.

Unlike normal binary noise, two varieties of CVN—COVN
and CARN—have controllable spectra. By changing the pulse
density Nd, the cutoff frequency of the two types of shelf-filtered
noise can be produced. Here the cutoff is linked inextricably to the
density of the pulses, hence the signal energy, hence the perceived
volume of the signal, which means that the volume of the noise
will also increase with increasing pulse density.

That property could be used on its own as a simulacra of vol-
ume control. Or, if it was desired to adjust the CVN level indepen-
dent of the noise spectrum, CTRN signals could be used. CTRN
sequences remain largely white regardless of the pulse density. So,
they can be used to control the perceived volume of the signal in-
dependent of its spectrum, so long as you are happy with the noise
spectrum being white.

One limitation of these techniques is that Crushed Velvet Noise
sequences cease to sound “smooth” when their densities are too
low, presumably similar to the pulse density that is required for

3A phenomenon that is well-known in psychoacoustics, e.g. [43].

standard Velvet Noise. In, e.g., reverb modeling or decorrela-
tion filter design, this would normally be seen as a limitation of
Velvet Noise. However, in the context of 1-bit noise where ev-
erything sounds a bit raw and grainy, it could perhaps be consid-
ered a charming and characteristic quirk. One interesting effect
is “sweeping” the pulse density of a COVN sequence downwards.
Starting from a high pulse density, this will sound like a shelf fil-
ter sweep. However, as the pulse density gets low enough, the
“smoothness” dissapears and it sounds like the signal “disintegrat-
ing.”

An example of using COVN in the context of 1-bit composi-
tion can be heard in the author’s cover [44] of “Unholy Captives”
from the video game “Return of the Obra Din” by Lucas Pope [45].

5. CONCLUSION

In this paper, new generalizations of Velvet Noise sequences were
proposed. These “Crushed” Velvet Noise sequences, which open
up the probability of an impulse taking a positive or negative po-
larity as a free parameter, can be used to make colored noise spec-
tra, as opposed to the white spectra of traditional Velvet Noise.
Crushed Velvet Noise (specifically the unipolar case) is a suitable
sequence for use in 1-bit music, alongside classic binary noise se-
quences like Linear Feedback Shift Register (LFSR) noise. Espe-
cially Crushed Original Velvet Noise and Crushed Totally Random
Noise should be considered very useful in 1-bit music composi-
tion, since their sparsity characteristics make them very easy to
mix with other 1-bit signals using logical operations like XOR.

Crushed Velvet Noise leaves open a lot of scope for future
work. We’ve seen in this paper that certain CVN sequences (COVN
and CARN) have PSDs that resemble low-shelf-filtered white noise,
while others (CTRN) have flat spectra just like their traditional ver-
sions. Perhaps future mathematical analysis can reveal how Vel-
vet Noise manages to have a white spectrum without being i.i.d.
Future work could also consider trying to create other standard
colored noise spectra—e.g. lowpass, bandpass, notch, and high-
shelf—from sparse ternary noise. In this paper, only the ∆ = 1.0
case of CARN was considered. Future work could consider the
more general case of CARN to see if it has any interesting proper-
ties, as well as a “Crushed” variant of the related “Extended Velvet
Noise” (EVN) [2]. Although the PSD estimates shown in this pa-
per can be taken as very good estimates of the true, underlying
PSD of the studied noise sequences, on account of their very long
length (24 hours!), we don’t need sequences nearly that long to
hear the spectral character of different noise sequences. Your ear
can guide you; you should find that the spectral character of each
noise sequence reveals itself even with very short bursts of Velvet
Noise. However, it would be interesting for future work to test our
perception of short Velvet Noise bursts.

Finally, it seems clear that 1-bit synthesis, mixing, and audio
effects have a close relationship to signal processing of Σ-∆ bit
streams [28, 29, 30, 31, 32, 33]. Hopefully future work can gain
new insights from that literature.
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ABSTRACT

Statistical sinusoidal modeling represents a method for trans-
ferring a sample library of instrument sounds into a data base of
sinusoidal parameters for the use in real time additive synthesis.
Single sounds, capturing an instrument in combinations of pitch
and intensity, are therefor segmented into attack, sustain and re-
lease. Partial amplitudes, frequencies and Bark band energies are
calculated for all sounds and segments. For the sustain part, all
partial and noise parameters are transformed to probabilistic dis-
tributions. Interpolated inverse transform sampling is introduced
for generating parameter trajectories during synthesis in real time,
allowing the creation of sounds located at pitches and intensities
between the actual support points of the sample library. Evalua-
tion is performed by qualitative analysis of the system response to
sweeps of the control parameters pitch and intensity. Results for
a set of violin samples demonstrate the ability of the approach to
model dynamic timbre changes, which is crucial for the perceived
quality of expressive sound synthesis.

1. INTRODUCTION

A system capable of expressive sound synthesis reacts to dynamic
control input with the desired or appropriate changes in sound. In
analysis-synthesis systems this means that the perceived timbral
qualities of the synthesized sound emulate the behavior of the an-
alyzed instrument as close as possible. Such systems thus need to
capture the individual sound of an instrument and allow manipu-
lations based on a limited set of control parameters. In order to
achieve this, the synthesis approach presented in this paper, enti-
tled statistical sinusoidal modeling, combines a sample based ap-
proach with a novel method for sinusoidal modeling.

Sample based synthesis in its basic form is able to capture in-
dividual sounds very accurately but does not offer manipulation
techniques necessary for an expressive synthesis [1]. Sinusoidal
modeling, on the other hand, is capable of wide-ranging means
for sound manipulation. A key problem of sinusoidal modeling
approaches, however, is the mapping of control parameters to the
large amount of synthesis parameters. Statistical sinusoidal mod-
eling can be considered a way of mapping the control parameters
pitch and intensity to the parameters of a sinusoidal model. This
reduced set of control parameters is often considered the central
input for similar sound synthesis systems.

Different approaches aim at improving sample based sound
synthesis. Among them are granular synthesis and corpus based
concatenative synthesis [2]. Combined with spectral manipula-
tion techniques, the flexibility of these approaches is further in-
creased. Such combinations have proven to be effective for ex-

pressive sound synthesis. Examples include spectral concatena-
tive synthesis [3] and reconstructive phrase modeling [4].

An extended source-filter model has been proposed by Hahn et
al. [5, 6]. Partial and noise parameters are modeled in dependency
of the control parameters pitch and intensity, by means of tensor-
product B-splines. Two separate filters are used, one representing
the instrument-specific features by partial index and another one
capturing the frequency dependent partial characteristics. Wessel
et al. [7] present a system for removing the temporal axis from the
analysis data of sinusoidal models by the use of neural networks
and memory-based machine learning. These methods are used
to learn mappings of the three control parameters pitch, intensity
and brightness to partial parameters. A system combining corpus
based concatenative synthesis with audio mosaicing [8] has been
proposed by Wager et al. [9]. This approach is able to synthe-
size an expressive target melody with arbitrary sound material by
target-to-source mapping, using the features pitch, RMS energy
and the modulus of the windowed Short- Time Fourier Transform.

A key feature in an expressive re-synthesis of many instru-
ments, especially of bowed strings, are the so called spectral en-
velope modulations (SEM) [10]. The amplitude of each partial is
modulated by its frequency in relation to the underlying frequency
response of the instrument’s resonant body. A vibrato in string
instruments thus creates a periodic change in the relative partial
amplitudes. At the typical vibrato frequencies of 5-9 Hz this effect
is perceived as a timbral quality, rather than a rhythmical feature.
This phenomenon, perceptually also referred to as Sizzle [11], con-
tributes to the individual sound of instruments to a great extent.
Using spectral modeling techniques for manipulations of instru-
ment sounds, this effect is also considered essential for improving
the quality [12]. Glissandi also result in spectral envelope modu-
lations in the same way.

Another important effect for an expressive re-synthesis is the
connection between intensity and the spectral features of the in-
strument’s sound. Increases in intensity usually cause significant
changes in the spectral distribution, respectively spectral skewness
and spectral flatness [13], as well as in the tonal/noise ratio.

The proposed system is designed to encompass the above men-
tioned effects with simple means, enabling an efficient real time
implementation. Details on the analysis, sinusoidal modeling and
statistical modeling are presented in Section 2. Section 3 explains
the statistical sinusoidal synthesis process in detail, followed by
the evaluation of synthesis results in Section 4. The conclusion in
Section 5 summarizes the findings and lists perspectives for further
development.
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Figure 1: Exemplary probability mass function (PMF) with derived cumulative mass function (CMF) and inverted CMF.

2. ANALYSIS AND MODELING

2.1. Sample Library

The focus of the presented synthesis system rests on excitation-
continuous melody instruments, using a violin as source material
for the analysis stage. The TU-Note Violin Sample Library[14]
is used for generating the statistical model. Featuring 336 sin-
gle sounds and 344 two-note sequences, it has been specifically
designed for this purpose. For the use in this project, the sin-
gle sounds are reduced to a total of 204, consisting of 51 unique,
equally spaced pitches, each captured at four dynamic levels. In
the remainder, this two-dimensional space will be referred to as
the timbre plane. It must be noted that, depending on the instru-
ment, additional dimensions for timbre control need to be added
to this space. For the violin, limited to standard techniques, the
proposed reduction is acceptable. MIDI values from 0 to 127 are
used to organize the dimensions pitch and velocity. Pitches range
from the lowest violin note at MIDI 55 ∼ G3 = 197.3341 Hz (443
tuning frequency) to the note at MIDI 105 ∼ A7 = 3544 Hz. The
dynamic levels pp, mp, mf and ff are captured in the timbre plane.
The material has been recorded at 96 kHz with 24 bit resolution
and can be downloaded using a static repository [15].

2.2. Sinusoidal Analysis

The sinusoids+noise model [16] is used for extracting the tonal
and noise parameters for each single sound. Analysis and model-
ing is carried out offline, prior to the synthesis stage. Monophonic
pitch tracking is performed using the YIN [17] and SWIPE [18]
algorithms. Tests with more recent, real-time capable approaches
[19] did not improve the performance. Based on the extracted fun-
damental frequency trajectories, partial trajectories are obtained
by peak picking in the short-time Fourier transform (STFT), using
a hop-size of 256 samples (2.76ms) and a window size of 4096
samples, zero-padded to 8192 samples.

Quadratic interpolation (QIFFT), as presented by Smith et al.
[20], is applied for estimating amplitude and frequency of up to
80 partials in each frame. The partial phases ϕi are obtained by
finding the argument of the minimum when subtracting each par-
tial with the individual amplitude ai and frequency fi from the
complete frame x at different phases ϕ∗:

ϕi = arg min

[
L∑

n=1

(x(n)− aisin(2πfit(n) + ϕ∗))

]
,

ϕ∗ = −π . . .+ π

(1)

After all partial parameters are extracted, the residual is cre-
ated by subtracting the tonal part with original phases from the
complete sound in the time domain. Modeling of the residual com-
ponent is performed with a filter bank, based on the Bark scale, as
proposed by Levine et al. [21]. The instantaneous energy trajec-
tories of all bands are calculated using a sliding RMS with the
hop-size of the sinusoidal analysis (2.76ms) and a window length
of 21.33ms.

For each single sound, the analysis results in up to 80 partial
amplitude trajectories, 80 partial frequency trajectories, 80 partial
phase trajectories and 24 noise band energy trajectories. Since the
original phases are not relevant for the proposed synthesis algo-
rithm, they are not used for the further modeling steps.

2.3. Segmentation

The TU-Note Violin Sample Library includes manually annotated
segmentation labels, based on a transient/steady state discrimina-
tion. For the single sounds they define the attack, sustain and re-
lease portion of each sound. Trajectories during attack and release
segments are stored completely and additionally modeled as para-
metric linear and exponential trajectories. Details on the modeling
and synthesis of attack and release segments are not subject to this
paper. The sustain part is synthesized with the statistical sinusoidal
modeling approach, explained in detail in the following section.

2.4. Statistical Modeling

After the segmentation, the above obtained trajectories of the par-
tials and noise bands during the sustain portion of the sound are
transformed into statistical distributions. Probability mass func-
tions (PMF ) with 50 equally spaced bins are created and trans-
formed to cumulative mass functions (CMF ):

CMF (x) =
x∑

xi=0

PMF (xi) (2)

Inverse transform sampling relies on the inverted CMF for
generating random number sequences with the given distribution.
Figure 1 shows an exemplary PMF with the derived CMF and
inverted CMF . For the synthesis algorithm, CMF s and their in-
versions are calculated and stored for all partial and noise trajec-
tories during the sustain parts. CMFs for the first five partials’
amplitudes and frequencies are shown in Figure 2, respectively
Figure 3. CMFs for the first five noise band energies are shown in
Figure 4. Additionally, the mean, median and standard deviation
of all distributions are stored with the model.
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Figure 2: CMFs for the first five partial amplitudes.
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Figure 3: CMFs for the first five partial frequencies.

3. SYNTHESIS

3.1. Algorithm Overview

The implementation of the algorithm is included in a C++ based
framework, using the JACK API [22]. Synthesis is performed in
the time domain, with a non-overlapping approach and a frame
size related to the buffer size of the audio interface. On the test
system, a buffer size of 128 samples was used at a sampling rate
of fs = 48 kHz, which allows a responsive use of the synthe-
sizer. For generating a single sound, a maximum of 160 partial
parameters and 24 bark band energies have to be generated each
synthesis frame. The full number of 80 partials, however, is only
synthesized for pitches below 600Hz at a sampling rate of 96 kHz,
respectively below 300Hz at 48 kHz. Figure 5 shows the number
of synthesized partials in dependency of sampling rate and funda-
mental frequency.

Listing 1: Pseudo code for the synthesis algorithm.

for each frame:

get control inputs

for all partials:
generate random frequency value
generate random amplitude value
generate linear amplitude ramp
synthesize sinusoid
add sinusoid to output

for all Bark bands:
generate random band energy
generate linear energy ramp
apply band filter to noise signal
add band signal to output
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Figure 4: CMFs for the first five bark energy trajectories.
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Figure 5: Number of partials synthesized, depending on sampling
rate and fundamental frequency.

For each frame of the synthesis output, a new set of support
points is generated, as shown in Listing 1. Interpolation trajec-
tories are generated for the connection to the preceding values of
partial amplitudes and noise band energies. Partial frequencies are
piece-wise constant.

3.2. Statistical Value Generation

The statistical sinusoidal synthesis offers two different modes for
generating parameter trajectories. For the three synthesis parame-
ter types (partial amplitude, partial frequency and noise band en-
ergy) the mode can be selected, individually.

3.2.1. Mean/Median Mode

In the mean/median mode, the individual distribution functions are
not used. Support points of the parameter trajectories are generated
using the mean or median values stored in the model. For a con-
stant control input, the resulting parameter trajectories remain con-
stant, too. Variations in parameters are thus induced only through
modulations of the input parameters.

3.2.2. Inverse Transform Sampling

Inverse transform sampling is a method for generating random
number sequences with desired distributions from uniformly dis-
tributed random processes [23]. The inverted CMF, as shown
in Figure 1c, maps the uniform distribution U(0, 1) to the target
distribution. The method can be implemented using a sequential
search method [24, p. 85], without actually inverting the distribu-
tion functions in advance. For a random value 0 ≤ r ≤ 1 from
the uniform distribution, the corresponding value r̃ from the target
distribution can be obtained as the argument of the minimum of
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the difference to the relevant cumulative mass function, as shown
in Figure 1b:

r̃ = arg min [CMF (x)− r] (3)
In the implementation, this is realized using a vector search

for Equation 3. Binary search trees can increase the efficiency of
this approach and lookup tables or guide tables for the individual
distributions are even more efficient [24]. For the chosen amount
of parameters, the sequential search showed to be efficient enough
to run the synthesis smoothly with 80 partials on an Intel R© CoreTM

i7-5500U CPU at 2.40GHz.

3.3. Timbre Space Interpolation
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Figure 6: Interpolation in the timbre plane.

For the use of expressive input streams for pitch and intensity,
arbitrary points in the timbre plane need to be synthesized. In-
terpolation between the support points generated by analyzing the
sample library is possible for the mean/median mode as well as
for the inverse transform sampling mode. Figure 6 shows a point
P located in the square ABCD between four support points. The
weights for the parameters at each support point are calculated by
the following distance-based formulae:

wA = (1− x)(1− y) (4)
wB = x(1− y) (5)
wC = x · y (6)
wD = (1− x)y (7)

In the average mode, the weights wi can be directly applied
to the mean or median values mi corresponding to the parameter
values at the given points A, B, C and D for obtaining the inter-
polated average m̃:

m̃ = wAmA + wBmB + wCmC + wDmD (8)

In the case of inverse transform sampling, the interpolation is
performed as presented in Figure 7. A single random value r is
generated from a uniformly distributed random process U(0, 1).
This value is then used to generate four random values r̃i using
the CMFs at the four support points. These resulting values are
finally multiplied by the weights from Equations 5–7 and summed
to obtain the interpolated random value r̃∗:

r̃∗ = wAr̃(CMFA) + wB r̃(CMFB)

+wC r̃(CMFC) + wD r̃(CMFD)
(9)

CMFA CMFB CMFC CMFD

r

wA wB wC wD

Σ

r̃∗

r̃A r̃B r̃C r̃D

Figure 7: Interpolated inverse transform sampling.

3.4. Smoothing

The inverse transform sampling method as presented above does
not consider the recent state for generating new support points.
Hence, it does not capture the frequency characteristics of the an-
alyzed trajectories. As a result, rapid changes may occur in the
synthesized trajectories, which are not included in the original sig-
nals, although the resulting distribution functions are correct. For
that reason, an adjustable low-pass filter is inserted after the ran-
dom number generators for smoothing the trajectories. It should be
noted that this filtering process narrows the distribution functions.

4. MEASUREMENTS

For evaluating the ability of the proposed synthesis algorithm to
react to expressive control streams, the responses to sweeps in the
frequency and intensity dimension are captured and analyzed by
qualitative means. Only the deterministic component is used for
this evaluation, discarding the noise.

4.1. Frequency Sweeps
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Figure 8: SEM for an octave sweep of the first partial.

For analyzing the effect of the spectral envelope modulations,
a frequency sweep of one octave is sent to the synthesis system
at four different intensities. The sweep ranges from the lowest
tone of MIDI=55 (G3, 197.33Hz) to MIDI=67 (G4, 394.67Hz).
The responses of all active partials to the frequency sweeps are
recorded as separate signals for an analysis.
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Figure 9: Representations of the frequency response through spectral envelope modulations of 30 partials by a one octave sweep.

Figure 8 shows the amplitude of the first partial as a function of
the fundamental frequency. The resulting trajectory shows no dis-
continuities, validating the interpolation process. It further shows
a prominent peak at appropriately 257Hz, caused by the spectral
envelope modulations. Joining the amplitude over frequency tra-
jectories of the first 30 partials, the frequency response of the in-
strument can be visualized through SEM. Results are shown for
MIDI intensities 20 (pp), 50 (mp), 80 (mf) and 120 (ff) in Fig-
ure 9. With increasing partial index, the overlap with the neigh-
boring partial trajectories increases. The approximated frequency
responses are thus blurred for higher frequencies.

Figure 10: Input admittance at the bass bar side of an Andrea
Guarneri violin [25].

All four representations of the frequency responses in Figure 9
show the same prominent peaks. These peaks correspond to the

formants typical for violins. For a comparison, the input admit-
tance of a Guarneri violin is shown in Figure 10.

Characteristic resonances of violin bodies have been labeled
inconsistently by different researchers. However, referring to Curtin
et al. [11], the prominent resonances for Figure 10 are listed in Ta-
ble 1. Plots 9a – 9d all show the f-hole resonance at 284Hz and
the main wood resonance, respectively the lowest corpus mode at
415Hz. At higher intensities, the plots show peaks at 709Hz,
872Hz and 1170Hz, related to the upper wood resonances and
the lateral air motion. The so called violin formant is represented
by a region of increased energy between 2000Hz and 3000Hz.

Table 1: Main resonances of a violin body [25, 11].

Label Frequency Description
A0: 275 Hz f-hole resonance
C2 (T1): 460 Hz main wood
C3: 530 Hz second wood
C4: 700 Hz third wood
F: 1000 Hz lateral air motion

2000 - 3000 Hz violin formant, bridge hill

4.2. Intensity Modulations

The response of the synthesis system to changes in intensity is cap-
tured at four different pitches. Intensity sweeps from 0 to 127 are
used at MIDI pitches 55 (G3, 197.33Hz), 67 (G4, 394.67Hz), 79
(G5, 789.33Hz) and 93 (A6, 1772.00Hz). The plots in Figure 11
show the spectrum of the harmonic signal in dependency of the
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Figure 11: Amplitudes of the first 50 partials in dependency of intensity, captured for four different pitches.

intensity, sampled at the partial frequencies. For higher pitches,
the number of partials is reduced, resulting in a lower frequency
resolution. An increase in high frequency content is indicated for
higher intensities at all pitches.
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Figure 12: Harmonic spectral centroid as function of intensity for
four different MIDI pitches (55, 67, 97, 93).

The harmonic spectral centroid (HSC) is calculated for 50
equally spaced points within all sweeps for analyzing the influence
of the intensity on the harmonic component of the signal. Based
on the spectral centroid, the HSC regards only the amplitudes ai
of the partials, resulting in a pitch independent measure for the
spectral distribution of the partials:

HSC =

i=N∑
i=1

iai

i=N∑
i=1

ai

(10)

Figure 12 shows the HSC as a function of the intensity for four
different pitches. All trajectories show a quasi monotonic increase
in the HSC with increasing intensity. Changes in intensity thus
result in changes in timbre, respectively in brightness.

5. CONCLUSION

The proposed statistical sinusoidal modeling system is capable of
reacting to expressive gestures, using the input parameters pitch
and intensity. Evaluations of frequency and intensity sweeps show
the desired responses in timbral qualities, validating the interpo-
lated inverse transform sampling. The next important step for im-
proving the algorithm is the implementation of a Markovian in-
verse transform sampling, considering past values for the random
sequence generation and thus preserving the frequency character-
istics of the synthesis parameters.

Using the actual inverse cumulative mass functions during run-
time could further improve the performance of the algorithm. At
the current state the inverse transform sampling requires a search
within an unsorted vector, whereas actual inverted functions can
be used by simple indexing. The flexibility and compression rate
of the model could be increased by using parametric distributions
instead of stored distribution functions.

Since the presented approach aims at the synthesis of sustained
signals, an integration of parametric transition models [26] and
trajectory models for attack and release segments is necessary for
completing the synthesis system. Future experiments aim at a per-
ceptual evaluation of synthesized sounds and expressive phrases
from the full system. User studies are planned for assessing the
applicability of the synthesis approach in a real-time scenario.
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ABSTRACT

The simulation of a bowed string is challenging due to the strongly
non-linear relationship between the bow and the string. This re-
lationship can be described through a model of friction. Several
friction models in the literature have been proposed, from sim-
ple velocity dependent to more accurate ones. Similarly, a highly
accurate technique to simulate a stiff string is the use of finite-
difference time-domain (FDTD) methods. As these models are
generally computationally heavy, implementation in real-time is
challenging. This paper presents a real-time implementation of
the combination of a complex friction model, namely the elasto-
plastic friction model, and a stiff string simulated using FDTD
methods. We show that it is possible to keep the CPU usage of
a single bowed string below 6 percent. For real-time control of the
bowed string, the Sensel Morph is used.

1. INTRODUCTION

In physical modelling sound synthesis applications, the simulation
of a bowed string is a challenging endeavour. This is mainly due
to the strongly non-linear relationship between the bow and the
string, through a model of friction. Such friction models can be
categorised as static or dynamic; models of the latter type have
only recently seen a major effort. As opposed to static friction
models, where friction depends only on the relative velocity of the
two bodies in contact, dynamic models describe the friction force
through a differential equation.

A recently popular dynamic model is the elasto-plastic model,
first proposed in [1]. The model assumes that the friction between
the two objects in contact is caused by a large ensemble of bristles,
each of which contributes to the total friction force. The average
bristle deflection is used as an extra independent variable for calcu-
lating the friction force. As shown in [2], the elasto-plastic model
can be applied to a bowed string simulation and it exhibits a hys-
teresis loop in the force versus velocity plane due to this multivari-
able dependency. This is consistent with measurements performed
using a bowing machine in [3]. The elasto-plastic model has been
thoroughly investigated in a musical context by Serafin et al. in
[2, 4, 5].

Regarding bowed string simulations, the first musical non-
linear systems, including bowed strings, were presented by McIn-
tyre, et al. in [6]. Smith published the first real-time implemen-
tation of the bowed string using a digital waveguide (DW) for the
Copyright: c© 2019 Silvin Willemsen et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

string and a look-up table for the friction model in [7]. Simultane-
ously, Florens, et al. published a real-time implementation using
mass-spring systems for the string and a static friction model for
the bow in [8].

The dynamics of musical instruments are generally described
by systems of partial differential equations (PDEs). Specialised
synthesis methods such as DWs [9] and modal synthesis [10] are
derived from particular solutions. Mainstream time-stepping meth-
ods such as finite-difference time-domain (FDTD) methods were
first proposed in [11, 12, 13], and developed subsequently [14, 15].
In [16] the authors adapted the thermal model proposed by Wood-
house in [3] for real-time applications using a DW for the string
implementation and a combination of the DW and FDTD meth-
ods for the bowing interaction. In [17, 18], Desvages used FDTD
methods for the implementation of the string in two polarizations
and a static double exponential friction model introduced in [19].
This was, however, not implemented in real-time. To the best
of the authors’ knowledge, the only known real-time implemen-
tation of any bow model applied to complete FDTD strings was
presented in [20] where the soft exponential friction function pre-
sented in [14] was used. The current work can be considered an
extension of this work.

We are interested in bridging the gap between highly accurate
physical models and efficient implementations so that these mod-
els can be played in real-time. In this work, we present an imple-
mentation of the elasto-plastic friction model in conjunction with
a finite-difference implementation of the damped stiff string. Fur-
thermore, we show that it is possible to play the string in real-time
using the Sensel Morph controller [21].

This paper is structured as follows. In Section 2, the elasto-
plastic bow model in conjunction with a PDE model for a stiff
string is described. Discretisation is covered in Section 3, and im-
plementation details appear in Section 4. In Section 5, simulated
results are presented and discussed. Some concluding remarks ap-
pear in Section 6.

2. ELASTO-PLASTIC BOW MODEL

Consider a linear model of transverse string vibration in a sin-
gle polarization, where u(x, t) represents string displacement as
a function of time t ≥ 0, in s, and coordinate x ∈ [0, L] (in m) for
some string length L (in m). Using the subscripts t and x to denote
differentiation with respect to time and space respectively, a partial
differential equation describing the dynamics of the damped stiff
string is [14]

utt = c2uxx − κ2uxxxx − 2σ0ut + 2σ1utxx. (1)
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Here, c =
√
T/ρA is the wave speed (in m/s) with tension T

(in N), material density ρ (in kg·m−3) and cross-sectional area A
(in m2). Furthermore, κ =

√
EI/ρA is the stiffness coefficient

(in m2/s) with Young’s Modulus E (in Pa) and area moment of
inertia I (in m4). For a string of circular cross section we have
radius r (in m), cross-sectional area A = πr2 and area moment
of inertia I = πr4/4. Lastly, σ0 ≥ 0 (in s−1) and σ1 ≥ 0
(in m2/s) are coefficients allowing for frequency-independent and
frequency-dependent damping respectively.

In our implementation we assume simply supported boundary
conditions, which are defined as

u = uxx = 0 where x = 0, L . (2)

a)

b)

c)

d)

vB

z

string

bow

z = 0

0 < |z| ≤ zba

zba < |z| < |zss|

|z| ≥ |zss|

Figure 1: Microscopic displacements of the bristles between the
bow and the string. The bow moves right with a velocity of vB.
a) The initial state is where the average bristle displacement z =
0. b) The bow has moved right relative to the string. The purely
elastic, or presliding regime is entered (stick). c) After the break-
away displacement zba, more and more bristles start to ‘break’.
This is defined as the elasto-plastic regime. d) After all bristles
have ‘broken’, the steady state (slip) is reached and the purely
plastic regime is entered.

As mentioned in the introduction, the elasto-plastic bow model
assumes that the friction between the bow and the string is due to
a large ensemble of bristles, each of which contributes to the total
friction force. See Figure 1 for a graphical representation of this.
The bristles are assumed to be damped stiff springs and can ‘break’
after a given break-away displacement threshold. An extra term
can be added to (1) to include the bowing interaction

utt = . . .− δ(x− xB)f(v, z)/ρA. (3)

Here, the spatial Dirac delta function δ(x − xB) (in m−1) allows
for the pointwise application of the force f (in N) at externally
supplied bowing position xB(t) (in m).

In the following we will use the definitions found in [1]. The
force f is defined in terms of the relative velocity v (in m/s) and
average bristle displacement z (in m) (see Figure 1) as

f(v, z) = s0z + s1ż + s2v + s3w, (4)

where
v = ut(xB)− vB, (5)

where vB(t) is an externally supplied bow velocity, s0 is the bristle
stiffness (in N/m), s1 is the damping coefficient (in kg/s), s2 is the
viscous friction (in kg/s) and s3 is a dimensionless noise coeffi-
cient multiplied onto pseudorandom function w(t) (in N) as done
in [4] and adds noise to the friction force. Here, ż indicates a time
derivative of z, and is related to v through

ż = r(v, z) = v

[
1− α(v, z) z

zss(v)

]
, (6)

where zss is the steady-state function

zss(v) =
sgn(v)

s0

[
fC + (fS − fC)e

−(v/vS)
2
]
, (7)

with Stribeck velocity vS (in m/s), Coulomb force fC = fNµC

and stiction force fS = fNµS (both in N). Here µC and µS are the
dynamic and static friction coefficient respectively and fN(t) is the
normal force (in N) which is, like vB(t), externally supplied. See
Figure 2 for a plot of (7).

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

-2

-1

0

1

2

10
-4 Steady-state function

Figure 2: A plot of the steady-state function zss(v) with a force of
5 N.

Furthermore, the adhesion map between the bow and the string
is defined as

α(v, z) =


0 |z| ≤ zba

αm(v, z) zba < |z| < |zss(v)|
1 |z| ≥ |zss(v)|

 if sgn(v) = sgn(z)

0 if sgn(v) 6= sgn(z),
(8)

where the transition between the elastic and plastic behaviour is
defined as

αm =
1

2

[
1 + sgn(z) sin

(
π
z − sgn(z) 1

2
(|zss(v)|+ zba)

|zss(v)| − zba

)]
,

(9)
with break-away displacement zba, i.e., where the bristles start to
break (see Figure 1 c)). A plot of the adhesion map can be found
in Figure 3.1

One of the difficulties in working with this model is that, due
to the many approximations, the notion of an energy balance, relat-

1It is interesting to note is that in the literature on this topic such as
[1, 2, 4, 5], a few inaccuracies can be found in the definition of α(v, z):
1) all uses of zss in (8) and (9) lack the absolute value operator, 2) the
multiplications with sgn(z) in (9) are excluded, 3) α(v, z) is undefined
for |z| = zba and |z| = |zss(v)| (correct in the original paper by Dupont
et al. [1]). It can be shown that only with the definitions presented here, is
it possible to obtain the curve shown in Figure 3.
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ing the rate of stored energy in the system to power input and loss
is not readily available. Such energy methods are used frequently
in the context of physical modeling synthesis and virtual analog
modeling as a means of arriving at numerical stability conditions
for strongly nonlinear systems, as is the present case. See, e.g.,
[14]. This means that we do not have a means of ensuring numer-
ical stability in the algorithm development that follows. This does
not mean, however, that an energy balance is not available.

Figure 3: A plot of the adhesion map α(v, z) plotted against z
when the signs of v and z are the same. The different regions
of the map are shown with the coloured areas and correspond to
Figure 1 according to: yellow - a) & b), orange - c) and red - d).

3. DISCRETISATION

Finite-difference schemes for the stiff string in isolation are cov-
ered by various authors [13, 14].

Equation (1) can be discretised at times t = nk, with sample
n ∈ N and time-step k = 1/fs (in s) with sample-rate fs (in Hz)
and locations x = lh, where grid spacing h (in m) needs to abide
the following condition [14]

h ≥ hmin =

√
c2k2 + 4σ1k +

√
(c2k2 + 4σ1k)2 + 16κ2k2

2
(10)

and grid points l ∈ [0, ..., N ], where N = floor(L/h) and N + 1
is the total number of grid points. It is important to note that the
closer h is to hmin, the more accurate the scheme will be. Ap-
proximations for the derivatives found in (1) are described in the
following way [14]:

ut ≈ δt·unl =
1

2k

(
un+1
l − un−1

l

)
, (11a)

utt ≈ δttunl =
1

k2
(
un+1
l − 2unl + un−1

l

)
, (11b)

uxx ≈ δxxunl =
1

h2

(
unl+1 − 2unl + unl−1

)
, (11c)

utxx ≈ δt−δxxunl =
1

hk2
(
unl+1 − 2unl + unl−1

− un−1
l+1 + 2un−1

l − un−1
l−1

)
,

(11d)

uxxxx ≈ δxxxxunl =
1

h4

(
unl+2 − 4unl+1 + 6unl

− 4unl−1 + unl−2

)
,

(11e)

with grid function unl denoting a discretised version of u(x, t) at
the nth time step and the lth point on the string. Note that in (11d),

the backwards time difference operator is used to keep (12) explicit
and thus computationally cheaper to update. Using the approxima-
tions shown in (11), (3) can be discretised to

δttu
n
l = c2δxxu

n
l − κ2δxxxxu

n
l − 2σ0δt·u

n
l

+ 2σ1δt−δxxu
n
l − J(xnB )f(vn, zn)/ρA,

(12)

where the relative velocity described in (5) can be discretised as

vn = I(xnB )δt·u
n
l − vnB . (13)

Here, I(xnB ) and J(xnB ) are weighting functions where the former
interpolates the string displacement and velocity and the latter dis-
tributes the bowing term around time-varying bowing position xnB
(see Figure 4 and [14] for more details on this). Furthermore,

f(vn, zn) = s0z
n + s1r

n + s2v
n + s3w

n (14)

is the discrete counterpart of (4) where

rn = r(vn, zn) = vn
[
1− α(vn, zn) zn

zss(vn)

]
(15)

is the discrete counterpart of (6).

J3(xB)f(v, z)

ulB−1 ulB ulB+1 ulB+2

NR

I3(xB)ul

×

×

xB

Figure 4: Cubic interpolation at bowing point xB. The interpolator
I retrieves the values of four grid points which are then used in
the Newton-Raphson (NR) solver. This outputs the force function
f(v, z) that the spreading function J in turn distributes over the
same four grid points. This process happens every single sample.

At the bowing point we need to iteratively solve for two un-
known variables: the relative velocity between the bow and the
string vn and the mean bristle displacement zn of the bow at sam-
ple n. We can solve (12) at xnB using (13) and identity [14]

δttu
n
l =

2

k

(
δt·u

n
l − δt−unl

)
(16)

resulting in

I(xnB )J(x
n
B )f(v

n, zn)/ρA+
( 2
k
+ 2σ0

)
vn + bn = 0, (17)
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where

bn =
2

k
vnB −

2

k
I(xnB )δt−u

n
l − c2I(xnB )δxxunl + κ2I(xnB )δxxxxu

n
l

+ 2σ0v
n
B − 2σ1I(x

n
B )δt−δxxu

n
l

(18)
and can be pre-computed as its terms are not dependent on vn or
zn. Recalling (4), this can be rewritten to

I(xnB )J(x
n
B )

(
s0z

n + s1r
n + s2v

n + s3w
n

ρA

)

+
( 2
k
+ 2σ0

)
vn + bn = 0.

(19)

To obtain the values of vn and zn, multivariate Newton-Raphson
(NR) is used. If (19) is defined to be g1 = g1(v

n, zn) and

g2(v
n, zn) = rn − an = 0, (20)

with
an = (µt−)

−1δt−z
n (21)

(where the operators applied to zn denote the trapezoid rule [14])
we obtain the following iteration[

vn(i+1)

zn(i+1)

]
=

[
vn(i)
zn(i)

]
−
[
∂g1
∂v

∂g1
∂z

∂g2
∂v

∂g2
∂z

]−1 [
g1
g2

]
, (22)

where i is the iteration number capped by 50 iterations, and the
convergence threshold is set to 10−7.

4. IMPLEMENTATION

In this section, we will elaborate on the implementation; the pa-
rameters used and the system architecture. The real-time imple-
mentation of the discrete-time model shown in the previous section
has been done using C++ together with the JUCE framework [22].
The application is shown in Figure 5. The parameters we used
can be found in Table 1, most of which are based on implementa-
tions by Serafin in [4]. These parameters will be static, i.e., are not
user-controlled (except for zba and s3 which rely on fN). A demon-
strative video can be found in [23]. We use the passivity condition
proposed by [24] for our choices of different parameter-values. As
this condition applies to the LuGre model first proposed in [25, 26]
from which the elasto-plastic model evolved, further investigation
is required to conclude whether these conditions are identical for
the elasto-plastic model.

4.1. Sensel Morph

As mentioned in Section 1, the Sensel Morph (or Sensel for short)
is used as an interface to control the bowed string (see Figure 6).
The Sensel is a highly sensitive touch controller containing ca.
20,000 pressure sensitive sensors that allow for expressive control
of the implementation [21].

4.2. Interaction

The first finger the Sensel registers is linked to the following pa-
rameters: the normal force of the bow fN (finger pressure), the
bowing velocity vB (vertical finger velocity) and bowing position
xB (horizontal finger position). The parameters are limited by the
following conditions: 0 ≤ fN ≤ 10, −0.3 ≤ vB ≤ 0.3 and

Figure 5: The elasto-plastic bowed string application. The bow is
shown as a yellow rectangle, moves on interaction and its opacity
depends on the finger force. The state un is visualised using the
cyan curve and stopping-finger position is shown as a yellow cir-
cle. The grey lines show the ‘frets’ corresponding to semi-tones as
a visual reference for the stopping position and do not influence
the model.

Figure 6: The Sensel Morph: an expressive touch sensitive con-
troller used for controlling the real-time elasto-plastic bowed
string implementation.

0 < xB < L. The second finger acts as a stopping finger on the
string. As done in [20], for a string stopped at location xf ∈ [0, L]
and lf = floor(xf/h) we use

unl =


0, l = lf − 1 ∨ l = lf

(1− αεf )unl , l = lf + 1

unl , otherwise
(23)

where αf = xf/h− lf and ε = 7 is a heuristic value that has been
found to most linearly alter pitch between grid points.

4.3. System Architecture

Implementation of the scheme shown in (12) starts by expanding
the operators shown in (11) and solving for the state at the next
sample un+1 where u is a vector containing the values for all grid
points l ∈ [0, ..., N ].

An overview of the system architecture can be found in Fig-
ure 7. The three main components of the application are the Sensel
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Table 1: Parameter values. Values for the fundamental frequency
f0 can be found in Section 5.

Parameter Symb. (unit) Value (notes)
Material Density ρ (kg·m−3) 7850

Radius r (m) 5 · 10−4

String length L (m) 1
Wave speed c (m/s) 2f0/L

Young’s modulus E (Pa) 2 · 1011
Freq. indep. damping σ0 (s−1) 1
Freq. dep. damping σ1 (m2/s) 5 · 10−3

Coulomb friction µC (-) 0.3 (< µS)
Static friction µS (-) 0.8 (> µC)
Normal force fN (N) 10
Bow velocity vB (m/s) 0.1
Bow position xB (m) 0.25

Stribeck velocity vS (m/s) 0.1
Bristle stiffness s0 (N/m) 104

Bristle damping s1 (kg/s) 0.001
√
s0

Viscous friction s2 (kg/s) 0.4
Noise coefficient s3 (-) 0.02fN

Pseudorandom func. w (N) −1 < w < 1
Break-away disp. zba (m) 0.7fC/s0 (< fC/s0)

Sample rate fs (Hz) 44,100
Time step k (s) 1/fs

controlling the application, the violin string class that performs the
simulation and the main application class that moderates between
these and the auditory and visual outputs. The black arrows indi-
cate instructions that one of these components can give to another
and the hollow arrows indicate data flows. Moreover, the arrows
are accompanied by coloured boxes, depicting what thread the in-
struction or data flow is associated with and at what rate this runs.

The graphics thread has the lowest priority, is denoted by the
green boxes and runs at 15 Hz. The redraw instruction merely
retrieves the current string state un and bow and finger position
and visualises this as shown in Figure 5.

The thread checking and receiving data from the Sensel runs
at 150 Hz and is denoted by the blue boxes. The parameters that
the user interacts with (bowing force, velocity and position) are
also updated at this rate.

The highest priority thread is the audio thread denoted by the
orange boxes and runs at 44,100 Hz. The violin string class gets
updated at this rate and performs operations in the order shown in
Algorithm 1.

5. RESULTS AND DISCUSSION

Figure 8 shows the output waveforms for a string with f0 = 440
Hz at different points along the string. The bowing parameters are
fN = 5 N and vB = 0.1 m/s. The figure shows the traditional
Helmholtz motion, which is the characteristic motion of a bowed
string.

To test whether the implementation exhibits a hysteresis loop,
the force vs. relative velocity plane was visualised. In Figure 9,
this plot can be found for which the same parameters have been
used. The figure shows values for 500 samples around t = 0.5fs.
As can be seen from the figure, the hysteresis loop is achieved and
is similar to the one observed in [19]. The group of values around

graphics

 redraw 15 Hz44,100 Hz update

check
150 Hz

state

output

Sensel

set
parameters

Violin string

NR �(�, �) FDS

1 2 3

audio

=�
�−1

�
�

=�
�

�
�+1

Switch pointers

Main
Application

�
�

Figure 7: The system architecture. See Section 4.3 for a thorough
explanation.
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Figure 8: Output waveforms of the simulation at different positions
along the string whereN denotes the number of points of the string
(f0 = 440 Hz, fN = 5 N and vB = 0.1 m/s).

v = 0 are due to the sticking behaviour, and the others (the loop
on the left) to the slipping behaviour.

For testing the speed of the algorithm, a MacBook Pro with
a 2.2 GHz Intel Core i7 processor was used. The algorithm was
tested using different frequencies according to the violin tuning of
empty strings: f0 = 196.0 (G3), 293.66 (D4), 440.0 (A4) and
659.26 (E5) Hz corresponding to N = 95, 71, 49, and 33 grid
points respectively. The results can be seen in Table 2. When
the total number of strings is smaller than 4, always the lowest
frequency strings are used.

From Table 2 it can be observed that for one string, the CPU
usage is < 6% with the graphics thread disabled. This is a great
result, given the fact that both the bow and the string model are
computationally complex. Empirical investigation shows that the
NR algorithm converges after ca. 3-4 iterations and the capping of
50 iterations never has to be used. A single string (but also more)
could thus safely be used as an audio plugin in parallel to others
without the user having to worry about auditory dropouts.
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for t = 1:lengthSound do
calculate computable part bn (Eq. (18))

ε = 1

i = 0

while ε < tol ∧ i < 50 ∧ fC > 0 do
calculate..
1. zss(v

n
(i))

2. α(vn(i), z
n
(i))

3. r(vn(i), z
n
(i))

4. g1, g2

(Eq. (7) in discrete-time)

(Eq. (8) in discrete-time)

(Eq. (15))

(Eqs. (19) and (20))

5.–9. Compute derivatives of 1.–4. in the same

order.

10. Perform vector NR to obtain vn(i+1) and zn(i+1)

11. Calculate ε: ε =

∥∥∥∥∥
[
vn(i+1)

zn(i+1)

]
−

[
vn(i)

zn(i)

]∥∥∥∥∥
12. Increment i: i = i+ 1

end
Repeat 1.–3. using the values for vn and zn from the

NR iteration.
Calculate f(vn, zn)

Calculate un+1

(Eq. (14))

(Eq. (12) expanded)

un−1 = un

un = un+1

end

Algorithm 1: Pseudocode showing the order of calculations.

6. CONCLUSIONS

In this paper, we presented a real-time implementation of an elasto-
plastic friction model with applications to a bow exciting a string,
discretised using a finite-difference approach.

With a single string we are able to keep the CPU usage down
to< 6% making for an efficient implementation that could be used
in parallel with other virtual instruments or plugins.

Future work includes parameter design and including an in-
strument body for more realistic sounding results, as well as lis-
tening tests to verify the perceivable differences between simpler
friction models versus the elasto-plastic model.
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ABSTRACT

A multisensory virtual environment has been designed, aiming at
recreating a realistic interaction with a set of vibrating strings.
Haptic, auditory and visual cues progressively istantiate the envi-
ronment: force and tactile feedback are provided by a robotic arm
reporting for string reaction, string surface properties, and further-
more defining the physical touchpoint in form of a virtual plectrum
embodied by the arm stylus. Auditory feedback is instantaneously
synthesized as a result of the contacts of this plectrum against the
strings, reproducing guitar sounds. A simple visual scenario con-
textualizes the plectrum in action along with the vibrating strings.
Notes and chords are selected using a keyboard controller, in ways
that one hand is engaged in the creation of a melody while the
other hand plucks virtual strings. Such components have been
integrated within the Unity3D simulation environment for game
development, and run altogether on a PC. As also declared by
a group of users testing a monophonic Keytar prototype with no
keyboard control, the most significant contribution to the realism
of the strings is given by the haptic feedback, in particular by the
textural nuances that the robotic arm synthesizes while reproduc-
ing physical attributes of a metal surface. Their opinion, hence,
argues in favor of the importance of factors others than auditory
feedback for the design of new musical interfaces.

1. INTRODUCTION

Along with the continuous miniaturization and proliferation of dig-
ital hardware, the research domain of computer interfaces for mu-
sical performance is increasingly taking advantage of the growing
market of haptic devices. Traditionally confined to the loudspeaker
set, the output channel in these interfaces now often incorporates
force and tactile feedback targeting the performer [1] and/or the
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audience [2]. In spite of the debate around the effects that syn-
thetic tactile cues have on the precision of the execution [3] and in
general on the quality of the performance [4], no doubt exists on
the impact that haptic feedback has as a conveyor of realism, en-
gagement and acceptability of the interface [5]. This design trend
has developed to the point that a specific research line has been
recently coined: musical haptics [6].

In parallel to such hardware opportunities, several software
architectures have become available. These architectures contain
libraries which provide relatively fast access to functionalities that,
until few years ago, needed significant labor of researchers in-
terested in programming a new musical interface. Conversely,
modern software development environments such as Max/MSP or
Unity3D have enough resources in-house for realizing digital in-
strument prototypes yielding a credible image of the final appli-
cation. The latter software, in particular, already in its freeware
version offers an unprecedented support to existing multimedia
devices in the context of a visual or, at the developer’s conve-
nience, traditional programming environment. Originally intended
for computer game design, Unity3D is being embraced by an in-
creasing community of programmers with interests in virtual and
augmented reality, as well as cultural and artistic applications on
multimodal technologies.

Among the numerous assets Unity3D makes available, basic
objects can be found for defining elastic strings which dynami-
cally respond to colliding bodies and, at that moment, play an au-
dio sample or launch a sound synthesis algorithm. Such a core
scenario can receive messages by external devices including Mu-
sical Instrument Digital Interface (MIDI)-based controllers like a
keyboard, and haptic devices like e.g. a robotic arm.

Using these components we have started a project, now called
Keytar, aiming at understanding the perceptual importance of hap-
tic, auditory and visual feedback during a point-wise interaction
with a virtual string set. This idea is not new: multisensory en-
vironments with visual, auditory and haptic feedback have for ex-
ample been developed for several decades in the context of the
Cordis-Anima framework [7]. Our approach, however, aims at an
efficient yet accurate simulation in a widely accessible virtual real-
ity environment. We have reproduced a standard and a bass guitar
employing different string sets, and then compared sample-based
rather than synthesized sounds under different visual viewpoints
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of the instruments. Later we have integrated melodic control via
MIDI keyboard. This paper reports the current status of the Key-
tar project, documenting what has been done and what is ongoing
based on the lessons learnt so far: Sec. 2 specifies the hardware
in use; Sec. 3 describes the software component realizing commu-
nication with the devices, haptic workspace, sound synthesis and
visualization; Sec. 4 explains how Keytar was first calibrated and
then preliminary tested; Sec. 5 concludes the paper.

2. PHYSICAL INTERFACE

The Keytar interface is shown in Fig. 1. While users pluck a string
through the robotic arm using their dominant hand, they simulta-
neously feel its resistance and textural properties. This way, the
plucking force results from a natural perception-and-action pro-
cess involving users and the string. In the meantime, with the
other hand they select notes and/or chords through the keyboard
controller. The setup is completed by a screen displaying the ac-
tion of the virtual plectrum against the vibrating strings, as well as
by the audio.

Figure 1: Keytar: desktop configuration.

Besides the presence of a monitor and a loudspeaker or head-
phone set, the most interesting physical component of the output
interface is certainly the robotic arm (Fig. 2). A SensAble (now
3D Systems) Phantom Omni was available for this project. The
limited force its motors exert on the mechanic arm is compen-
sated by extremely silent and low-latency reactions, making this
device still an ideal candidate for virtualizing point-wise manip-
ulations that do not need to render stiff materials. Particularly in
the case of elastic string simulation, the Phantom Omni revealed
ideal characteristics: since only rotation and lift are actuated, the
arm renders elastic reactions while leaving users free to select the
angular position of the plectrum at their own taste through the sty-
lus. Even more surprisingly, while rendering the textural prop-
erties of wound metal strings its motors produced sounds that are
very similar to the scraping effect a plectrum creates when it is slid
over a bass guitar string. This acoustic by-product coming from
the robotic arm added much realism to the multi-sensory scenario,
completing the audio-tactile feedback with nuances whose acous-
tic component would be otherwise particularly difficult to synthe-
size and keep synchronized with the haptic channel.

Figure 2: Phantom Omni robotic arm.

Concerning the input interface, the robotic arm is once more
interesting for its ability to instantaneously detect the stylus po-
sition and force exerted on it when its motors are resisting to the
arm movement. Position was used to detect when the plectrum
collided against the strings. Aside of the robotic arm, a Novation
ReMOTE 25SL controller was set to acquire standard MIDI notes
across its two-octave keyboard. Finally, two buttons located on the
arm stylus at immediate reach of the index finger (both visible in
Fig. 2) allowed for selecting major (blue button pressed) or minor
(grey button pressed) chords instead of single notes through the
keyboard. In other words, users could play chords or alternatively
solos respectively by pressing either button or by leaving both but-
tons depressed. Since there is no obvious mapping from piano to
guitar keys, rules were adopted to create a link between the two
note sets which will be discussed at the end of Sec. 3.2.

3. SOFTWARE ARCHITECTURE

Due to the efficiency of the applications built for many computer
architectures, Unity3D is gaining increasing popularity also among
musical interface designers. Moreover, this programming envi-
ronment adds versatility to the development of a software project
thanks to its support to a number of peripherals for virtual real-
ity. Finally, software development is made easier by a powerful
graphic interface, making it possible to visually program several
C# methods and classes that would otherwise need to be tradi-
tionally coded through textual input of the instructions. The same
interface allows also to preview the application at the point where
the project development is.

For the purposes of the Keytar project, Unity3D supported i)
communication with the robotic arm and MIDI controller, ii) agile
virtual realization of vibrating strings, iii) implementation of col-
lision detection between such strings and a virtual plectrum, iv)
access to an algorithm capable of interactively synthesizing string
tones, and finally v) relatively easy development of the graphical
interface. In the following we browse such components, empha-
sizing aspects whose knowledge may help researchers in computer
music interfaces reproduce the prototype, or take inspiration from
Keytar while designing their own instrument.

3.1. Communication with peripherals

Bi-directional communication with the Phantom Omni is made
possible by Unity3D’s Haptic Plugin for Geomagic OpenHaptics,
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developed for Windows and (in beta version) for Linux by the
Glasgow School of Art’s Digital Design Studio. Through this asset
it was possible to get the position of the Phantom’s arm and simul-
taneously send control messages to its motors, hence defining the
instantaneous behavior of the robotic device. In particular, Haptic
Plugin manages force through higher level parameters: stiffness,
damping, static friction, dynamic friction, tangential stiffness, tan-
gential damping, punctured static friction, punctured dynamic fric-
tion, and mass. Expansions of this palette appearing in the newer
versions of Unity3D have outmatched such parameters, in prac-
tice forbidding the Phantom Omni to interact with dynamic (i.e.,
moving) virtual objects.

Concerning the communication with the keyboard, Keijiro Ta-
kahashi’s MIDI Jack is an open project1 enabling Unity3D to ac-
quire and interpret some types of MIDI events coming from a con-
troller that sends messages in this protocol. In particular, it features
automatic recognition of input MIDI devices and returns non-zero
velocity values of notes when a key is pressed. This software mod-
ule immediately establishes a communication between the con-
troller and the note selector running in Keytar (see Fig. 3). Though,

Figure 3: MIDI input inspector in Unity3D.

if the application is ported on another PC then care must be taken
in keeping the MIDI channel that was chosen during building. Fu-
ture versions of Keytar will accept this value as an initial argument.

3.2. Strings, plectrum, and collision detection

Each string was created using Cylinder objects. Such objects are
instantiated by a primitive class of Unity3D once their length, di-
ameter and position in the virtual space are set. The plectrum
was instead obtained by putting one passive and one active ob-
ject together: the former gave visual appearance by realizing the
traditional shape, while the latter was responsible of the collision
against the strings and was instantiated as a Sphere object having
minimum (i.e. almost point-wise) diameter.

The little sphere was placed on one edge of the plectrum and
then made invisible by disabling its display. Like we did also for
each string, the sphere activity was enabled by interfacing it with
the classes RigidBody and Collider, containing methods for the
real-time detection and management of collisions. Since users of-
ten move the plectrum beyond the plane containing the strings, the
interaction was made more robust by positioning an active surface
just beyond this plane. This object, invisible to the user and having
the same role as a fretboard, cannot be crossed by the sphere and

1https://github.com/keijiro/MidiJack

hence avoids occasional backward collisions entangling the plec-
trum behind the strings.

Figure 4: Haptic workspace in Keytar. The colliding sphere is
visible as a white tip on the edge of the plectrum.

Active objects become part of the haptic workspace, accessi-
ble to the robotic arm, if they are labeled as Touchable. In this
way, their position and shape define areas of the virtual scenario
that become inaccessible to the tip of the arm stylus, as obviously
no more than one solid object at a time can occupy a single vol-
ume of the workspace. In parallel such object surfaces inherit the
haptic parameters listed in Sec. 3.1, which are used at runtime
while computing the collisions occurring between touchable ob-
jects. Fig. 4 shows the final appearance of the haptic workspace.
Initially we had labeled the entirely visible plectrum as touchable,
i.e. with no distinction between active and passive region. Unfor-
tunately, distributing contact areas across objects having irregu-
lar shapes can encumber the computation of the haptic workspace
with occasional crashes of the application especially when run-
ning on slower machines. This issue was solved in Keytar by tying
a tiny touchable sphere to the plectrum.

Clearly, this simplification leads to visuo-haptic mismatching
as soon as a passive region of the plectrum intersects with the
string. The net effect was that the plectrum often went through
strings with no apparent contact. A more subtle visuo-haptic mis-
match manifests when the active edge of the plectrum touches, but
does not penetrate a string enough: in this case the active objects
interact each other as one could clearly see also from the screen,
but no collision event is triggered inside the haptic workspace. The
latter problem was solved by wrapping each string with an invis-
ible, inactive meanwhile touchable shield, which was set to be as
thick as the diameter of the sphere active in the plectrum—see
Fig. 5. This shield in fact paired the contact point positions set by
the Touchable and Collider methods. Such string wrappers also
attenuate the former problem, as their inclusion made it more dif-
ficult to dip the plectrum into the string without production of re-
active force from the robotic arm due to collision of the sphere
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Figure 5: Mismatching positions of visual and haptic collision
point. Solution using string wrappers.

against the wrapper.
A strategy for estimating each string velocity after a collision

was needed. To this regard, Haptic Plugin gives runtime access
to the contact point coordinates immediately before (b) and after
(a) every collision. We decided to estimate velocity as the dis-
tance between such two positions divided by the haptic frame rate,
readable from the static property Time.deltaTime:

velocity =

√
(xa − xb)2 + (ya − yb)2 + (za − zb)2

Time.deltaTime
.

Velocity was then used to determine the amplitude of vibration in
each string.

3.3. Sample-based, interactive, and physical sounds

In Unity3D, sound source and listening point are respectively de-
fined by AudioSource and AudioListener objects. In the case of a
guitar simulation the Keytar workspace contained six sound sources,
one for each string. In parallel, a default audio listener was associ-
ated to the standard Camera object, corresponding to the viewpoint
in the virtual scenario. On their way from the sources to the lis-
tening point, sounds can be additionally routed in an AudioMixer
object. On top of mixing down such sources to pick-up points
for the audio card, the AudioMixer class allows for interconnec-
tion of, and interaction at runtime with several sound processing
methods including filters, reverberators, compressors, and further
digital audio effects. Alone, these methods turn Unity3D in an
effective digital audio workstation.

We kept the AudioMixer object to the simplest, by just picking
up sounds from the strings and mixing them down before repro-
duction from the virtual listening point. The corresponding con-
sole, shown in Fig. 6, was sufficient for reproducing a bank of gui-
tar samples we use in the initial prototype. This prototype had no
note selection, and for this reason just six tones corresponding to
the freely vibrating strings were recorded to form this bank, from
a guitar playing at several dynamic levels.

Later, when the note selection was introduced, we switched to
interactive synthesis by including the well-known Karplus-Strong

Figure 6: AudioMixer object in Keytar.

algorithm2 in the software architecture [8]. Once imported, this

Figure 7: Karplus-Strong control panel in Unity3D.

synthesizer exposes the control panel as in Fig. 7, containing five
parameters. Except for damping, all such parameters can be set
at runtime to values between zero and one. For this reason it was
necessary to program a method mapping every tone fundamental
frequency into this interval. Apart from the freedom of choice of
the notes and their timbre using Unity3D’s Karplus-Strong—see in
particular the simultaneous presence of damping and decay, alter-
natively absent in the traditional algorithm instead—the net result
of the switch from sample-based to interactive synthesis was a def-
initely more reactive instrument with empoverished sound quality.
Some preliminary sound engineering using standard guitar effects
available in Unity3D, however, suggests that it should not be dif-
ficult to synthesize acceptable virtual electric guitar sounds with
Keytar.

As anticipated in Sec. 2, Keytar features three different play-
ing modes that can be selected through the stylus buttons: solo,
harmonic major and harmonic minor. Any switch of these buttons
calls a script that activates the corresponding playing mode. In solo
mode, the related script simply runs an instance of the Karplus-
Strong algorithm at the time when a collision happens, by tuning
the synthesizer to the tone that has been set by the controller key—
not below the lowest note the excited string can produce, however.
The harmonic modes instead launch several instances of the same

2https://github.com/mrmikejones/KarplusStrong
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algorithm, by building major and minor chords based on the last
key pression on the controller. This event dictates the fundamen-
tal note of corresponding chord. All chords were standard forms
based on the chord voicing music theory. They were formed only
by tones belonging to the fundamental tonality.

Last, but not least, the acoustic feedback includes real sounds
that are a by-product of the effort the robotic arm makes while
reproducing the plectrum-string contact. As it can be seen from
Fig. 3, each string results by alternating cylinders of two different
diameters. The resulting surface geometry hence reproduces a tex-
ture assimilable to that of a wound string coating, as it contains
regular discontinuities. While following the longitudinal motion
of a plectrum scraping along such a string, the motors simulate
a motion similar to friction, producing not only haptic, but also
acoustic cues of convincing quality, with substantial improvement
of the overall realism of the interaction.

3.4. Visual display

In a scenario populated by elements belonging to a typical guitar
playing set, the plectrum and the strings are the only animated ob-
jects visible from the standard camera viewpoint. Plectrum move-
ments directly reproduce the shifts and rotations of the arm sty-
lus, proportionally to the workspace size. Strings visually vibrate
thanks to the Animator interface, whose methods implement Unity
3D’s Mecanim Animation System. This system concatenates ba-
sic Animation objects along time, together realizing the visual flow
visible from the Camera object.

In Keytar each animation object models an oscillatory transver-
sal shift having specific frequency and decaying amplitude along
time. By concatenating few such objects, each string vibrates up
and down with decreasing amplitude. This model demands low
computational effort in ways that each string position can be re-
freshed every 10 milliseconds, that is, about 1.6 times the refresh
rate of the video. This ratio creates an effect of occasional semi-
transparency of the vibrating string, which is beneficial for the
realism—see Fig. 8.

Figure 8: Semitransparency of one animated string in Keytar.

In practice, each collision triggers a script that determines the
initial vibration amplitude. Then, vibrations are rendered by an
Animator method that destroys a visual string while cloning it into
a shifted instance. This workflow continues until the original string
returns at rest or, conversely, a new collision happens against the

initial string position. In other words, the clones were not in-
terfaced to the Collider class nor did they inherit any Touchable
property, as the definition of a haptic workspace evolving dynam-
ically at such a fast refresh rate would suffer from the instability
mentioned in 3.1. This limit defers any realization of vibratory
feedback in Keytar to a version capable of driving vibrotactile de-
vices not using data about the interaction point, but rather higher
level information about amplitude and pitch of the string vibrating
in contact with the plectrum.

In spite of its efficiency and versatile management of collision
events, an accurate visual rendering of the string would require
to realize a rectangular surface that shrinks, and becomes pro-
gressively less semitrasparent across time until reducing to a solid
string at rest position. Finally, the virtual string did not model rigid
edges. This approximation results in strings moving up and down
as stiff bars would do, with apparent artefacts whose removal will
eventually require a different design of the visual string.

4. CALIBRATION AND PRELIMINARY TESTING

The strings’ physical parameters were tuned by two students, who
regularly perform with their guitar and bass in a pop band. Then,
Keytar was preliminary tested during two experiments that have
been documented in previous papers [9, 10] when Keytar had no
polyphonic keyboard control yet. Both such experiments focused
on the realism of the multi-sensory interaction with the strings.
Here we report limitedly to the answers participants gave concern-
ing the audio-haptic interaction.

In experiment 1, seven participants with different music expe-
rience and knowledge of the technology were asked first to pluck a
guitar and a bass guitar using a plectrum. Then, they tested Keytar
and answered a questionnaire. Regarding the realism of audio-
haptic feedback, participants were asked to rate roughness of each
string surface, longitudinal motion friction while sliding the plec-
trum, sound friction during the same sliding, and finally string re-
sistance. While the first three attributes were essentially tactile and
depended on the vibratory activity of the arm motors, the fourth at-
tribute was kinaesthetic and linked to the force feedback generated
by the robotic arm.

Figure 9: Experiment 1: Results from haptic evaluation.

Fig. 9 shows good scores for the first three attributes. Con-
versely, string resistance scored lower. The reason for this dffer-
ence might be due to the need to grasp a stylus instead of a plec-
trum during playing.

Experiment 2 aimed at evaluating the relative importance of
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force and vibrotactile feedback for the creation of a realistic expe-
rience [10]. For this reason, the arm stylus was modified for the
occasion by applying a 3D printed plectrum on its tip. This physi-
cal plectrum was embedded with a Haptuator Mark II vibrotactile
actuator by Tactile Labs. Each time a collision occurred, the vi-
brotactile actuator rendered an impact generated using the Sound
Design Toolkit for Max/MSP [11]. Twenty-nine subjects were first
asked to pluck a real string, then they were exposed to four condi-
tions: no haptic feedback (N), vibrotactile feedback (V, made with
the Haptuator), force feedback (F, made with the Phantom Omni),
and combination of force and vibrotactile feedback (FV). Finally,
subjects reported the perceived realism through a questionnaire.
Results are reported, among others, in Fig. 10. Both show that

Figure 10: Experiment 2: Overall perceptual similarity and real-
ism.

the combined force and vibrotactile feedback was rated as signifi-
cantly more realistic. This conclusion suggests that expanding the
feedback of Keytar with vibrations in both its keyboard and stylus
controllers should further increase its realism.

5. CONCLUSIONS

Keytar prototypes a point-wise physical interaction with a set of
virtual strings. With relatively low software programming effort,
it can model essentially any compact stringed instruments that is
played using a plectrum. Ongoing work is oriented to reproduce
interactions capable of taking full advantage from alternative pro-
totypes. The lap steel guitar, for instance, could be realized by
displaying the strings horizontally below the robotic arm; in par-
allel the keyboard, if not substituted by a continuous controller,
could be used to set the final chord where the steel bar is sliding
to. In the longer term, the keyboard (or any other controller) and
the plectrum could convey string vibrations through proper actu-
ation, as well as the plectrum position could be used to modulate
the spectral content of tones as it happens with real guitars.

6. ACKNOWLEDGMENTS

This work is supported by NordForsk’s Nordic University Hub
Nordic Sound and Music Computing Network NordicSMC, project
number 86892.

7. REFERENCES

[1] Mark T. Marshall and Marcelo M. Wanderley, “Vibrotactile
feedback in digital musical instruments,” in Proceedings of
the 2006 conference on New interfaces for musical expres-
sion, Paris, France, Jun. 4-8 2006, pp. 226–229.

[2] Stahl Stenslie, Andreas Göransson, Tony Olsson, and David
Cuartielles, “Stitchies: towards telehaptic performativity,”
in Tei 2014–8th International Conference on Tangible, Em-
bedded and Embodied Interaction, Proceedings, Stockholm,
Sweden, Mar. 18–21 2014, ACM, pp. 327–329.

[3] Mark T. Marshall and Marcelo M. Wanderley, “Examining
the effects of embedded vibrotactile feedback on the feel of
a digital musical instrument,” in Proc. Int. Conf. on New In-
terfaces for Musical Expression (NIME), Oslo, Norway, May
30–June 1 2011, pp. 399–404.

[4] Joseph Rovan and Vincent Hayward, “Typology of tactile
sounds and their synthesis in gesture-driven computer music
performance,” Trends in gestural control of music, pp. 297–
320, 2000.

[5] Stephen A. Brewster, “Impact of haptic ’touching’ technol-
ogy on cultural applications,” in Digital Applications for
Cultural Heritage Institutions, J. Hemsley, V. Cappellini, and
G. Stanke, Eds., pp. 273–284. Ashgate, 2005.

[6] Stefano Papetti and Charalampos Saitis, Eds., Musical Hap-
tics, Springer, 2018.

[7] James Leonard and Claude Cadoz, “Physical modelling con-
cepts for a collection of multisensory virtual musical instru-
ments,” in New Interfaces for Musical Expression 2015, Ba-
ton Rouge, Louisiana, USA, May 31–Jun 3 2015, pp. 150–
155.

[8] Kevin Karplus and Alex Strong, “Digital synthesis of
plucked-string and drum timbres,” Computer Music Journal,
vol. 7, no. 2, pp. 43–55, 1983.

[9] Andrea Passalenti and Federico Fontana, “Haptic interaction
with guitar and bass virtual strings,” in Proceedings of the
15th Sound and Music Computing Conference (SMC 2018),
Limassol, Cyprus, July 4–7, 2018, pp. 427–432.

[10] Andrea Passalenti, Razvan Paisa, Niels Ch. Nilsson, Niko-
laj S. Andersson, Federico Fontana, Rolf Nordahl, and Ste-
fania Serafin, “No strings attached: Force and vibrotactile
feedback in a virtual guitar simulation,” in Proceedings of the
16th Sound and Music Computing Conference (SMC 2019),
Malaga, Spain, May 28–31 2019, pp. 210–216.

[11] Stefano Delle Monache, Pietro Polotti, and Davide Roc-
chesso, “A toolkit for explorations in sonic interaction de-
sign,” in Proceedings of the 5th Audio Mostly Conference: A
Conference on Interaction with Sound, New York, NY, USA,
Sep. 15–17 2010, AM ’10, pp. 1:1–1:7, ACM.

DAFX-6

52



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

EXPLORING AUDIO IMMERSION USING USER-GENERATED RECORDINGS

Daniel Gomes, João Magalhães, Sofia Cavaco ∗

NOVA LINCS, Departamento de Informática
Faculdade de Ciências e Tecnologia

Universidade Nova de Lisboa
2829-516 Caparica, Portugal

ddl.gomes@campus.fct.unl.pt, {jmag,scavaco}@fct.unl.pt

ABSTRACT

The abundance and ever growing expansion of user-generated con-
tent defines a paradigm in multimedia consumption. While user
immersion through audio has gained relevance in the later years
due to the growing interest in virtual and augmented reality immer-
sion technologies, the existent user-generated content visualization
techniques are still not making use of immersion technologies.

Here we propose a new technique to visualize multimedia con-
tent that provides immersion through the audio. While our tech-
nique focus on audio immersion, we also propose to combine it
with a video interface that aims at providing an enveloping visual
experience to end-users. The technique combines professional au-
dio recordings with user-generated audio recordings of the same
event. Immersion is granted through the spatialization of the user
generated audio content with head related transfer functions.

1. INTRODUCTION

Considering a society in transformation and transition to immer-
sive content, such as video games and virtual reality, it is natural
to extend the immersion to other content such as user-generated
content (UGC). To answer this tendency we propose a technique
that uses the audio from UGC to achieve immersion through the
audio. By immersion we mean spatial presence, as defined by
Madigan [1].

Audio immersion can serve multiple purposes ranging from
different areas of interest. As an example, it can be used for ed-
ucation, training and entertainment of blind and visually impaired
(BVI) people. Navmol is an application that uses audio immer-
sion to help BVI chemistry students to interpret and edit the rep-
resentation of molecular structures [2]. Once a reference atom is
selected, the application uses a speech synthesizer to inform the
user about the neighboring atoms. The speech signal is spatial-
ized using head related transfer functions (HRTFs). In this way,
users wearing headphones will hear the atoms’ descriptions com-
ing from different angles in space. Similarly, immersive audio can
be used to train orientation and mobility skills for BVI people.
Cavaco, Simões and Silva propose a virtual environment for train-
ing spatial perception in azimuth, elevation and distance [3]. The

∗ This work was supported by the H2020 ICT project COG-
NITUS with the grant agreement No 687605 and the Portuguese
Foundation for Science and Technology under project NOVA-LINCS
(PEest/UID/CEC/04516/2019).
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audio is spatialized with HRTFs. Immersive audio has also been
used for entertainment of BVI people. Demor is a shooting game
based in 3D spatialized audio that aims at providing entertainment
to both BVI and sighted players [4]. Despite the entertainment
component, Cohen et. al also attempt to improve BVI people
emancipation in the sighted world by training mobility and spatial
orientation. The game requires players to localize sounds in space
that represent targets to shoot before they reach the player, who
is equipped with a laptop, a GPS receiver, a head tracker, head-
phones and a modified joystick, all attached to a backpack. The
kit continuously tracks player location and orientation and updates
the sound accordingly.

Immersive audio can also be applied to information delivery.
Montan introduced a low cost audio augmented reality prototype
for information retrieval [5]. In the study, the author created a
headset with a head movement tracker for a use case of museum in-
teractive audio-guides. As the users rotated their heads, the tracker
registered head orientation and the system rendered the audio prop-
erly. The rendering is performed in real time using HRTFs accord-
ing to the relative position and orientation of the listener and the
emitters. In another study, Guerreiro proposed to take advantage of
the cocktail party effect to convey information about digital docu-
ments to BVI people using only audio [6]. Instead of using a com-
mon text-to-speech system that converts textual information into a
speech signal that contains a single voice, the author proposed to
use various voices simultaneously at different angles. HRTFs were
used to change the speech synthesizer signal.

Here we propose an audio immersion technique for UGC. The
technique combines several UGC recordings of the same event,
modified with HRTFs, in order to immerse audibly the user. Such
recordings are distributed in space and are reproduced from differ-
ent angles. While the technique focus on audio immersion, we also
propose to combine it with a video interface that aims at providing
an enveloping visual experience (more details in section 2).

In order to demonstrate and validate the proposed technique,
we built a prototype for mobile devices that includes a video player
(section 3). The proposed tool is designed to play concert videos,
although it it not limited to this single use case scenario. We used
this prototype in a user test that validates the proposed technique.
The test focuses on three attributes: immersion, sense of space
and directional quality. Section 4 describes the tasks performed in
more detail, section 4.1 describes the data used in the user test, and
section 5 discusses the user test’s results.

Since the scope of the presented work required diverse and
abundant UGC, musical concerts were chosen as a good use case
scenario to draw useful conclusions. The database chosen is com-
posed of multiple events (i.e., audio recordings of several con-
certs), which in their turn have several recordings. User-generated
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Figure 1: The proposed UGC audio immersion technique scheme.

recordings raise some challenges, in particular noise and a time
sparse nature. Different devices have distinct recording qualities
which impact in the level of noise captured. Additionally, record-
ings capture different parts of the event, considering possible over-
laps. Thus it is required to deal with these UGC challenges. We
propose to categorize recordings of the chosen data set by subjec-
tive level of noise and select those with best quality to be played.
As explained in section 2, we propose to use a quality analysis and
data synchronization technique based on audio fingerprints.

2. THE UGC AUDIO IMMERSION TECHNIQUE

The proposed immersion technique can be seen as the interaction
between two main components: the audio and the video compo-
nents (figure 1). The audio component immerses the user audi-
bly by presenting multiple audio sources distributed in a multi-
dimensional space. The video component consists of a user inter-
face that aims at providing an enveloping visual experience to the
end user. Note that we do not aim to achieve video immersion in
this prototype.

Since our main focus in this paper is the audio component, in
this section we focus only on this component. Nonetheless, we
developed two different simple approaches for the video compo-
nent for validation purposes. These approaches are discussed in
section 3.1.

To achieve audio immersion using UGC, we propose to com-
bine several recordings from the same event. Our technique con-
sists of changing the original recordings such that they are repro-
duced from different angles, and when played together they pro-
vide a combined audio signal that can give the perception of im-
mersion.

It is important to highlight that UGC have diverse audio qual-
ities inherent to the different characteristic of the devices used to
capture the audio. Also different recordings of the same event (for
instance, the same music in a concert), can capture different por-
tions of the event with possible overlapping sections. Thus, even
before we process the audio signals to provide a sense of immer-

sion, there are other steps we must perform, namely audio syn-
chronization and analysis of the signals’ quality.

2.1. Audio synchronization

Given a data set of recordings from the same event, it is important
to understand the chronological order of the events and identify
the recordings’ overlapping sections. Following our previous work
on organization of user generated audio content (UGAC), we pro-
pose to use audio fingerprints to create a timeline with the event’s
recordings [7, 8].

The resistance to noise of fingerprinting techniques is partic-
ularly relevant when dealing with low quality music recordings.
This characteristic is suitable for our proposed immersion tech-
nique because it enables synchronizing samples with quite differ-
ent quality and noise levels, which is a characteristic of UGAC.

Mordido et al. use audio fingerprints to identify common sec-
tions between the audio recordings [8]. This technique identifies
the overall offsets of all recordings of the same event, as well as
the duration of each recording. This gives us information on which
recordings cover different portions of the timeline. Thus, we can
organize an event with timeline segments, such that segments coin-
cide with the time interval of overlapping recordings. The final re-
sult is a timeline with all the recordings aligned, such that overlap-
ping sections of different signals are played simultaneously. Fig-
ure 2 shows the timeline for a set of five recordings from the same
event. The timeline is organized into timeline segments T1 to T7.

2.2. Audio quality analysis

Once the signals are chronologically organized, we need to choose
which signals to use. Given a set of recordings from the same
event, we will choose only a few. More specifically, for each time-
line segment, Ti, we choose ni recordings (we choose a low num-
ber, such as three or four at most). In order to choose the ni record-
ings for each timeline segment, we start by measuring the quality
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Figure 2: Timeline and segments, T1 to T7, for a set of recordings (in green) from the same event.

of all the data in the set, and choose the recordings with the higher
quality.

For the recordings audio quality analysis, we propose to use
our previous work with audio fingerprints for quality inference of
UGAC [7, 8]. Like with the audio synchronization technique ex-
plained above, this method uses audio fingerprints to detect over-
lapping segments between different audio recordings. In addition
it assumes that the recordings with more matching landmarks have
higher quality. (A landmark is a pair of two frequency peaks and
contains information about the frequency for the peaks, the time
stamp of the first peak, and the time offset between the two peaks.)

Alternatively, some interesting recordings can also be cho-
sen manually. For instance, let us assume there is a recording
with voices or clapping in the audience that we want to use, but
has lower quality. While this recording may be ranked as hav-
ing low quality, it can still be chosen. In fact, we manually chose
the recordings used in our prototype because we wanted to have
recordings with quite different characteristics.

2.3. Audio immersion

As shown in figure 1, the following step is audio immersion. In
this step, we change the original ni audio signals selected for each
timeline segment Ti, such that when heard individually through
headphones, they can be perceived as if coming from different di-
rections, and when heard together, they give a sense of space.

Our proposal is to change each original signal sj with HRTFs.
That is, we apply HRTFs to the left and right channel of each sig-
nal sj , such that the modified signal, s′j is perceived as if coming
from angle θj . Angle variations are performed in azimuth and el-
evation. Finally, the timeline built in the audio synchronization
phase is used when playing the modified signals. Thus, for each
timeline segment Ti, we will play a final signal, Si, that consists
of adding together all selected modified signals from that timeline
segment. For instance, let us assume that timeline segment Ti has
the overlapping signals s1, s2 and s3. We modify these original
signals with HRTFs such that when heard individually, the modi-
fied signals s′1, s′2 and s′3 are perceived from directions θ1, θ2 and
θ3. Hearing the three signals played simultaneously can give a
sense of immersion in which we hear the common music (present
in all three recordings) in the surrounding space and we hear the
specific individual noises or sounds (like clapping or voices) from
each recording as if coming from different directions. Figure 3
illustrates this example.

Figure 3: Signals s′1, s′2 and s′3 distributed spatially at directions
θ1, θ2 and θ3, respectively. (The users’ initial orientation is used
to define 0◦, which is the direction ahead of the user).

3. THE VIDEO PLAYER PROTOTYPE

In order to validate our UGC audio immersion technique, we de-
veloped a prototype that was used in the user tests. This prototype
includes an audio component and a video interface.

The prototype’s video component was developed with Unity
Game Engine. Audio spatialization was granted by Google’s Res-
onance Audio Software Development Kit which uses Sadie HRTF
library (University of York SADIE KU100 data set). In the current
context, the application was built for iOS devices and requires the
use of headphones for audio immersion.

3.1. The video component

The design of our graphical user interface was inspired on the
work proposed by Chen, who presented an image-based approach
to virtual environment navigation [9]. Chen presented two types
of video player: a panoramic and an object player. The first was
designed for looking around a space from the inside, while the sec-
ond was designed to view an object from the outside. Among other
features, the panoramic player allows the user to perform continu-
ous panning in the vertical and horizontal directions.

Since, the current state-of-the-art in multimedia content cre-
ation by users is from planar smartphone cameras, we developed a
graphical user interface that has similarities to the one proposed by
Chen. Our user interface does not show the video completely (fig-
ure 4). Instead, as shown in the figure, there is a visible region that
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(a) (b)

Figure 4: The image display process. The white region is visible,
while the dark region is not visible. The user can slide the white
rectangle to the dark regions so that the visible region changes. (a)
The visible region is in the center of the original video. (b) The
visible region changes when the user slides it.

the users can pan continuously through the entire video region (i.e.,
navigation in horizontal, vertical and diagonal). To implement this
visible region we used Unity’s orthographic camera projection.

We developed two different approaches for user interaction
with the application:

• In the touch screen approach, the interaction is processed
using the device’s touch screen. Users can navigate through
the video making use of the device’s touch screen to move
the visible region around (figure 5.a). For instance, a sliding
movement towards the left makes the visible region move
to the right.

• The gyroscope approach uses the device’s gyroscope. Here,
users can interact and move the visible region using the gy-
roscope (figure 5.b). Moving the screen towards the right
makes the visible region move to the right. Moving the
screen upwards, makes the visible region move upwards.

3.2. The audio component

While developing our prototype, we focused our attention espe-
cially in the audio immersion box from figure 1 and the interaction
between the video and audio components. The audio recordings
used in the prototype were manually selected and synchronized.

As explained above, we use HRTFs to spatialize the original
signals sj , such that each modified signal s′j is located at a specific
direction in space (θj) and the final sound Si for each timeline seg-
ment is the combination of the modified signals s′j . Sliding the vis-
ible region into a certain direction, produces changes in each signal
sj , and, as a consequence, the combined signal Si also changes.

There are two parameters that change for each signal: the in-
tensity and the relative angle to the user. Sliding the visible region
into a certain direction, is mapped into head rotations. In other
words, when the user slides the visible region (figure 4), the direc-
tion of each signal sj relative to the user changes. This way, when
hearing the sounds, the users will perceive changes in the sounds
that cause the sensation of having performed head rotations. The
changes can be in azimuth and elevation. For instance, when the
user moves the visible region to the right, the samples sj suffer a
rotation to the left, as if the user had rotated his/her head clockwise
(a change in the azimuth). When the user moves the visible region
up, the samples sj suffer a downward rotation in elevation.

(a)

(b)

Figure 5: The graphical user interface. Navigation in the video us-
ing (a) the touch screen approach, and (b) the gyroscope approach.

Let us define ~d as the vector that represents the sliding move-
ment in a 2D space whose x and y-axes are parallel to the screen
edges. ~d defines the movement direction and displacement. Let ~dx
be the projection of ~d into the x-axis, and ~dy be the projection of
~d into the y-axis. For each signal sj , the rotation in the azimuth is
given as a function of ~dx and the change in elevation is given as a
function of ~dy .

The intensity of the signals may also change. We increase
the intensity of sounds whose directions θj are approximate to the
users final orientation, and decrease the intensity of other sounds.
Sound intensity changes are described by a linear function of the
relative angle to the users’ orientation.

4. USER TESTS

In order to evaluate the proposed technique, we run a user test to
evaluate spatial sound quality. Pulkki et al. propose that spatial
sound quality evaluation should consider the evaluation of envel-
opment, naturalness, sense of space, directional quality and tim-
bre [10]. Among the presented group of attributes, the ones of
interest to our study are directional quality and sense of space.
In addition, we introduced the immersion factor to be tested.

There were 15 volunteers participating in the study (10 men
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on

Figure 6: Global timeline of audio and video (developer’s view). The green bar for the professional recording (i.e., sample 1) is at the
bottom of the image. The UGC recordings are displayed with their respective sample name and length, and starting at their start time ti.
The user’s view is presented at the top right corner.

and 5 women) with ages ranging from 19 to 26 years old and all
university students. Four of these participants had musical train-
ing (either by actively playing an instrument or attending music
classes). Only one participant declared having hearing problems
and one had a temporary hearing condition. The remaining partic-
ipants asserted having no hearing problems that could affect their
participation.

The user test consisted of five related tasks. For the first four
tasks users used a computer while for the last one they used a
tablet. The volunteers wore headphones for all tasks and received
written instructions and a demonstration for every task. Addition-
ally, at the end of each task, the volunteers were provided with a
form in which they were queried about each task. All volunteers
were attributed with a numeric reference in order to guarantee data
protection.

4.1. Data

The three first tasks tested directional audio quality and used mu-
sical instrument sounds generated with iPad’s GarageBand appli-
cation and spatialized according to the technique described in sec-
tion 2.3. These consisted of:

• A sequence of three sustained piano notes (C, E, G, in the
presented order).

• A sequence of three guitar notes (C, G, F, in the presented
order).

• A sequence of drum notes from three cymbals (snare, tom
high and tom low, at no specific order).

The remaining tasks used recordings from music concerts that
were extracted from Mordido’s data set [7]. These recordings pro-
vide different components under different conditions (e.g., users
recording part of a concert in distinct places at different angles to
the stage). Our data includes recordings from two events: two mu-
sics, each from a different concert. The first music chosen was a
cover performed by Panic at the Disco! band of the popular Queen
music Bohemian Rhapsody performed at the 2015 Reading Festi-
val. For the second music we chose a live performance of Sing, by
Ed Sheeran at the 2014 Glastonbury Festival. For each event, the
data set includes a professional recording of the music and two to
four user recordings of that music in the same concert.

The professional recordings have higher sound quality and less
noise than the remaining samples in the data set. In this group of
samples, it is possible to hear the audience singing along, cheering
and clapping. Task 4 used the Queen’s concert samples, and task
5 used both concerts.

The defined data set is used to produce immersive sound. Pro-
fessional recordings are combined with UGC using the techniques
and timeline explained above. For each event (that is, for each
concert), we spatialize the original sound signals such that each
modified signal (s′j) is assigned a different direction (θj): (1) The
professional recordings are always assigned the same direction:
0◦. This direction is determined by the user’s initial orientation.
(2) The remaining recordings are placed in lateral or rear-user an-
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Figure 7: The audio sources’ directions used in the user test’s tasks
1 to 3.

gles.
For each event’s timeline, the professional recording, s1, starts

at t1 = 0 seconds while the start time for each remaining sample
si is ti > 0 seconds. Hence, every selected user recording si,
for i > 1, is present in the timeline with ti > 0 seconds. Figure 6
illustrates an example. This shows the protocol’s developer’s view,
which shows the timeline (bottom blue and green bars).

4.2. Tasks

Task 1 to 3 were used as training tasks but we also used them to
assess the proposed technique’s audio directional quality. In these
tasks, participants train their sound localization ability for the next
tasks (task 4 and 5).

Tasks 1, 2 and 3 consist of the reproduction of one, two and
three audio sources simultaneously. The first task uses the piano
sequence, task 2 uses the piano and guitar sequences and task 3
uses the three instruments sequences (section 4.1). The notes se-
quences are played several times (16, 9 and 6 times in task 1, 2
and 3, respectively). The directions of the instruments changed
randomly. The possible directions are indicated in figure 7.

For every sequence reproduction, the volunteers were asked
to register the perceived direction using the numbers provided in
figure 7. The volunteers were asked to picture themselves in the
center of the referential, with the circle numbered as 1 exactly in
front of them, the circle numbered as 3 exactly at their right, etc. In
order to better determine the direction of the sequences, the volun-
teers can simulate head rotations using the mouse and are provided
with a button that allows them to return to the original orientation.

These three tasks focused mainly on identifying the audio source
locations, in order to test directional audio quality. Therefore, the
visual component of those tasks was ignored to keep them simple
and have the user focusing on the audio. On the contrary, the fourth
and fifth tasks consider both the visual and audio components in
the context of the real application’s goal.

The main goal of task 4 was to test all parameters simultane-
ously (i.e., directional quality, sense of space and immersion). In
this task, the video player (user’s view in figure 6) displayed a con-
cert video with a professional and two UGC recordings with some

Figure 8: Clock system for audio source location.

Figure 9: Timeline of the audio and video used for the task 4.
The blue bar aggregated to video screen shots represent the video.
The green bar immediately below the blue bar is the professional
recording. Both smaller green bars at the bottom are the UGC
recordings.

overlapping and some non-overlapping regions. A clock system
was used for sound source location as presented in figure 8. 12
o’clock represents 0◦ as in figure 3.

The professional recording was located at 12 o’clock, while
the UGC recordings were placed at 8 o’clock and at 6 o’clock, by
order of appearance respectively. Figure 9 displays the timeline for
this task. The recordings in task 4 were played from static different
directions. That is, the directions of the three recordings did not
change during this task.

In task 5 the directions of the sounds were not static. This task
tested if the users perceive a sense of space and directional audio
when the directions of the sounds change dynamically.

In this task, participants used the two approaches developed
for the video component (section 3.1) in an iPad.

5. RESULTS

In the first three tasks,we used the following classification scheme,
where from error type 1 to 4 the test subject failed to identify the
audio source location:
– Error 0 – the test subject identified successfully the audio source
location;
– Error type 1 – the answer provided was the location at 45 ◦from
the correct audio source location;
– Error type 2 – the answer provided was the location at 90 ◦from
the correct audio source location;
– Error type 3 – the answer provided was the location at 135 ◦from
the correct audio source location;
– Error type 4 – the test subject answered the location in the oppo-
site location (i.e., at 180 ◦).

Figures 10, 11 and 12 present the results of tasks 1, 2 and 3,
respectively. All audio sources for all tasks exceeded more than
70% of right answers, which shows the directional quality of the
spacialized sounds obtained with our technique.

The results of task 4 show that the sounds combined and spa-
tialized by our technique give a sense of space and of directional
audio. Users perceive that recordings played simultaneously (i.e.
overlapping recording in the same timeline segment) have differ-
ent directions. As mentioned above (section 4.2) this task used a
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Figure 10: One audio source error distribution.

Figure 11: Two audio source error distribution.

Figure 12: Three audio source error distribution.

Figure 13: Immersion perception level in task 4.

Figure 14: Azimuth perception level with the touch screen ap-
proach (approach 1, in blue) and with the gyroscope approach (ap-
proach 2, in orange).

Figure 15: Elevation perception level with the touch screen ap-
proach (approach 1, in blue) and with the gyroscope approach (ap-
proach 2, in orange).
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professional recording, s1, located at 12 o’clock, one UGC record-
ing, s2, at 8 o’clock and another, s3, at 6 o’clock. 93.3% of the
subjects localized s1 correctly, and 73.3% localized s3 correctly.
Only one subject identified the audio source at 8 o’clock correctly
but 66.7% of the participants chose the 9 o’clock direction, show-
ing that the perception of the direction of s2 was close to the real
one (and within the 30◦ localization precision of humans [11]).

The results from task 4 also show that the technique provides
the sense of immersion. Subjects were asked to classify the level
of audio immersion they felt while performing this task. A 5-point
Likert scale was used, where 1 was the experience was not im-
mersive and 5 was the experience was strongly immersive. The
results are shown in figure 13. While only 20% of the subjects
chose answer 5, 60% of them chose answer 4 (the experience was
very immersive), which results in 80% of the subjects judging the
experience as very or strongly immersive.

For task 5, users were asked if they perceived direction vari-
ations when moving the visible region (figure 4) horizontally and
vertically. A 5-point Likert scale was used, where 1 was no varia-
tion perceived and 5 was strong direction variation perceived. The
results are shown in figures 14 and 15.

Figure 14 shows that most users perceive variations in azimuth
very easily. On the other hand, figure 15 shows that most users did
not perceive variations in elevation. This task shows that users can
identify variations in azimuth when the directions of the sounds
change dynamically, which indicates that the sense of space and
directional audio is not lost with dynamic direction changes. On
the other hand, variations in elevation remained unnoticed. This
was an expected result as humans do not perceive elevation eas-
ily. Since the results for the azimuth depend on the interaction
approach (touch screen vs gyroscope), this task also show that the
sense of directional audio is dependent on the type of user interac-
tion with the application.

6. CONCLUSIONS

While the industry has been developing domestic solutions on user
immersion that have a particular focus on the visual component,
here we focus on audio immersion. We propose a technique that
combines user-generated content (and possibly professional record-
ings) of the same event, to create a final spatialized immersive au-
dio signal that can be combined with video in an interactive tool.
The proposed technique spatializes the individual user recordings
usings HRTFs, and organizes and synchronizes them with an audio
fingerprinting based technique.

We run a user test that showed that the combination of the
different recordings from the same event with the proposed tech-
nique, where each recording has its own individual characteristics
and quality, provides a sense of immersion that the user can experi-
ence when listening to the recordings through headphones. The re-
sults also show that the proposed technique gives a sense of space
and directional audio for azimuth direction changes. Nonetheless,
the sense of directional audio is dependent on the type of user in-
teraction with the application.

The current version of the prototype lacks HRTFs individual-
ization. Since different people have different pinnae, the HRTFs
set used in our prototype does not adapt equally to all people. As
future work, we can extend the prototype to use more HRTFs sets
such that it will be possible to choose the HRTF functions that best
adapted to each listener, in order to produce more individual and
personalized results that best fit the listener.
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ABSTRACT 

Automatic music transcription (AMT) is the process of convert-
ing the original music signal into the digital music symbol. The 
MIDI Aligned Piano Sounds (MAPS) dataset was established in 
2010 and is the most used benchmark dataset for automatic pi-
ano music transcription. In this paper, error screening is carried 
out through algorithm strategy, and three data annotation prob-
lems are found in ENSTDkCl, which is a subset of MAPS, usu-
ally used for algorithm evaluation: (1) there are 342 deviation 
errors of midi annotation; (2) there are 803 unplayed note errors; 
(3) there are 1613 slow starting process errors. After algorithm 
correction and manual confirmation, the corrected dataset is 
released. Finally, the better-performing Google model and our 
model are evaluated on the corrected dataset. The F values are 
85.94% and 85.82%, respectively, and it is correspondingly im-
proved compared with the original dataset, which proves that 
the correction of the dataset is meaningful. 

1. INTRODUCTION 

Automatic music transcription (AMT) is the process of convert-
ing acoustic music signals into digital music symbols, which is 
a challenging task in the field of music signal processing and 
music information retrieval (MIR) [1]. It consists of several 
subtasks, including multi-pitch estimation, onset offset detec-
tion [2], instrument recognition, beat and rhythm tracking [3]. 
Automatic music transcription systems can be used in music 
education, music creation, music production [4], music search 
[5] and so on. At present, AMT is still considered to be a chal-
lenging and open problem, especially for automatic piano music 
transcription [6]. The overlapping of sound events at the same 
time often shows harmonic overlap [7], which makes the identi-
fication task more difficult. 

MIDI Aligned Piano Sounds (MAPS) [8] dataset was estab-
lished in 2010 and is the most widely used benchmark dataset 
for piano transcription. MAPS dataset contains about 31GB of 
audio recordings. There are 9 types of audio recordings corre-
sponding to different piano types and recording conditions, 
among which 7 types of audio are produced by software piano 
synthesizers, and 2 subsets ENSTDkAm and ENSTDkCl are 
recorded by an upright Disklavier piano. In general, ENSTDkCl 

in MAPS Disklavier dataset is adopted to evaluate. Since the 
MAPS dataset was established, only Ycart [9] updated it and 
added rhythm and key information in the annotation. 

With the research on the AMT system, some researchers 
found that there were some problems in the MAPS Disklavier 
dataset for evaluation. Ewert [10] found in his study of studio 
piano transcription that in MAPS Disklavier dataset some midi-
based annotation deviation exceeded the order of magnitude 
described in the document. Therefore, he used the greater tem-
poral tolerance which might provide a more realistic impression 
of the transcription performance. Li [11] found several issues 
with the MAPS Disklavier dataset, including annotation devia-
tions, omitted notes and recordings consisting entirely of per-
cussive keybed and pedal noises. Hawthorne [12] suggested that 
some of the low-velocity notes in the annotations were not 
played during the Yamaha piano playing. 

The development of machine learning has led many scholars 
to apply it to the piano transcription system. In [13]-[14], the 
authors demonstrated the potential of a single CNN-based 
acoustic model and an RNN model for polyphonic piano music 
transcription. The model proposed by Hawthorne [12], which 
we called the Google model, was a new method to predict the 
pitch using CNN and LSTM, and achieved the best system per-
formance in 2018. We also designed a CNN-based model for 
piano transcription [15]. The model consisted of two networks, 
and an onset-event detector was used to align the pitch onset to 
a more accurate position. In the end, our model achieved an F1-
measure score of 85.15% on the MAPS ENSTDkCl dataset, 
which is better than Google's system performance. 

Data plays an important role in machine learning methods. 
After analyzing the results of errors in the ENSTDkCl set eval-
uation, we find that some errors are caused by the dataset itself 
instead of model identification. We believe that it is necessary 
to modify the dataset rather than directly modifying the criteria 
of the evaluation to a broader range. We use the algorithm pre-
selection and manual check to correct the dataset. There are the 
deviation of midi annotation errors, unplayed note errors and 
slow start process errors in the data error, whose number is 342, 
803 and 1613. The two models are evaluated using the modified 
dataset, with F1-measure scores 85.94% and 85.82%, respec-
tively, and the modified dataset reflected the performance of the 
transcription system more accurately. In addition, applying 

Copyright: © 2019 by the Authors.  This is an open-access article distributed under 
the terms of the Creative Commons Attribution 3.0 Unported License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the origi-
nal author and source are credited. 
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these modified true piano data to the training process may help 
the network to learn the characteristics of true piano playing 
better.  

2. THE ANALYSIS OF ERROR 

The MAPS dataset includes midi files, txt files, and correspond-
ing audio files. The txt file contains information in the midi, 
including the onset time, offset time and pitch. We analyze the 
data and find that the data set itself contains three problems: 
deviation errors of midi annotation, unplayed note errors and 
slow start process errors. 

2.1. Method of analysis 

We analyze the data of the ENSTDkCl set. Direct data analysis 
is a huge task, so we use the Google model [12] and our model 
[15] for transcription in the current research. We analyze the 
data based on the common error results of the two models. 
Common errors in the transcription of the two models include 
missed detection and surplus detection. According to the gen-
eral evaluation criteria, the missed detection does not detect the 
corresponding pitch onset event within ±50 ms of the corre-
sponding time of midi, and the surplus detection is that there is 
no matching midi annotation within ±50ms of the pitch onset 
event. There are few errors in surplus inspections and most of 
them are detection errors of the model. Therefore, the results of 
the missed detection are analyzed to observe the data problem. 

2.2. Reasonable midi annotation 

To analyze the data, we first describe the general performance 
of the note onset. The data of the MAPS subset  ENSTDkCl is 
generated in the real environment. When there is a pitch onset 
event in the midi, the corresponding piano key that is tapped 
will generate energy, and the amplitude of the frequency corre-
sponding to the pitch rises. Except the partial bass, the funda-
mental and second harmonics of the tone contain most of the 
energy produced by the tap [16]. So we use the fundamental and 
second harmonics in the figure to show the onset. The spectral 
transformation of the audio is more conducive to the presenta-
tion of its sound characteristics, so this analysis uses the CQT 
spectral transform.  

As shown in Fig. 1 is a pitch onset event, Fig 1.a is a three-
dimensional spectrogram, where the three axes are the time, fre-
quency and amplitude of the CQT transform. The height and 
color represent the amplitude at the same time. The larger the 
amplitude, the closer the color is to yellow and the higher the 
height. The white dashed line represents the same time t1, and 
the white curve represents the case where the center frequency 
corresponding to the pitch changes with time. The red box in 
Fig 1.b represents the time and fundamental frequency range 
corresponding to the note event, and the blue box represents the 
frequency multiplication range of the pitch event. The abscissa 
is time, the ordinate is frequency, and the color depth indicates 
the magnitude of the corresponding time and frequency. The 
greater the degree of black, the larger the amplitude. The red 
curve in the lower of Fig 1.c shows the center frequency com-
ponent of the fundamental frequency range, and the blue curve 
shows the center frequency component of the second harmonics. 
The three figures represent the same pitch event from different 
angles. In Fig 1.a, the midi is marked with time t1=177.574s, 
and the frequency amplitude of the pitch F5 has a large rise. 
From the Fig 1.b and the Fig 1.c, the fundamental frequency                              

 

Figure 1: The spectrum of reasonable midi annotation. 
(a) is a three-dimensional spectrogram, (b) is the col-
ormap of spectrum, and (c) are the center frequency 
components of the fundamental frequency and second 
harmonics. 

amplitude rises rapidly to 1.5 at t1, and the second harmonics 
also increases correspondingly. Therefore, when a pitch onset 
event occurs, the amplitude of the base frequency corresponding 
to the pitch will increase, and the amplitude of second harmon-
ics will also have a certain upward trend.  

2.3. The deviation error in midi 

The MAPS subset ENSTDkCl is automatically played by the 
piano based on the information in midi, but we found that there 
is a case where the playing time in the audio is shifted from the 
midi annotation by more than 50 ms. The two time points have 
obvious inconsistency. This deviation in the midi annotation 
can lead to inaccurate final evaluation results. 

As shown in Fig. 2 is a fragment of MAPS_MUS-schuim-
1_ENSTDkCl, In Fig 2.a, t1 is the starting time of the midi 
pitch E4, 112.389s, and the time represented by t2 is 112.489s; 
in Fig 2.b the red box indicates the time and the fundamental 
frequency range of the corresponding pitch E4 in the midi; and 
the c is the curve of the two center frequencies corresponding to 
the pitch E4 with time. Fig 2.a shows that there is no amplitude 
increase at t1 and the frequency amplitude rises at t2. We think 
that t2 should be the onset time of this pitch event according to 
the general representation of onset event. Fig 2.b shows that all 
frequencies in the fundamental frequency range have no pitch 
starting characteristics at time t1. Observing the Fig 2.c, there is 
certain deviation between t1 and t2, and the distance between 
them is 0.1s. Therefore, we think that this is a deviation error in 
midi annotation. 
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Figure 2: The spectrum of the deviation error in midi. (a) 
is a three-dimensional spectrogram, (b) is the colormap 
of spectrum, and (c) are the center frequency compo-
nents of the fundamental frequency and second har-
monics. 

2.4. The unplayed note error 

When there is a note onset in the midi, the amplitude rises cor-
responding to the pitch frequency. It is not normal that there is a 
note onset event in midi but the frequency is degraded or absent 
in the spectrum. We believe that this is the case when the note is 
not played on the piano, and then we describe it with data. 

In the first case, the note is not heard in the audio at the start 
time of the midi. By observing the frequency spectrum, it is 
found that the frequency component of the corresponding pitch 
at the labeling time is very small, which is the same as the noise 
level, so we consider that the pitch is not played. 

As shown in the Fig. 3, it is a fragment of the MAPS_MUS-
schuim-1_ENSTDkCl, the dotted line shown in Fig 3.a repre-
sents the midi annotation time t1, and its time is 123.001s. The 
white curve represents the change of the amplitude (311.13Hz) 
of the fundamental central frequency of pitch D#4 over time. In 
the Fig 3.b, the fundamental frequency and the second harmon-
ics of the pitch D#4 are small and have no upward trend during 
the marked time period. It can be seen from Fig 3.c that the cen-
ter frequency of the two frequency ranges are both below 0.1. 
This is not the performance of normal playing, so we think that 
the piano does not play D#4 at t1. 

The second case is that the beginning of the same pitch 
marked at two very close times can only be heard once in the 
audio, so we don't think there is a new play in one of the labels. 
By analysing the spectrum, we find that this situation has a spe-
cific performance. 

As shown in the Fig. 4, it is the track MAPS_MUS-
mz_570_1_ENSTDkCl, t1 is the midi annotation time 436.823s, 

 

Figure 3: The spectrum of unplayed note error which is 
a White Noise. (a) is a three-dimensional spectrogram, 
(b) is the colormap of spectrum, and (c) are the center 
frequency components of the fundamental frequency 
and second harmonics. 

t2 is 436.920s, the white curve represents the curve of the center 
frequency component (466.16 Hz) of the pitch A#4, and Fig 4.b 
shows the spectral characteristics of the fundamental frequency 
and the frequency doubling corresponding to the pitch A#4, and 
two marked points are observed from the Fig 4.c. The character-
istic is that compared with t1, the fundamental frequency center 
component of the pitch A#4 of t2 shows a downward trend, and 
there is no frequency rising process like the normal playing on-
set. We didn't hear the two playing while listening to the audio, 
so we thought that the piano did not play the pitch A#4 at t2. 

2.5. Slow start process error 

As a percussion instrument, when the piano key is pressed, 
there will be a process in which the frequency component of the 
key rises. When analysing the data, we find a pitch onset event, 
whose frequency component rises lasts longer than 100ms. This 
is not a common performance in piano playing, and the label-
ling itself is difficult to unify, which is a huge challenge for the 
recognition task. 

As shown in the Fig. 5, the track MAPS_MUS-
pathetique_1_ENSTDkCl, in Fig 5.a, the white curve is the 
change of the fundamental frequency of the pitch G4 with time, 
and the corresponding midi labeling time t1 is 292.26 s. It can 
be seen from the figure that this frequency component rises con-
tinuously. It can be seen from the Fig 5.c that the amplitude has 
been rising in the range of 292.15s-292.3s, and the rising pro-
cess lasts for 150ms. The change process is long, which is diffi-
cult to accurately identify in specific tasks.  
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Figure 4: The spectrum of unplayed note error whose 
frequency declines. (a) is a three-dimensional spectro-
gram, (b) is the colormap of spectrum, and (c) are the 
center frequency components of the fundamental fre-
quency and second harmonics. 

3. JUDGEMENT AND CORRECTION METHOD 

Based on the analysis in above chapter, we make the quantify 
judgment of three kinds of notes, there are 342 deviation errors, 
803 unplayed note errors and 1613 slow starting process errors. 
We list these notes in Cl-correction-v1.0, the numbers of each 
kind of notes are listed in Table.1. The complete files are pub-
lished on https://github.com/itec-hust/MAPS_ENSTDkCl-
Dataset-Correction-v1.0. 

3.1. Deviated notes correction methods 

After data viewing and analysis, we find that deviated note 
whose label (t1) and true playing time (t2) have spacing over 
50ms contain two features. Firstly, the time of spectrum’s fast-
est growth spaces over 50ms from t1, and there is no obvious 
growth in t1-50ms to t1+50ms. At t2, the spectrum of the notes 
grows at a very fast rate. Secondly, the evaluation will change if 
we increase the evaluation tolerance. When the model detection 
result is consistent with t2, when we set the evaluation tolerance 
result as 50ms, the note is judged as multiple detection at t2 and 
miss detection t1. However, if we set the evaluation tolerance 
result as 150ms, the note will be judged as correct detection at 
t2. 

Based on the first feature, we quantify the certain frequen-
cy component rising ratio of time point i as St[i], which repre- 

 

Figure 5: The spectrum of slow start process error. (a) 
is a three-dimensional spectrogram, (b) is the colormap 
of spectrum, and (c) are the center frequency compo-
nents of the fundamental frequency and second har-
monics. 

sents the amplitude rising degree within 10ms around time point 
i. When the note event occurs, the corresponding frequency 
component will rise rapidly, therefore St[i] will be a large posi-
tive number; when the frequency component decreases, St[i] 
will be 0.  

According to the above analysis, we first extract the St[t1-
150ms:t1+150ms] sequence by extracting the fundamental fre-
quency component and the second harmonic component of all 
notes. 

Based on the second feature, we find out the corresponding 
notes in the Google model’s results and our model’s results, 
calculate the intersection of the two sets. After the spectrum 
comparison and listening test, we find that the following charac-
teristics exist: 

 
     (1) 

 
After statistical analysis, we set α as 4. When St sequence 

does not satisfy this condition, we believe that the detection er-
ror is due to slowly rising or some other reasons instead of de-
viated label. After the error is detected, we modify the onset 
time, select the two models at the detection start time of the 
same pitch event, average the two results as the modified onset, 
and the corrected end time as the corrected start time plus the 
duration of the note in the original midi. 

In the deviatedNote directory of Cl-correction-v1.0, we list 
all the label deviated notes, and the data is arranged in the fol-
lowing order: (t1, t2, pitch, t3, t4), where (t1, t2, pitch) is the 
original midi, (t3, t4) are the corrected onset and offset. 
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Table 1: Numbers of each kind of error notes in each song. 

Name deviated unplayed slow Name deviated unplayed slow 

alb_se2 0 0 11 mz_331_3 4 4 26 

bk_xmas1 3 170 63 mz_332_2 32 41 91 

bk_xmas4 2 45 16 mz_333_2 19 19 80 

bk_xmas5 1 25 34 mz_333_3 0 2 22 

bor_ps6 0 25 37 mz_545_3 1 1 26 

chpn-e01 0 0 1 mz_570_1 28 71 238 

chpn-p19 2 10 22 pathetique_1 7 25 87 

deb_clai 24 24 35 schu_143_3 40 41 125 

deb_menu 1 12 13 schuim-1 33 29 244 

grieg_butterfly 5 2 14 scn15_11 3 9 16 

liz_et6 1 6 25 scn15_12 12 15 33 

liz_et_trans5 20 41 78 scn16_3 17 21 43 

liz_rhap09 15 68 90 scn16_4 18 32 41 

mz_311_1 16 22 41 ty_maerz 13 17 15 

mz_331_2 20 18 32 ty_mai 5 8 14 

3.2. Unplayed notes judgement 

In the analysis in Section 2.3, it can be found that for unplayed 
note, the spectrum is completely degraded or basically white 
noise. Based on the first feature, we filter out all the notes 
whose spectrum is falling near the onset decision time, ie 
max(St[onset-50ms : onset+50ms])=0. We list them in set 1. 
Based on the second feature, the notes whose spectral compo-
nents are extremely small and randomly change might not be 
played in the audio. Therefore, we count the spectral compo-
nents of the quite period, and set the spectral median β as the 
threshold of the spectral component of the unplayed note, that 
means 

  50  :  50  max cqt onset ms onset ms      (2) 

We find all the notes corresponding to the second feature and 
list them in set 2. After the two sets are determined, we did lis-
tening test. In the unplayedNote directory of Cl-correction-v1.0, 
we list the notes that all tracks are not playing, and the data is 
arranged in the following order: (t1, t2, pitch), where (t1, t2, 
pitch) is the original midi. 

3.3. Slow start note judgement 

The slow-starting notes are characterized by a note that the du-
ration of the note volume from 0 to the final value is significant-
ly longer than other notes, and the spectrum rising process is 
slow and gentle. Therefore, we have filtered the spectrum 
growth value. When max(St)<γ and St[onset-50ms : on-
set+50ms]≥ max(St) * δ, it is defined as a slow start note. Dif-
ferent models may have different results on these notes, so we 
will list such detected notes, but do not make time correction or 
note existence judgement, the misjudgment of such notes may 
not be sufficient to indicate the validity of the research results. 
After the above judgment, we have screened a total of 155 slow-
starting notes. In the slowStartNotes directory of Cl-correction- 
v1.0, we list these notes, and the data is arranged in the follow-
ing order: (t1, t2, pitch), where (t1, t2, pitch) is the original midi. 

 

4. EXPERIMENT 

Based on the analysis in above chapter, we make the quantify 
judgment of three kinds of notes, and listing these notes in Cl-
correction-v1.0, the numbers of each kind of notes are listed in 
Table.1, Our correction methods are as follows. 

In order to verify the validity of the label correction, we 
compare the model evaluation results of the original dataset and 
the corrected dataset. If the corrected label is not detected as an 
error in the evaluation, and the unplayed notes are not judged to 
be missing, then this correction is worthwhile. In the corrected 
dataset, we modified the annotation of the note with the deviat-
ed label, deleted the unplayed notes, the data format is con-
sistent with the original label. The corrected dataset is published 
in the correct_dataset directory of Cl-correction-v1.0, and the 
slow-start notes are listed in the slowStartNote directory. 

The mir_eval library [17] is used to calculate the accuracy, 
recall, and F1 values that are widely used for AMT evaluation. 
The metrics are defined as follows: 

TP

TP FP

N
P

N N


     (3) 

TP

TP FN

N
R

N N


    (4) 

2* *
1

P R
F

P R


    (5) 

In Equation3, 4 and 5, P is precision, R is recall and F1 is 
the f1-measure which is a comprehensive score that considers 
the precision and recall. And TPN  is the number of true posi-

tives, FPN  is the number of false positives and  is the num-
ber of false negatives. During the evaluation process, we set the 
time tolerance to 50ms. 

 

FNN
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Table 2: Evaluation result of two models

  Result of Google model [12] Result of our model [15] 

  F P R F P R 

original dataset 84.34% 85.95% 83.05% 85.09% 87.8% 82.83% 

corrected dataset 85.94% 89.77% 82.73% 85.82% 88.5% 83.59% 

       
Based on the revised annotations, we performed the accura-

cy test as shown in Table 2. It can be found that the perfor-
mance of the two models has increased in the evaluation results 
of the revised data set. In the process of data error review, we 
find that most of the errors detected by the model are errors 
caused by generalization errors, and the number of common 
errors is also reduced, so we think this data correction is effec-
tive. 

5. SUMMARY AND FUTURE WORK 

In the field of AMT, dataset construction has always been a dif-
ficult problem. Synthetic audio can't completely replace the au-
dio of real piano performance. The authenticity of audio and the 
authenticity of labels cannot be well unified. Therefore, from 
the perspective of audio spectrum and human listening, we cor-
rected some unreasonable labels, including deviation labels and 
unplayed labels, and listed the slow-starting notes in the audio. 
Finally, the validity of the corrected dataset was verified in two 
different model evaluation. We published our result on the Cl-
correction-v1.0, providing a reference for the future work of 
subsequent researchers. In the future research, we will try to 
figure out the reasons why the spectrum will have slow rising of 
the slow-start notes, and summarize some other problems in the 
dataset. 
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ABSTRACT

Interactive music systems are dynamic real-time systems which
combine control and signal processing based on an audio graph.
They are often used on platforms where there are no reliable and
precise real-time guarantees. Here, we present a method of op-
timizing audio graphs and finding a compromise between audio
quality and gain in execution time by downsampling parts of the
graph. We present models of quality and execution time and we
evaluate the models and our optimization algorithm experimen-
tally.

1. INTRODUCTION

Interactive music systems (IMS) [1] are programmable systems
that combine audio signal processing with control in real-time. At
run time, during a concert, they process or synthesize audio sig-
nals in real-time, using various audio effects. For that purpose,
they periodically fill audio buffers and send them to the soundcard.
They also make it possible to control the sound processing tasks,
with aperiodic control (such as changes in a graphical interface)
or periodic control (for instance, with a low frequency oscillator).
Audio signals and controls are dealt with by an audio graph whose
nodes represent audio processing tasks (filters, oscillators, synthe-
sizers...) and edges represent dependencies between these audio
processing tasks.

Puredata [2] and Max/MSP [3] are examples of IMSs. They
graphically display the audio graph, but modifying it at run time
as a result of a computation can be complicated. Other IMSs, such
as ChucK [4] or SuperCollider [5] are textual programming lan-
guages. They are also more dynamic. In Antescofo [6], human
musicians and a computer can interact on stage during a concert,
using sophisticated synchronization strategies specified in an aug-
mented score, programmed with a dedicated language, that can
also specify dynamic audio graphs [7].

Real-time constraints for audio: Audio samples must be writ-
ten into the input buffer of the soundcard periodically. The buffer
size can range from 32 samples for dedicated audio workstations
to 2048 samples for some smartphones running Android, depend-
ing on the target latency and the resources of the host system. For
a samplerate of 44.1kHz, such as in a CD, and a buffer size of 64
samples, the audio period is 1.45ms. It means that the audio pro-
cessing tasks in the audio graph are not activated for each sample
but for a buffer of samples.

IMSs are not safety critical systems: a failure during a perfor-
mance is not life-critical, it will not generally result in damages or
Copyright: c© 2019 Pierre Donat-Bouillud et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

3.6353.6613.6863.7113.7373.7623.7873.8133.8383.864

100

101

102

103

time budget (ms)

Figure 1: Histogram of relative deadlines for the audio callback
on a MacBookPro with macOS. We execute a C++ test program
generating a sawtooth signal for 10 s. The time budgets range from
3.64ms to 3.89ms, i.e. a 254 µs jitter, with a mean of 3.78ms

injuries. However, audio real-time processing has strong real-time
constraints. Missing the deadline for an audio task, i.e. the time
allotted by the audio driver to fill its buffer, is immediately audible:

Buffer underflow The audio driver uses a circular buffer the size
of which is a multiple of the size of the soundcard buffer. If
the task misses a deadline, it does not fill the buffer quickly
enough. Depending on the implementation, previous buffers
will be replayed (gun machine effect) or silence will be
played, which entails cracks or clicks due to discontinuities
in the signal. A larger buffer decreases deadline misses but
increases latency.

Buffer overflow In some implementations, filling the buffer too
quickly can also lead to discontinuities in the audio signal,
if audio samples cannot be stored to be consumed later.

On the contrary, in video processing, missing a frame among 24
images per second1 does not entail a visible decrease in quality so
that lots of streaming protocols [8] accept to drop a frame. There-
fore, real-time audio constraints are more stringent than for video.
Yet, they have not been investigated as much as real-time video
processing.

Composers and musicians use IMS on mainstream operating
systems such as Windows, macOS or Linux, where a reliable and
tight estimation of the worst case execution time (WCET) is diffi-
cult to obtain, because of the complex hierarchy of caches of the

1Although missing a key frame in a compressed stream can be visible.
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Figure 2: Histogram of the execution time for the same code gen-
erating a saw signal for 10 s. Here, we show the execution time at
each cycle in the audio callback for generating a sawtooth signal
on a MacBookPro with macOS. The execution times range from
4.74 µs to 25.20 µs with an average of 9.17 µs. The standard devi-
ation is 1.59 µs.

processor, because there are usually no real-time scheduler or tem-
poral isolation among tasks, and because it is difficult to predict
which tasks will be executed at a given time. Mainstream operat-
ing systems2 are not real-time systems and do not offer any strong
guarantees on deadlines for audio processing (see Fig. 1) or on the
execution times (see Fig. 2). Applications that perform audio com-
putations have to compete for CPU and memory resources with
other applications during a typical execution. Those platforms are
also often on batteries and often change the frequency of the CPUs
in order to save energy, thus totally changing execution times. It
follows that we cannot assume that we know the WCET of tasks.
Furthermore, IMSs are more and more ported to embedded cards
such as Raspberry Pi and have to adapt to limited computation
resources on these platforms. On the other hand, composers and
sound designers create more and more complex musical pieces,
with lots of dynamically interconnected nodes, using a sampling
rate up to 96 kHz.

Hard real-time scheduling algorithms that depend on knowing
the WCET cannot be applied here, as in practice, IMSs are exe-
cuted on those operating systems without strong real-time guaran-
tees.

When real-time constraints are not critical, modifying the qual-
ity of service (QoS) by partially executing some tasks or even dis-
carding them is an option to consider. In the case of IMSs, tasks
are dependent, with dependencies defined with the edges of the
audio graph. The quality of a task is itself position-dependent: it
depends on the position of the audio processing task in a path go-
ing from an audio input to an audio output. It means we cannot
merely discard or degrade any task in the audio graph, to achieve
an optimal QoS adaptation.

To deal with these challenges, IMSs have rather chosen to
increase the available computation resources, in particular by in-
creasing the parallelism of the audio graphs in scores to take ad-
vantage of the multicore processors. For example, an alterna-

2There is an earliest deadline first scheduler [9] on Linux, but it’s typi-
cally not activated on mainstream distributions.

tive scheduler for SuperCollider, Supernova [10], can use several
cores to synthesize sounds. However, these new schedulers do
not automatically parallelize the audio graph but require explicit
instructions, such as ParGroup for SuperCollider, or poly for
Max/MSP, and so are difficult to program.

In this paper, we propose an alternative solution where we ex-
plore how an audio graph can be optimized by degrading audio
processing units without perceiving the degradations (or minimiz-
ing the degradation perception). The idea is to generate an equiv-
alent but degraded audio graph where the execution time of the
graph is decreased while decreasing the quality of the audio pro-
cessing tasks.

Because of the dependencies, we do not degrade only a single
task here, but we have to choose a whole set of dependent nodes in
an audio graph to degrade. We aim at finding paths to degrade in
the audio graph, where the quality of a task is position-dependent.
The nodes are seen as blackboxes and degradations are made by
resampling the signal flowing between nodes.

We describe a model of an audio graph based on the dataflow
paradigm [11] with models of execution time and quality. We
present an offline algorithm based on the models that explores ex-
haustively or randomly the possible degraded versions of an audio
graph with constraints on execution time and quality. Heuristics
help to select subpaths to degrade in the audio graph at execution
time. We evaluate our optimization strategy on three different sets
of audio graphs : an exhaustive enumeration of all possible graphs
with few nodes, a random sampling of graph with many nodes, and
graphs structurally generated from Puredata patches.

2. RELATED WORK

Degrading computations to achieve to respect some time criterion
has been dealt with in the approximate programming paradigm or
in real-time system theory, with mixed criticality.

Approximate computing [12] is a paradigm in which errors
are allowed in exchange of an improvement of performance. The
concept of correctness is relaxed to a correctness with a quanti-
tative error. In [13], a graph is used to represent a map-reduce
program, with map nodes which compute and reduce nodes which
aggregate data. Offline, they generate approximate versions of the
graph with a given precision. For that purpose, two kinds of trans-
formations are considered: substitution transformations and sam-
pling transformations, where the input is randomly downsampled.
However, this model is aimed at batch-processing, not real-time
audio graphs.

In multimedia systems, a basic strategy [14] related to mixed
criticality consists of dividing tasks between a mandatory and an
optional part, which can be discarded in case of overload of the
processor. Real-time scheduling with this strategy does not en-
tail too much overhead but does not handle dependencies between
tasks, in particular for quality estimation. Some mixed critical-
ity approaches address graph-based tasks for mixed-criticality sys-
tems, such as in [15]. However, the dependencies between tasks
are functional dependencies: all tasks in a graph have the same
criticity but it is possible to switch to other graphs with another
criticity. Criticity levels are not like qualities that would depend
on the topology of the graph.
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3. MODEL OF AN AUDIO GRAPH

3.1. Model of an audio graph

In an audio graph, audio streams flow between signal processing
nodes at various rates, depending on what the nodes require. The
dataflow model [11, 16] is well suited to describe these kinds of
dependent tasks. In the usual dataflow model, no time information
is provided, so we enrich this dynamic dataflow model with tem-
poral information, such as start times or average execution times
(ACET), as in the Time-Triggered Dataflow mode [17]. We also
define a quality measure on the graph.

3.2. Dataflow model

The dataflow model is data-oriented: when there are enough data,
seen as a sequence of tokens, on a node, the node is fired, con-
sequently, yielding some tokens. More formally, we use the port
graph formalism, as in [18]. A dataflow quadruplet G = (V, P,E, µ)
where the vertices in V , represent the signal processing nodes and
are pairs (I,O) with I ⊂ P and O ⊂ P , the input and output
ports. The edges in E ⊂ P × P represent the data flowing be-
tween vertices and connect an output ports of a vertice to an input
port of another vertice. We note p1 → p2 the edge between ports
p1 and p2; v1 → v2 would denote any edge v1.p → v2.p

′ be-
tween v1 and v2. We note v.p the port p of vertice v. The function
µ : P → N maps a port to the number of audio samples it con-
sumes or produces.

Distinguished nodes The nodes without input ports are called
inputs or sources. They are typically audio stream generators. The
nodes without output ports are the outputs or sinks, as shown in
Fig. 3. They are audio sinks to the soundcard for instance. Nodes
that are neither inputs nor outputs are called effects.

v1

v2

v3
1 2

1

1 2

1

Figure 3: A simple synchronous dataflow graph with three nodes
v1, v2 and v3 with only one input port and one output port for each
of them. Data flows from v1 to v3, from v1 to v2 and from v2 to
v3. v1 yields 1 token per firing, and v3 requires 2 tokens to be
fired. v1 is a source node, v3 a sink node.

3.3. Timed dataflow

A dataflow graph only describes the partial ordering of the firing
of its nodes, but not their firing time instants. However, dataflow
graphs are often used to describe real-time processing, including
audio signal real-time processing. In the following, input nodes are
given firing dates and output nodes, deadlines. Any node v gets an
average case execution time (ACET), Av and a worst case execu-
tion time (WCET), Wv . Although we will evaluate the model with
the ACET, we could also evaluate with the WCET if we had an
accurate WCET. We will note Tv the execution time of a node. We
also assume that the graph is acyclic.

The audio processing nodes are periodic and we note s1v . . . snv
with siv < si+1

v the firing times of node v, where si+1
v − siv =

s2v − s1v = Tv with Tv the period of node v. The samplerate fpv
on a port pv of node v is µ(pv)

Tv
.

Execution time of a path On a path π = v1 → . . . vn,
the mean execution time (resp. worst case) is

∑n
i=1 Avi (resp.∑n

i=1 Wvi ).
Execution time of the whole graph For the whole graph G,

on a parallel system with enough resources, the execution time is
the largest execution time of a path between inputs and outputs, i.e.
for the ACET, AG = maxπ∈Path{Aπ}. For instance, for Fig. 3:

AG = max{Av1→v3 , Av1→v2→v3}

In a sequential execution mode (for instance on an uniprocessor),
it is the sum of the execution times of all the nodes:

AG =
∑
v∈G

Av (1)

Estimating Av We measure the average execution time Av of
all the possible nodes that can be part of the audio graph. We do not
care about the exact execution time, but rather of an ordering on
the execution times between various versions of an audio graph.
In addition, the execution time increases monotonically with the
buffer input sizes. Thus, we only measure the average execution
of a given buffer size. However, some nodes can have a variable
number of inputs and outputs, such as for a mixer node. We do
not want to measure all possible combinations of inputs and out-
puts. Experimentally, we find that the average case execution time
Amixer(ninputs, noutputs) of a mixer with ninputs and noutputs is given
by:

Amixer(ninputs, noutputs) = ninputs × (Amixer(2, 1)−Amixer(1, 1))︸ ︷︷ ︸
cost of adding

+ noutputs × (Amixer(1, 2)−Amixer(1, 1))︸ ︷︷ ︸
cost of copying one buffer

(2)

3.4. Quality

The quality of the audio graph is a subjective matter, and relates
to psychoacoustics. It depends on the semantics of the nodes. We
aim at designing an a priori quality measure based on parameters
of the audio effects, which is more practical to compute in real-
time than analysing the audio signal.

The quality measure should be compositional, i.e. the quality
of the graph qG ∈ [0, 1] must be a function of the quality of its
nodes and edges. The worst quality is 0 and the best quality is 1.
For each node v, we also note qv ∈ [0, 1] its quality.

We define the quality qv1→···→vn on a path v1 → · · · → vn
as qv1 ⊗· · ·⊗qvn for an operator ⊗ with the following properties:

Associativity qv1 ⊗ (qv2 ⊗ qv3) = (qv1 ⊗ qv2)⊗ qv3

Decreasing qv ⊗ qv′ ≤ qv′ It means that quality never increases
on the path, as the information lost by degrading cannot be
rebuilt.

Identity element There is an identity element 1⊗ such that 1⊗ ⊗
v = v ⊗ 1⊗ = v. Such an element is the quality which
preserves for the output the quality of its input.
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An obvious choice for an operator fulfilling these desired proper-
ties is multiplication on real numbers. For v → v′:

qv→v′ = qv ⊗ qv′ = qv × qv′

On the path v1 → · · · → vn, thanks to associativity:

qv1→···→vn =
n∏

i=1

qvi (3)

We also define a join operator ⊕ that models the quality result-
ing from joining two paths, such as v1 → v3 and v1 → v2 → v3
on Fig. 3.

qG = qv1→v3 ⊕ qv1→v2→v3

= (qv1 ⊗ qv3)⊕ (qv1 ⊗ qv2 ⊗ qv3)
(4)

In practice, we choose
⊕n

k=1 qk = 1
n

∑n
k=1 qk for n joining

paths for mixer-like nodes and ⊕ = min for the other nodes.

4. OPTIMIZATION BY RESAMPLING

We consider a method of degrading the quality which is agnos-
tic of the actual computation node semantics, as it operates on the
signal that flows in-between the nodes by resampling parts of the
audio graph. The rationale for resampling is based on the follow-
ing cognitive observations. Above some frequency threshold, no
quality improvement is perceived by human beings, according to
psychoacoustics studies [19]. Indeed, the human auditory system
cannot perceive frequency above 20 kHz. Shannon’s theorem im-
plies that the sampling rate must be at least double of the maximum
frequency, so about the sampling rate of audio CDs of 44.10 kHz.
However, oversampling makes it possible to better handle round-
ing errors in the signal processing and that is why we also consider
frequencies higher than 44.10 kHz.

4.1. Resampling a signal path

4.1.1. Inserting resampling nodes

In a dataflow graph, nodes are fed with samples. The premise here
is that a node which receives less samples will take less time to
be executed. Changing the number of samples per time unit is a
common operation in signal processing, called resampling: getting
less is downsampling, and more, upsampling. In order to resam-
ple, we insert resampling nodes in the graph. These nodes have
the same attributes and properties as other nodes: they can inter-
polate between samples, copy samples in audio buffers. They have
a quality measure and temporal characteristics such as a ACET or
WCET, so that we can take into account the overhead due to in-
serting those nodes. Every resampling node has one input port and
one output port.

When a downsampling node is inserted on a path, all the fol-
lowing nodes in the path operate on a downsampled signal. We
need to insert an upsampling node if there is a node on that path
that enforces a specific samplerate, typically, a sink to the sound-
card.

We consider a path π = v1 → · · · → vn where for a node
vk in path π, vk = ({pik,j}, {pok,j}) with pkij the input ports and
pkoj the output ports. Thus, the degraded path π′ is π′ = v1 →
v′1 → · · · → v′n → vn. We want to insert downsampling node v′1
just after v1 and an upsampling node v′n just before vn, as shown

v2

pi2

v1

po1

v2

pi2

v1

po1

v′1

p
′i
1

p
′o
1

Figure 4: Inserting a downsampling node v′1 between nodes v1 and
v2. v1 has an output port po1, v2 has an input port pi2 and v′1 has an
input port p

′i
1 and an output port p

′o
1 .

v

pi1 pi1

Figure 5: Node v is on path v1 → · · · → vn. The resampled signal
flows on this path through input port pi1 with resampling factor q.
Node v has another input port, pi2. The signal coming into this port
must also be resampled with resampling factor r.

in Fig. 4. The resampling factor of v′1 is r ∈ Q such that µ(p
′i
1 ) =

µ(po1) and µ(p
′o
1 ) = r × µ(p

′i
1 ) for all edges between, i.e. the

input of the resampling node is at the same rate at its incoming
node, and its output is at the new rate. We do it in the same way
when inserting an upsampler. For a downsampler, r ≤ 1, and for
an upsampler, r ≥ 1. For all k ∈ J2, n− 1K, the rates of all input
and output ports of node vk are multiplied by the resampling factor
r of v′1.

In case a node on the path has several input ports and that
one of them receives a resampled signal, we also have to resample
by the same resampling factor the other input ports, as shown in
Fig. 5, by inserting a resampling node connected to this input port.

Also, if an output port p of node v is connected to several
input ports p1, . . . , pn, it is more efficient to insert the resampler
and then a node with n outputs, instead of inserting a resampler on
each edge p → pk, as shown in Fig. 6.

4.1.2. Execution times

We assume that the computation nodes process all their incoming
samples and hence, that the complexity of their computations is
at least linear. So we can bound execution times of vk for k ∈
J2, n− 1K for a downsampler with resampling factor 1/t:

A′
vk ≤1

t
×Avk (5)

W ′
vk ≤1

t
×Wvk (6)

We can deduce a bound on the whole execution times of the de-
graded path π′:

A′
π ≤ Av1 +Av′

1
+

1

t
×

n−1∑
k=2

Avk +Av′
n
+Avn (7)

that is to say for the subpath:

A′
π ≤ Av1 +Av′

1
+

1

t
Av2→···→vn +Av′

n
+Avn (8)
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v

p

v′1

p1

v′2

p2

v′1

p3

v

p

v′

v′′

p′

p′1 p′2 p′3

p1 p2 p3

Figure 6: Node v has one output port, p, which is connected to
three input ports, p1, p2, p2. On the left, we insert a resampler on
each edge p → p1, p → p2, p → p3 whereas on the right, we
insert a node v′′ with one input port p′ and 3 outputs p′1, p

′
2, p

′
3,

and we insert the resampler v′ on edge p → p′.

Note that we take into account the execution times of the in-
serted nodes, so that the optimization is overhead-aware. For
small graphs with audio processing nodes with an execution time
in the same order of magnitude of the resamplers, the execution
time of a degraded graph can be actually larger than the non-
degraded one.

4.1.3. Quality

The a priori quality measure in the case of resampling is the sam-
plerate: the lower the sampling rate, the lower the quality. In the

case of path π, we have fv′
1
=

q×µ(p
′i
1 )

Tv′
1

. If audio is sent too late to

the output buffer, a click can be heard. We consider that it is worse
to hear a click because of missing the deadline of the audio driver
than to hear a resampled signal. A node that would entail always
missing deadlines is given the worst possible quality.The quality
qv of a downsampled node is such that qv < 1⊗. The quality of a
non-downsampled node is 1.

4.2. Degraded versions

Choosing the nodes to degrade in the audio graph is an optimisa-
tion problem under constraints. We can try to maximize the quality
of the audio graph given an execution time constraint (a deadline),
or minimize the execution time of the audio graph given a mini-
mum target quality.

Our system can enumerate all the possible degraded versions
of a graph, or a random sampling of the degraded versions, or
use heuristics to compute a useful subset that respects some con-
straints. The tool is an open source OCaml program3 that accepts
Puredata or MAX/MSP patches, or a custom format as input and
can output one optimized version or a set of optimized versions.

4.2.1. Exhaustively

Enumerating all the possible degraded versions of the audio graph
is enumerating all the possible subsets of nodes that can be de-
graded in the audio graph, i.e. all nodes except sources and sinks.

3https://github.com/programLyrique/ims-analysis

Then resamplers are inserted so that all the chosen nodes are de-
graded and the nodes stay isochronous, that is to say have the same
sample rate for all input ports and the same sample rate for output
ports.

The number of degraded versions is O(2n) where n is the
number of nodes in the graph and so is impractical when audio
graphs start to have a huge number of nodes. When n is large, we
randomly choose the possible degraded versions and make sure we
have the non-degraded graph and the fully-degraded graph4 in the
set.

4.2.2. Heuristics

The idea is to degrade nodes starting from the outputs, as inserting
a downsampling node near the end of the branch impact less nodes
than at the beginning.

We choose to have at most one resampled subpath per branch.
We also try to minimize the number of inserted nodes with respect
to the number of degraded nodes on the resampled subpath, in or-
der to minimize the overhead due to resampling nodes. For that,
we need to minimize the number of branches where we resample
and that is why we explore the graph branch per branch.

We can use this heuristics to find approximate solutions the
optimization problem of maximizing the quality with an execu-
tion time constraint. For that, we start from one of the output
nodes, and we traverse the graph backwards and see how inserting
a downsampling node on a path going to this output node would
change the estimated remaining execution time, until the estima-
tion of remaining execution time is lower than the remaining time
before the deadline. Other branches can be explored if it is not
enough. Then the downsampling and upsampling nodes are in-
serted on the paths chosen to be resampled.

5. EXPERIMENTAL EVALUATION

In order to evaluate our theoretical models, we need to instanti-
ate our models on a large number of graphs. However, there are
no reference benchmarks of audio graphs for IMS. We decided to
generate a huge number of graphs, compute the theoretical exe-
cution time (in Sect. 3.3) and quality (in Sect. 3.4) of each graph,
and then measure the execution time and a quality based on the
actual audio signal. We then compare the theoretical values and
the measured ones.

The resamplers in use for these experiments are the linear re-
samplers, and we only resample by 2.

Audio graph
generation

Audio graph
execution.
Measurements

Theoretical
quality and
exec time

Comparison

Figure 7: The experimental setup to evaluate the models of quality
and execution time.

4The audio graph where all the inner nodes are downsampled. It has
the worst possible quality and possibly the shortest execution time.
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5.1. Measuring execution time and quality

We developed a open source rust program5 that can execute the
audio graph, monitor execution times of the audio callback, and
output the resulting audio. The resampling is handled by libsam-
plerate,6. This is an opensource library that makes it possible to
downsample down to a 256 ratio, and to upsample up to a 256 ra-
tio. The sampling rate can be changed in real-time. The library
provides five resamplers, classified by decreasing order of quality:
best, medium, faster sync resamplers (as in [20]), zero order hold
resampler, and a linear resampler.

Measuring execution time We execute the audio graph for a
large number of cycles and drop the first cycles to take into account
processor cache warming.

Measuring quality We compare the audio signal of a degraded
graph and the one of the non-degraded graph. Given the spectrum
of each signal, we compute their constant-Q transform [21], as we
are interested in music signals. We then use a psychoacoustics
curve called A-weighting [22] to account for the limited hearing
range of human beings (up to 20 kHz). Finally, we compute the
distance between the two resulting spectra and normalize it so that
a distance of 0 is a quality of 1 and, of +∞, a quality of 0:

qmes
G = exp(−‖snon_degraded − sG‖) (9)

5.2. Comparing the model and the measurements

5.2.1. Graph generation

We generate the structure of the graphs first, i.e. vertices and
edges, and then pick actual audio processors for each vertex in
a node dictionary.

Exhaustive generation for a given number of nodes We
enumerate all the non-labelled WCDAGs with n vertices. Non-
labelled entails that a → b and b → a are isomorphic, are the
same graphs. Given the set of vertices V = {0, . . . , n − 1}, we
undertake the following steps:

1. Compute the set of all the possible edges E between dis-
tinct vertices in one direction. For that, we remark that
pairs(ak, . . . , an) =

⋃
i∈{k+1,...,n}{(ak, ai)}∪pairs(ak+1, . . . , an)

It will entail acyclicity.

2. Compute P(E)
3. In a connected graph with n vertices, there are at least n−1

edges (i.e. a chain graph). So we keep only subsets with
more than n edges of P(E) in our admissible set of set of
edges, E.

4. Build the set D of DAGs from E, one graph per subsets.

5. Filter D to remove non weakly-connected graphs, by pick-
ing a node and then traverse the undirected version of the
graph and counting the vertices. If there are the same num-
bers as the total number of vertices in the graph, it is weakly
connected.

The set of all possible edges from n nodes has size:

(n− 1) + n− 2 + . . . 1 =

n−1∑
k=1

k = O(n2) (10)

5https://github.com/programLyrique/
audio-adaptive-scheduling

6http://www.mega-nerd.com/SRC/

Thus the powerset has size O(2n
2

). The following operations re-
duce the number of graphs so we keep that upper bound.

Random generation As the increase in the number of graphs
is over-exponential, it becomes untractable when n > 6 in prac-
tice. For n = 7 for instance, there are 3781503 possible DAGs.
Hence, for larger number of nodes, we randomly generate graphs
using the Erdős–Rényil [23] random graph mode, where a graph
can be chosen uniformly at random from the graphs with n nodes
and M edges, or with n nodes and a given probability of having
an edge between two edges.

From Puredata patches Audio graphs tend to exhibit a par-
ticular structure: few incoming and outgoing edges per node, cre-
ating long chains in the audio graph, with a few nodes with more
inputs that typically mix signals. To take into account this struc-
ture, we parsed all the Puredata patches of its tutorial and examples
(i.e. 133 graphs).

Picking the actual nodes We maintain a database of possible
audio processing nodes, with their estimated execution time, their
numbers of input ports and output ports, and their possible control
parameters. The possible parameter values can be annotated with
a range, [0,1] for instance for a volume, or a set, for instance
{20,440,1000,2500,6000} for a set of frequencies.

Given the structure of the graph, for each vertex in it, we can
pick (or generate all possible versions) of nodes with the same
number input ports as of incoming edges and a number of output
ports between 1 and the number of outcoming edges. For the out-
put ports, it is due to port sharing, as shown in Fig. 8.

vertex

⇓
node node

Figure 8: Port sharing entails that a vertex can be replaced by a
node with not the same number of output ports, due to port sharing.
At the top, it is a vertex with 3 outgoing edges. At the bottom, we
show two possible actual nodes from this vertex, one with 3 output
ports, and one with 2 output ports and the second port shared by
two outgoing edges.

5.2.2. Comparing rankings

After generating the graphs, we can both compute the theoretical
qualities and execution times, and measure the actual ones. We
obtain two permutations of our set of graphs and we need to know
how far the two permutations are.

To compare the similarity of the orderings of the graphs ranked
by the theoretical and measured quantities, we use rank correla-
tion. The Kendall rank correlation coefficient (Kendall’s tau coef-
ficient) [24] is linked to the number of inversions needed to trans-
form one ordering into the other one. The Spearman’s rank corre-
lation coefficient (or Spearman’s rho) [25] is linked to the distance
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in positions of a same graph in the two orderings. If the correla-
tion is +1, the two orderings are ranked in the same way, i.e. the
function that transforms one into the other one is monotonic. If it
is −1, the order is reversed.

We also compare the position in the two orderings of the worst
quality graphs, the shortest execution time and the longest execu-
tion time.

5.2.3. Results

Exhaustive enumeration For Fig. 9, we enumerated all the au-
dio graphs with 5 nodes, that is to say, 838 graphs. The average
number of versions of a non degraded graph (including the non-
degraded graph) is 3.657518± 2.066605 and there are 57 graphs
without degraded versions. The theoretical models and the mea-
surements both of execution time and quality are well correlated.
There are so many correlations in the 0.9− 1 bin because many 5
nodes graphs have few degraded versions.

Only 22, i.e. 2%, degraded graphs are quicker to execute than
their degraded versions here when using nodes with execution time
the same order of magnitude as the resamplers. Indeed, in that
case, the length of a resampled branch must be large for it to
execute quicker than the non-degraded version. However, small
graphs do not exhibit long branches. On the contrary, when using
nodes an order of magnitude bigger, 275, i.e. 33% degraded graphs
are quicker than their non-degraded version.

Figure 9: Correlations for an exhaustive enumeration of 5-node
audio graphs. At the top, execution times (costs), at the bottom,
qualities; on the left, Kendall’s Tau, on the right, Spearman’s R.

Large random graphs For Fig. 10, we generated 100 ran-
dom graphs with 10 nodes and a 0.3 edge probability, in order to
have nodes with not too many inputs and outputs, as in real audio
graphs. The execution time model is rather accurate, with most
correlations above 0.5. For the quality, the results are less good, as
there are lots of correlations close to 0, but mainly strictly positive.
With quick nodes, 15 graphs have degraded versions quicker than
their non-degraded versions, whereas with slow nodes, there are
45.

With graphs from Puredata For Fig. 11, we generated 133
audio graphs from 133 Puredata patches. The model of execu-
tion time is accurate, which is especially visible with the Spear-
man correlation coefficient histogram. The model of quality and
the measurement of qualities are better correlated than for random

Figure 10: Correlations for random 10-node audio graphs with
0.3 edge probability. At the top, execution times, at the bottom,
qualities; on the left, Kendall’s Tau, on the right, Spearman’s R.

graphs. With quick nodes, 48 graphs, i.e. 36%, have degraded ver-
sions which are quicker than the non-degraded graph. The struc-
ture of Puredata graphs exhibit longer branches and more subsets
of the graph that can be resampled with just a few resamplers.

Figure 11: Correlations for audio graphs generated from Puredata
patches. Node count can go up to 80. At the top, execution times,
at the bottom, qualities; on the left, Kendall’s Tau, on the right,
Spearman’s R.

Hence, large graphs without too many ramifications, and with
nodes with execution times at least an order of magnitude higher
than the execution time of a resampler take advantage the most of
the resampling optimization. Actual audiographs from IMSs, such
as the ones from Puredata, have actually these characteristics.

6. CONCLUSION

We proposed a model of an audio graph with execution time and
quality, and an optimization algorithm based on the models that
can find degraded versions of an audio graph while respecting con-
straints on execution time or quality. The degradations are based
on downsampling parts of the graph.
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We evaluated the models and the algorithm on audio graphs
that were exhaustively enumerated for graph with few nodes, ran-
domly generated for larger graphs, and generated from Puredata
patches. The execution time model is quite accurate. The quality
model is well correlated for small graphs (Fig. 9), has to be im-
proved on large random graphs (Fig. 10) and promising results are
obtained for graphs (Fig. 11) generated from real Puredata patches.
The optimization is particularly effective for actual audio graphs
with long audio effects and long branches. Our choice of mea-
sures of quality is arbitrary. Another option would be to organize
listening tests, but would be impractical considering the huge size
of the set of possible graphs and possible degraded graphs.

The optimization program can be integrated to the design of an
audio graph, using our custom audio graph format that describes
nodes and their connections as input and output and can import
Puredata patches but we aim at making it easier to use within
MAX/MSP and Puredata. We also want to integrate our optimiza-
tion as a compiler optimization for Faust programs in the Faust
compiler [26]. It would unlock access to many more different au-
dio graphs. As the Faust instructions are both very fine-grained
and well-defined, we would be able to refine the execution time
and the quality models.
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ABSTRACT

This paper presents Gamelanizer, a novel real-time audio effect in-
spired by Javanese gamelan music theory. It is composed of antici-
patory or “negative” delay and time and pitch manipulations based
on the phase vocoder. An open-source real-time C++Virtual Stu-
dio Technology (VST) implementation of the effect, made with the
JUCE framework, is available at github.com/lukemcraig/
DAFx19-Gamelanizer, as well as audio examples and Python
implementations of vectorized and frame by frame approaches.

1. INTRODUCTION

Gamelan music is the traditional court music of Indonesia, fea-
turing an orchestra of pitched-percussion instruments. It has had
a profound influence on Western composers, most famously on
Debussy [1, 2]. Gamelanizer is a real-time audio effect plug-in
inspired by the music theory of the Javanese variety of gamelan
music.

This paper is organized as follows: Section 1.1 gives back-
ground information on gamelan music theory. Section 1.2 com-
pares Gamelanizer to similar works and explains the motivation
for creating it. Section 2 details our method for achieving this ef-
fect as a real-time Virtual Studio Technology (VST). Section 3
details our results. Section 4 discusses the considerations of our
user interface, potential applications, and future work.

1.1. Background

There is a large variety of gamelan music theory. Our work is in-
fluenced specifically by the Javanese variant because it is arguably
the most rule-based [3]. Specifically, we are concerned with the
process known as Mipil, which translates to “to pick off one by
one” [4]. The following is a description of the Mipil process. Be-
cause there is still debate in the ethnomusicology community con-
cerning gamelan music, we stress that this description is an over-
simplification. However, for our audio effect, this oversimplified
understanding is still useful.

The numeric notation system used for gamelan music only in-
dicates the balungan (melodic skeleton) that the saron instrument
plays. This is because the notes that the bonang barung and bo-
nang panerus instruments play can be generated, to a degree, from
this base set [5]. In a hypothetical piece, if the first balungan notes
are those in Table 1 then the elaborating bonang barung musicians
Copyright: c© 2019 Luke M. Craig et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

will know to play the notes in Table 2. However, their notes will be
played twice as fast as the saron and will occur half a beat earlier.

Table 1: The balungan, or base melody.

saron 3 5 2 6

Table 2: The first level of subdivision.

bonang barung 3 5 3 5 2 6 2 6

Therefore, the fourth note that the bonang barung plays will coin-
cide with the second note that the saron plays. The eighth note of
the bonang barung will coincide with the fourth note of the saron.
The bonang panerus, which is an octave higher than the barung,
repeats this subdivision process, now playing the notes in Table 3
twice as fast as the bonang barung and four times as fast as the
saron. The combination of these three interlocking parts is shown
in Table 4.

1.2. Motivation

There has been previous work related to gamelan and digital audio.
Some have focused on synthesizing the unique harmonic structure
of the instruments in a gamelan orchestra [6]. Others have tried
to infer compositional rules by using real compositions [7]. Oth-
ers have noted the algorithmic nature of some types of gamelan
music [3]. Various computer-aided composition tools have been
developed that apply the processes of gamelan music theory to
numbered musical notation [8–10].

There is potential to extend concepts from gamelan music the-
ory to audio signals, rather than note numbers, for music produc-
tion and sound design. Given a digital audio workstation (DAW)
with standard time and pitch modification tools, an audio engineer
or musician could manually apply the process known as Mipil (see
Section 1.1) to audio clips. We tested the suitability of the effect
by performing this manual operation in a variety of musical mix-
ing contexts. The results were intriguing. While it is a difficult
effect to characterize, it is probably most similar to granular delay
effects [11], specifically ones that can operate on large grain sizes.

Performing this process manually with the editing tools of a
DAW is slow and can become monotonous. Furthermore, if a pro-
ducer decides to alter a single note in the source, that change must
be propagated down the chain of subdivision levels. It is hard to
maintain perspective in this situation. Additionally, the process
could only be applied to audio clips and thus is not insertable at ar-
bitrary points in the signal chain without rendering audio. If audio
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Table 3: The second level of subdivision.

bonang panerus 3 5 3 5 3 5 3 5 2 6 2 6 2 6 2 6

Table 4: All three instruments.

saron 3 5 2 6
bonang barung 3 5 3 5 2 6 2 6
bonang panerus 3 5 3 5 3 5 3 5 2 6 2 6 2 6 2 6

has to be rendered, the non-destructive editing workflow of digital
audio production is lost.

This paper proposes a solution to achieve this digital audio
effect without the arduous and creatively limiting manual work.
Specifically, a real-time VST plug-in. The effect has three respon-
sibilities:
• time-scaling the quarter notes into eighth, sixteenth thirty-

second, and sixty-fourth notes,
• pitch shifting the notes by a user defined amount, and
• placing and repeating the altered notes correctly in time,

including earlier than the input signal.

2. METHOD

It is easiest to think of the problem from the perspective of a quar-
ter note (hereafter referred to as a beat). Each beat needs to be pitch
shifted and time scaled by the correct factor for each subdivision
level and placed and repeated correctly. Then each level, including
the base, would need to be delayed by the summation of the dura-
tion of one note of each of the levels that are higher pitched than
it. Then latency compensation would be used to realign the base
level with the input signal and place the subdivision levels earlier
than the input.

While this naive method is relatively straightforward, it is not
usable for a real-time plug-in. For one audio callback, the process-
ing time of the naive method is often smaller than our proposed
method. However, the naive method occasionally has too long of a
processing time during a single audio callback, which causes audio
dropouts from buffer underflow. Considering the different general
audio effect frameworks of [12], the naive method is like a “frame
by frame” approach that treats an entire beat as a frame, rather than
the usual case of the block size of the audio callback. Our method,
outlined in Figure 1, is a “frame by frame” approach that instead
treats the much smaller fast Fourier transform (FFT) frames as the
fundamental unit of work. In this manner, the computational load
is more evenly distributed. We consider the process from the per-
spective of an individual sample:

1. For each sample, we pass it to each of the subdivision level
processors (Section 2.1). These independently perform time
compression and pitch shifting through the use of the phase
vocoder technique (Section 2.2). They also handle dupli-
cating the notes in the correct positions (Section 2.3).

2. We also copy each sample to a delay buffer for the base
level and use latency compensation to make part of the out-
put signal occur earlier than the input signal (Section 2.4).

3. We then update the subdivision levels’ write positions if the
play head in the DAW would be on a beat boundary (Sec-
tion 2.5).

Subdivision Level
Processor 1

Subdivision Level
Processor M

sa
m

pl
e

in

Delay Base Level

Handle Beat Boundaries

+

sa
m

pl
e

ou
t

Figure 1: An overview of our method.

2.1. Subdivision level processors

The bulk of the work on each input sample is done by each of the
subdivision level processors. Each subdivision level processor in
the plug-in corresponds to the role of an elaborating instrument in
the gamelan orchestra. The pitch shifting parameter of a subdivi-
sion level in the plug-in corresponds to the tessitura (normal pitch
range) of an elaborating instrument. The time scaling factors of a
subdivision level in the plug-in correspond to the rhythmic densi-
ties of an elaborating instrument.

In each subdivision level processor i, where i ∈ {1, 2 . . . ,M},
we perform time compression and pitch shifting via the classical
phase vocoder technique [13]. Then we overlap-and-add (OLA)
the synthesis frames multiple times in an output buffer channel as-
sociated with the subdivision level.

2.2. Phase vocoding

The phase vocoding consists of two stages: pitch shifting by re-
sampling and time scaling. The effective time scaling factors r of
the subdivision levels are

r[i] =
1

2i
. (1)

Given pitch shift amounts c, in cents, the frequency scaling factors
p are

p[i] = 2
c[i]
1200 , (2)

and the actual time scaling factors v applied after resampling are

v[i] = r[i]p[i]. (3)

In other words, if the pitch shift amount is an octave (1200 cents),
then no actual time scaling needs to be done because the resam-
pling operation of pitch shifting will result in a note length that
is 1

2
the original beat length.
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The frame size of the time scaling operation is fixed and in-
dependent of p[i] and v[i]. If v[i] ≥ 1, as is the case in the usual
operation of our plug-in, the number of samples output from the
resampler will be less than the number input to it. Therefore, by
ordering the resampler first in the phase vocoders, we reduce the
number of analysis-to-synthesis frame conversions that need to be
performed per unit of time.

2.2.1. Pitch shifting by resampling

We use a stateful interpolator to accomplish resampling.1 It needs
to be stateful otherwise there would be discontinuities between
blocks of data. The phase vocoders operate on overlapping frames
that are one analysis hop size, ha, samples apart

ha =
N

oa
, (4)

where N is the length of the FFT and oa is a constant analysis
overlap factor.2 Therefore, we always request ha samples of out-
put from the resampler. Because it is stateful and will be operating
at subsample positions, the number of samples consumed by the
resampler will vary each time. Therefore, we push the input sam-
ples onto a first-in, first-out (FIFO) queue and only pass them to
the resampler when there is at least the number needed by the re-
sampler available on the queue. After the resampler finishes, we
pop the number of input samples it used off the queue. We then
put the ha samples of resampled audio data into a circular buffer
of length N . The buffer is filled one hop at a time and we do not
read from it until it is full. Each time we read from it, we will
convert the analysis frame it contains to a synthesis frame.

2.2.2. Converting an analysis frame to a synthesis frame

Converting analysis frames to synthesis frames and OLA are the
core elements of the phase vocoder technique, which has been
written about extensively [13–21]. Normally, the phase vocoder
is presented as operations done on a short-time Fourier transform
(STFT) matrix [21]. For our real-time implementation, we instead
follow the approach of only considering the current and previous
length N overlapping frames of audio samples [18, Sec 5.3]. We
also follow the common approach of analysis and synthesis win-
dowing with a Hann window of length N [21]. Because we know
when the beat boundaries occur, we can take advantage of the
scheme proposed in [16, p. 327] of initializing the phases with the
first analysis frame of each new beat. To scale the phases of the
current frame each subdivision level processor only needs to store
the scaled phases of the previous frame, the unmodified phases of
the previous frame, and the synthesis overlap factor of the subdi-
vision level i:

os[i] =
oa
v[i]

. (5)

2.3. Adding synthesis frames to output buffers

The number of samples s[i] in one note of subdivision level i, is
given by:

s[i] =
sb
2i
, (6)

1We implemented this resampling with the CatmullRomInterpolator
class from the JUCE framework.

2An overlap amount of 75% is suggested in [14] so we set oa to 4.

sb being the number of samples per beat in the base level:

sb =
60fs
t

, (7)

where fs is the sample rate of the DAW in Hz and t is the tempo
in BPM. Figure 2, which we will refer to throughout this section,
shows a hypothetical situation with a tempo of 80 BPM and a sam-
ple rate of 44.1 kHz. On the right side of Figure 2, s[i] and sb are
visualized by the lengths of the final “D” notes of each subdivision
level and the delayed base.

There are M subdivision levels and each one has a channel in
the M channel circular buffer B. When playback is begun from
sample 0 in the DAW, we initialize w, the lead write head positions
in B, with:

w[i] = 2sb + s[M ] +
M∑

j=i+1

s[j] , (8)

so that the subdivision level M , which has the highest rhythmic
density, will have the earliest position in time. Additionally, the
beginning of subdivision level M − 1 will occur with the begin-
ning of the second note of subdivision level M . The initial values
of w, each at the beginning of the first note of their associated
subdivision level, can be seen on the left side of Figure 2c.

We OLA the N samples from the synthesis frame u to B,
repeating the appropriate number of times for the subdivision level
i. This is shown in Algorithm 1. To simplify the notation, the
modular indexing of the circular buffer is ignored.

Algorithm 1 OLA while duplicating notes for subdivision level i

1: for j ← 0 to 2i do . note number j
2: wj ← w[i] + j(2s[i])
3: B[i, wj : wj +N ] += u
4: end for

In line 2 of Algorithm 1, the offset j(2s[i]) specifies that we skip a
note every time we duplicate a synthesis frame u. In Figure 2, the
play head in the DAW (the blue triangle at sample 33075 in Fig-
ure 2a) has just reached the end of beat “A.” The diagonal shading
in Figures 2b and 2c shows the data that has been written to the
output buffers at this time. Algorithm 1 is what creates the fractal-
like pattern of these shaded regions. The gaps between the shaded
regions will be filled, one overlapping synthesis frame of lengthN
at a time, as the play head in the DAW moves over the next beat,
“B.”

Next, the lead write position of the subdivision level i is incre-
mented by its synthesis hop size hs[i]

w[i]← w[i] + hs[i] , (9)

following the standard phase vocoder technique [13]. The syn-
thesis hop size, the number of samples between the beginnings
of overlapped synthesis frames, is determined by the analysis hop
size ha and the actual time scaling factor v[i] of the subdivision
level i:

hs[i] = hav[i] . (10)

In Figure 2, the write positions have already been incremented
many times by equation (9). Their current values, each at the end
of the first shaded note for an associated level, are displayed on the
left side of Figure 2c.
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(a) Input audio
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(b) Plug-in output: delayed base
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initial w[1] = 82687

A A

initial w[2] = 74418
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B B

current w[2] = 82687

B B B B

C C
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D D
s[1] = 16537

D D D D

s[2] = 8268

(c) Plug-in output: subdivision levels 1 and 2

Figure 2: The output of the plug-in without latency compensation. The play head in the DAW has just reached the beginning of the beat
labeled “B” in the input audio (a). The x-axis tick marks indicate the sample positions of the beat divisions at a tempo of 80 BPM. In (b)
and (c), the diagonally shaded regions show the data that has been written at this point. The unshaded regions with faded text show where
data will be written as the play head progresses. When latency compensation takes effect the base level output (b) will realign with the
input (a) and the subdivision level outputs (a) will occur earlier than the input.

2.4. Delaying the base level

To place time-compressed versions of the entire first beat before
the first beat begins in the DAW, we need to request a latency
compensation amount that is larger than the initial positions of the
lead write heads. Then we need to delay the base level by this same
amount to realign it with the input signal and the rest of the tracks
in the DAW. The plug-in needs to request l samples of latency
compensation from the DAW:

l = 3sb , (11)

which is also the number of samples we delay the base level by.
Given an input of four beats from the DAW, refer to Figure 2 to
see what the output from the plug-in would be before latency com-
pensation is applied. The area marked l on Figure 2b shows how
delaying the base level aligns it with the subdivision levels in Fig-
ure 2c. Keeping this relative alignment and requesting l samples
of latency compensation would realign the base level with the in-

put audio (2a) and each subdivision level would begin before the
input, as we desire.

2.5. Handling beat boundaries

Whenever the play head of the DAW moves into a new beat, we
adjust the lead write heads (Section 2.5.1). If the beat we just
finished processing was the second beat in a pair, we adjust the
lead write heads further (Section 2.5.2). We also reset the phase
vocoders now because the next piece of audio input should be from
a new note with unrelated phases, as mentioned in Section 2.2.2.

2.5.1. Adjust lead write heads

When beginning each new beat, we reset ∆w[1] . . .∆w[M ], the
number of samples each lead write head has moved during a beat,
to zero. Every time a lead write head position w[i] is incremented
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with equation (9), we accumulate that change:

∆w[i]← ∆w[i] + hs[i] , (12)

where 0 ≤ ∆w[i] ≤ s[i]. Using ∆w, when the play head of
the DAW3 is on a beat boundary (for example 33075 or 66150 in
Figure 2a), we move all the lead write head positions, w, forward
a small amount to the exact starting positions of their next subdi-
vided notes:

w[i]← w[i] + (s[i]−∆w[i]) . (13)

This is necessary because their normal movements are not syn-
chronized, due to the different resampling factors. Moving the
write heads like this may leave a small gap between notes. How-
ever, it will never cause a “click” artifact from a sample-discontinuity
because we are only ever adding windowed and complete synthe-
sis frames.

2.5.2. Handling second beats

Every time we transition to a new beat we also determine if we
were on the second beat of a pair. In Figure 2a, these are the beats
labeled “B” and “D.” If we are finishing with the second beat, then
we increment each lead write head position to the starts of their
next unwritten regions:

w[i]← w[i] + s[i](2i+1 − 2) . (14)

Each level has 2i+1 notes per pair of beats. After processing the
data for a pair of beats, the lead write head of a subdivision level
will be two note-lengths, 2s[i], past their initial position. That is
why we subtract two in equation (14).

For example, as the play head in the DAW reaches the end
of beat “B,” at sample 66150 in Figure 2a w[2] in Figure 2c will
be at the beginning of the second “A” note of level 2, at sample
90956. Accordingly, by moving six notes ahead it will be at the
beginning of the first “C” note in level 2, at sample 140568. Due
to these increments and the duplication of notes, the plug-in always
maintains an equal output rate with the input rate, even though we
are consistently time-compressing.

2.6. Starting playback from arbitrary timeline positions

If the user of the DAW starts playback from some arbitrary po-
sition, we must determine what the values of w would be at this
position, had the user started from the beginning of the session.
Likewise, the user could also change playback positions without
stopping the DAW, so we have to check for that as well. Instead of
writing a mathematical function to determine the correct values of
w, we instead choose to simply run through the main processing
method until reaching the play head position of the DAW, skip-
ping any costly operations unrelated to updating w. This way, the
software is more flexible to change because we do not have to keep
remodeling the behavior.

3From the perspective of a plug-in, the reported play head position from
the DAW is incrementing an entire block size at a time, rather than sample
by sample. Therefore, we have to calculate the expected position of the
play head internally, for every sample that we process.
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Figure 3: Spectrograms comparing the outputs of the manual pro-
cess (our desired result made with editing tools of a DAW) and the
plug-in. The input signal (a and b) is four ascending quarter notes
at 120 BPM. The first note of the input signal begins on beat 1 of
measure 2.

3. RESULTS

Figure 3 shows the output of the manual process, as described in
Section 1.2, compared to the output of our real-time plug-in, using
the same input signal. One can see the results are similar. Our
method successfully time-compressed and placed all the notes in
their correct places, including before the input signal. For level 1,
the pitch shift factor was seven semitones (700 cents) and, as can
be seen on the spectrogram of the plug-in output (3d), it matches
the manual output (3c) sufficiently. For level 2, the pitch shift fac-
tor was fourteen semitones (1400 cents) and the plug-in output (3f)
matches the manual output (3e) sufficiently again.

Figure 4 shows the performance measurements of the naive
algorithm that is described in the beginning of Section 2 and our
method. The measurements were collected with the plug-in run-
ning four subdivision levels with an FFT length of 1024 samples
for each phase vocoder. Tests were conducted with block sizes
of 32 and 2048 samples at a sample rate of 44.1 kHz. In both
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Figure 4: Performance measurements, relative to available call-
back time, of four subdivision levels with pitch controls set to
stacked fourth and an FFT length of 1024 samples. The tempo
was 80 BPM. The four annotated points indicate the maximum
time used for processing in the 32 bars that were measured for
each test. Points above the dashed line are unacceptable.

cases, the naive method has dramatic increases in processing time
on the beat boundaries. The amount of samples being processed
on these boundaries is independent of block size. In this example,
33075 samples are being processed at the beat boundaries because
the tempo is 80 BPM. When the block size is 2048 samples, the
plug-in has no more than 46 milliseconds (ms) to process these
samples, so the naive method is still usable if no other plug-ins are
running. However, when the block size is 32 samples, the plug-in
has no more than 0.73 ms to do the same amount of work and so it
causes buffer underflow and is unusable. Additionally, if the ses-
sion tempo were slower, even a block size of 2048 may result in
buffer underflow due to the increased number of samples per beat.

Our method, in both block size cases, has much better per-
formance. The processing load is decoupled from the number of
samples per beat and so there are no longer dramatic time increases
at the beat boundaries. In fact, there are decreases in processing

time at the beat boundaries because the initialization scheme we
use does not alter the first frame of each beat. For the resampling
stage of our processor (Section 2.2.1), the processing load scales
with the block size, which is good. However, for the other part
of the phase vocoding technique (Section 2.2.2), the processing
load is independent of the block size, scaling instead with the FFT
frame size. Still, because the load is independent of the number of
samples per beat, lowering the tempo will not cause the block size
of 32 samples to become unusable. If better performance for small
block sizes was needed, reducing the FFT frame size would help,
at the expense of audio quality.

4. DISCUSSION

4.1. Accompanying Material

The accompanying repository is available at https://github.
com/lukemcraig/DAFx19-Gamelanizer. Included is the
C++ code and VST builds for macOS and Windows. Audio exam-
ples of input and output are also included. Python implementations
of vectorized and frame by frame approaches are also available in
the repository.

The VST has only been tested to work in the DAW REAPER.
Because of the necessity of unusually large amounts of latency
compensation, DAWs that limit the amount of latency compensa-
tion a plug-in can request will not be able to use the effect, unless
the user is comfortable with the subdivision levels occurring after
the input. The user could render the output and then drag it into
place, which would still be faster than doing it manually.

Another limitation is that the tempo cannot change. Likewise,
if the input audio is not perfectly quantized to the grid, the output
may sound random, in terms of the rhythmic context. This is be-
cause an instrument’s note that begins before the beat will have the
portion of the signal before the beat treated as if it were the end of
the previous note and be moved and repeated in that manner.

4.2. User interface

The user interface is shown in Figure 5. The tempo in the DAW can
be specified by the user in the text box at the top. This box is un-
changeable during playback. The leftmost vertical slider controls
the gain of the delayed input signal (the base level). Sometimes in
gamelan music the balungan is not played by any instrument but
merely implied by the elaborating instruments [22]. Likewise, it
can be useful for the user to completely remove the input signal by
pressing the mute button (labeled “M”), and only output the subdi-
vision levels. This works well if the first subdivision level has no
pitch-shifting applied to it.

Each subdivision level has an identical set of controls that are
grouped by a thin rectangle. These can be thought of as channel
strips on a mixing console. The largest rotary slider controls the
pitch shift factor of that level. The long gray lines inside the rotary
arc indicate the octave positions. The small ticks inside the arc in-
dicate the positions of perfect fourths. The small ticks outside the
arc indicate the positions of perfect fifths. The user can optionally
snap to any of these three intervals by holding different modifier
keys while dragging. Changes to pitch shifting are allowed during
playback but do not take effect until the subdivision level processor
that is being changed is between analysis frames.

Each subdivision level processor also has a gain slider and
high and low-pass filters that are applied after pitch-shifting. They
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Figure 5: The Gamelanizer GUI with four subdivision levels. Pitch shifting controls are set to stacked octaves.

each also have a horizontal slider that specifies the α parameter
of a Tukey window [23] that is applied to the input signal before
phase vocoding. This can be useful for tapering the input signal to
achieve different attack and release characteristics per level. The
displays above the horizontal sliders show the resultant Tukey win-
dows.

When any of the four buttons labeled “Drop Note” are toggled,
those notes become muted. For instance, if the fourth note was
dropped from the fourth subdivision level, then every fourth sixty-
fourth-note would become a rest.

Each subdivision level can be output independently or mixed
into stereo. By routing them independently the user has more con-
trol and can apply other plug-ins and routing to mix them as they
wish. When mixed into stereo the pan knobs below the mute but-
tons can be used.

4.3. Applications

The plug-in is useful for at least two general scenarios. First is
the scenario of a composer or musician who is writing new mu-
sic. If a composer was writing a base melody that they wanted the
Mipil process to be applied to, they could use the Gamelanizer to
get almost instant feedback and make adjustments. In this scenario
the plug-in could be considered a computer-aided composition tool
similar to those mentioned in Section 1.2. The advantage of using
Gamelanizer over those tools is that the composer can transform
any sound, such as a human voice, rather than just transforming
Musical Instrument Digital Interface (MIDI) input to virtual in-
struments. Another advantage is that many tech-savvy musicians
today compose purely by ear, and using our plug-in would be more
intuitive for them than thinking about symbolic representations of
notes. For this use case, we suggest starting with only the first and
second subdivision levels because higher levels can sound irritat-
ing.

Second is the scenario of an audio engineer mixing someone
else’s music, or creating strange effects for sound design. In this
scenario the plug-in is more of an effect that alters the character of

the signal without altering the tonal harmony of the music. We rec-
ommend pitch shifting with octaves or no pitch shifting to achieve
this use case. Filters are useful for adding depth by moving sub-
division levels into the background. This can help perceptually
separate the effect from the dry signal. Tapering is also useful here
for imposing a rhythmic structure on an input signal that does not
have one. The third and fourth levels are more useful in this use-
case than they were in the first because the rapid rhythmic density
of these levels can be mixed to sound less separated from the input
source.

4.4. Future work

There are several possible future works, related to gamelan the-
ory, that would improve this software. First, in gamelan music the
elaborating instruments often sustain notes instead of playing on
top of the second beat in a pair. We have implemented turning the
notes into rests but not sustaining the previous notes. This sus-
tain could be achieved by implementing the “spectral freeze” as
described in [24]. Similarly, gamelan musicians add variations to
their pitch and octave choice [5]. It may make the digital audio ef-
fect sound more organic to introduce some stochastic variation to
emulate this. Another unimplemented aspect of gamelan music is
that the orchestra’s instruments are crafted in pairs that are inten-
tionally out of tune to create a shimmering amplitude modulation
that is intended to induce a religious trance-like effect [5]. There-
fore it would be nice to include a stereo detuning parameter to the
plug-in. Lastly, sliding tempo changes are an important part of
gamelan music. Our method does not handle tempo changes. We
are interested in Celemony Software’s new Audio Random Ac-
cess (ARA) [25] as a means to deal with this.

There are also possible future works unrelated to gamelan the-
ory. One would be making use of beat detection so that the in-
put signal does not have to already be perfectly quantized in time.
Perhaps the work in [26] would prove useful for this. Another
improvement would be to implement pitch detection on the input
notes and limit the shifted notes to only be mapped to MIDI side-
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chain input. That way, the tonal harmony of a song being mixed
would not become cacophonous. Another improvement we are in-
vestigating is performing the pitch shifting without resampling as
described in [17]. Another improvement would be to implement
something like a noise gate with hysteresis so tails of notes that
extend past the beat borders are not repeated. This may be sim-
ple to implement given that our method is aware of its location
in the beat, and thus should know when to expect low and high
amplitudes. Finally, spatialization with head-related transfer func-
tions (HRTF) [27] would be an interesting feature to include.
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ABSTRACT

In this paper a study on the performance of the short time autocor-
relation function for the determination of correct pitch candidates
for non-stationary sounds is presented. Input segments of a mu-
sic or speech signal are analyzed by extracting the autocorrelation
function and a weighting function is used to weight candidates for
assessing their harmonic strength. Furthermore, a decision is de-
vised which alerts if there are possible non-related jumps on the
fundamental frequency track. A technique to modify the spectral
content of the signal is presented to compensate for these jumps,
and a heuristic to return a steady fundamental frequency track for
monophonic recordings is presented. The system is evaluated with
several databases and with other algorithms. Using the compensa-
tion algorithm increases the performance of the ACF and outper-
forms current detection algorithms.

1. INTRODUCTION

Intonation in human perception corresponds to the perceivable tone
that is registered by the human brain. This is perceived as pitch,
which is in turn related to the fundamental frequency f0 of a par-
ticular sound, that is, the main frequency component of the Fourier
series expansion of a signal. In order to extract such informa-
tion from a signal, several methods have been introduced which
help find the perceivable intonation, or pitch, of a particular sound
which is usually estimated by its fundamental frequency.

Among the methods used for determining f0, the autocorre-
lation function (ACF) has always been of particular interest since
it represents the periodicities encountered in a waveform. This is
specially suited for determining the fundamental frequency in au-
dio recordings. In this manner, prominent peaks of the ACF will
give information about the perceived pitch or tone of a sound, par-
ticularly when the latter is of a stationary nature.

There are two major study problems at the time of finding
pitch tracks in monophonic recordings: The first one is the prob-
lem of finding reliable pitch candidates. This can be approached,
for example, by analyzing the spectral peaks in the frequency do-
main, or by determining the autocorrelation lags of a signal seg-
ment in a particular way. Several solutions have been proposed in
the literature to mitigate ambiguities and perform a correct estima-
tion of the pitch; by analysis of the response to a filter bank, by the
use of linear predictive coding to extract pitch candidates [1], by
analyzing the spectra with the use of correlation-based functions
[2], by the use of spectral weighting functions [3], by applying
Copyright: c© 2019 Carlos de Obaldía, Udo Zölzer et al. This is an open-access arti-

cle distributed under the terms of the Creative Commons Attribution 3.0 Unported Li-

cense, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

correlation in the spectral domain [4], with the help of compound
weighting functions [5], or by the use of the normalized cross cor-
relation [6], among other methods.

The other issue is the tracking of the fundamental frequency
f0 when several disturbances in the pitch trajectory occur in order
to select the correct pitch candidate. Examples of this problem can
be when harmonics acquire a higher energy than the fundamental,
where subharmonics surpass a decision threshold, or when a par-
ticular note is retained after the current note is played or sung. In
these cases, candidate pitch lags are taken into consideration and
a heuristic rule is created to compensate for shifts and ambigui-
ties. The mitigation of these ambiguities have been approached
by different monophonic pitch detection algorithms, but it has also
been a matter of study for polyphonic recordings, such by tak-
ing different candidates of the autocorrelation-spectrum pairs [7],
by statistical analysis of the pitch candidates [8], or by finding
other domains where the ambiguity of the estimation can be dimin-
ished [9]. Another solution, for example, was considered by [10]
in treating the common frequency trajectories based on a graph-
solving problem in the spectrogram using continuous Hidden Markov
Models (HMMs). Several algorithms also smooth the magnitude
function of consecutive spectra to find the most prominent peak. In
this work it is shown that the variability of the pitch candidates can
be modeled in a simple way, whilst not having to reuse different
heuristics for the detection, and a method is presented which pro-
vides a way to account for possible ambiguities.

2. BACKGROUND

While cross-correlating two different signals, similarities which
exist between the signals at a moment in the present are found
based on the history of the signal. Mathematically, the autocorre-
lation of a stationary discrete signal x(n) is defined as

rxx(m) =

N−1∑
n=m

x(n)x(n−m), (1)

where x(n) is a windowed signal of lengthNw, andm is the index
of the delayed sample, called the lag. This effectively compares an
isolated signal segment with a time shifted version of itself. It
can be inferred from Eq. 1 that the global maximum for the func-
tion appears at m = 0. If there exist any maxima in rxx(m) for
m > 0, the signal is said to be periodic with T0 = m and will
contain local maxima at multiples of the lag m. Since the autocor-
relation of the signal at m = 0 equals the power in the signal, the
height of the local maxima in r′xx(m) for m > 0 represents the
relative harmonic power of the signal. Thus the ratio of the height
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Figure 1: Interpolation of the candidates. The three red points are
the anchors of the resulting interpolation shown with the dashed
line. The corrected lag is the green triangle

of rxx(m) at specific lags m to the power of the signal,

r′xx(m) ≡ rxx(m)

rxx(0)
, (2)

is considered to be the harmonic strength of the signal and indi-
cates possible periodicities at the lags m whose harmonic strength
approaches unity [11].

Since most of real-world signals are in the wide sense non-
stationary, Eq.1 can be then calculated over a window xb(n) of
length Nw centered at continuous places in time b spaced by Nh
hop samples. This can give estimates of the fundamental frequency
f0 = 1/T0 based on the harmonic strength at each frame b.

Another way to find lag candidates is with the use of the average
magnitude difference function (AMDF)[5, 12], where a running
sum is performed on the difference of the signal with itself, such
that

g(m) =

N−1∑
n=0

(x(n)− x(n+m)). (3)

This difference function can alternatively be used as a weighting
function to help improve the accuracy of the ACF as a pitch esti-
mator.

The local maxima of r′xx(m) of a particular segment provides
a number of candidates which help determine the fundamental fre-
quency in that segment along time. In this paper, several steps for
preprocessing at the time of calculating the short time autocorre-
lation signal are assessed and evaluated, so that the most relevant
steps for the calculation of the pitch candidates are taken into ac-
count. Furthermore, a method for weighting the harmonic strength
of each candidate is presented. Methods to determine voiced and
unvoiced parts in the signal are also presented, and a heuristic to
determine and follow pitch trajectories is introduced as well. A
spectral correction algorithm additionally improves the retrieval
of candidates when the harmonic strength of multiples of the fun-
damental may mask the correct detection. Evaluation results and a
comparison with several algorithms is presented and evaluated at
the end.

3. PITCH EXTRACTION

Several algorithms which work on the spectral domain smooth the
magnitude function of consecutive isolated spectra to find the most
prominent frequency peak belonging to a particular frame [13]. In

this work it is shown that the variability of the pitch candidates can
also be modeled in a straightforward manner.

As it was introduced in Sec.2, the autocorrelation function has
a global maximum at m = 0, where it represents the overall en-
ergy content of the particular isolated segment in which the func-
tion is calculated. Periodicities in xb(n) can then be found by
analyzing the places where the pitch lag m is at other local max-
ima, or rxx(mpeak) after m = 0. The relationship of these peaks
to the maximum peak of the ACF would give a good cue of the
fundamental period within a predefined interval [mmin,mmax].

3.1. Pre-processing

For finding the fundamental frequency candidates, an incoming
signal is hard - center clipped with a threshold of Γc = 1× 10−3

to reduce the influence of other harmonic ratios on the signal [14].
The signal is then high-pass filtered with a butterworth filter of de-
gree six at a cut off frequency of fc = 50 Hz to reduce influences
of low frequency noise.

At each windowed frame b of a signal x(n) taken at a hop size
Nh = 0.01s · fs, an isolated segment is extracted from x(n) and
multiplied with a hanning window

w(n) = sin2(
πn

Nw + 1
), (4)

giving a signal segment xb(n) for n = 0, ..., Nw + 1 where Nw
is the length of the window in samples. The autocorrelation of the
segment is then calculated using Eq. 1.

The frame is then weighted using Eq. 3 such that

r̂xx(m) =
r′xx(m)

g(m) + α
, (5)

where α = 1 is taken. The output is then normalized to the maxi-
mum of the resulting signal.

3.2. Pitch Candidate Vector

The local maxima are found in the resulting weighted and nor-
malized ACF r̂xx(m) with a peak picking technique to generate a
vector of pitch candidates

P = [mκ, ...,mK ], mmin < mκ < mmax, (6)

where mmin and mmax are the allowed minimum and maximum
lags respectively, and κ = {1, ...,K}, where K is the number
of detected pitch candidates above the threshold gr(m). After
the previous step, just the positions of r̃xx(m) which surpass the
threshold

qr(m) =
(ln(fs)− ln(m))

ln(fs)
(7)

are taken in consideration and sorted in descending order with re-
spect to the distance r̂xx(m) − qr(m). The resulting candidate
vector P̊ contains the current pitch estimation candidates for that
particular frame.

3.3. Spectral Modification

Sometimes and due to the nature of particular sounds, the char-
acteristics of the vocal tract, or the timbre characteristics of some
instruments, will give away a formant structure which can detri-
ment the detection performance of the most prominent lag [15].
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Figure 2: A case for finding the correct candidate with spectral
modification. The top frame show the two windows used for cal-
culating the lag. The lower picture shows the ACF of w(n), and
the peaks of P̊ above a threshold.

To account for this, we introduce a candidate confirmation
algorithm which follows the tracked pitch in the ACF, and de-
termines its most plausible position. However some of the frag-
ments may be accompanied by other harmonics which should not
be taken in consideration, and the difference of the harmonic con-
tent between each frame should be taken into account.

To aid in this problem, the following technique makes use of
the fact that if the harmonics of a particular fundamental frequency
are equal in amplitude and since their harmonics are equally spaced
in frequency, the distance between the resulting peaks of the auto-
correlation from this modified waveform will match the fundamen-
tal period T0 = 1/f0.

The local maxima of rxx(m) above qr(m) are arranged in a
vector P̊, which contains the positions m of the pitch candidates
sorted in descending order relative to qr(m). If the ratio of the
harmonic strength of the first two lags m1, m2 in P̊,

min [r̂xx(m1), r̂xx(m2)]

max [r̂xx(m1), r̂xx(m2)]
≥ γ (8)

taking γ=0.7, it will indicate that there is a possible mismatch with
relation to the harmonic ratio of the frequency components of that
particular signal segment. If there are more candidates in the vicin-
ity of the harmonic strength for mκ, a search is conducted to find
a better estimate of the lag. A further window is thus applied on
the frame to determine the correct pitch position, so that a second
window in

x̃b(n) = x(n− Nw
4

)w̃(n), (9)

can be set, where w̃(n) is a hanning window of length Nw
4

accord-
ing to Eq.4 like in the upper plot of Fig.2. The spectrum of the
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Figure 3: Spectral modification of the second window x̃b(n). The
upper plot shows the resulting ACFs of x̃b(n) and the modified
x̊b(n). The lower plot shows the spectrum |X̊(f)| after modifica-
tion.

signal snippet x̃b(n) is calculated taking

Xb(k) = F{x̃b(n)}

=
1

NFFT

NFFT∑
n=1

x(n) exp
( −2πjkn
NFFT

) ∀k ∈ {1, ..., NFFT},

(10)

where NFFT is the size of the Fast Fourier Transform (FFT)
and corresponds to the next power of two ofNw, and where x̃b(n)
is zero padded accordingly. The spectrum is then normalized to
its highest energy seen in any particular bin k, and the normalized
power spectral density (PSD) of x̃b(n),

X̃b(k) =
|Xb(k)|2

max[|Xb(k)|] , (11)

is calculated. The peaks of the spectral envelope which are above
−20 dB are set to 0 dB and a noise floor is in turn established
at −20 dB. We can then determine the harmonic content that re-
mains in the signal from the frame before, by performing

X̊b(k) = 2X̃b(k)− X̃b−1(k) (12)

to reduce errors in transient regions. Furthermore, X̊b(k) is weighted
with a roll-off factor of 40 dB per octave starting at the first fre-
quency bin k which is above−20 dB after Eq. 11, as it is depicted
with a dashed line in Fig.3. The corresponding ACF of the delayed
frame x̃b(n) is then calculated by using

rx̊x̊(m) = F−1{X̊b(k)}, (13)

and the maximum peak m̊ in rx̊x̊(m) after rx̊x̊(0) is extracted. The
resulting position in P which corresponds to the estimated funda-
mental frequency is found by calculating the closest mκ in P with
relation to m̊. Fig.3 shows the PSD of the second window in Fig.
2 which is used to determine the candidate mκ for that frame b.
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Figure 4: Result of applying the fractional lag calculation using
the interpolation procedure for a vibrato around G4 of a violin
stem from Bach’s ‘Ach Gott und Herr’. The blue line represents
the ground truth, f0(n).

3.4. Tracking Algorithm

Another problem at the time of finding the correct fundamental
frequency is when the decay of a particular note is retained after
another note starts. This has been shown to produce jumps in the
fundamental frequency track, as the harmonic energy of two di-
fferent fundamentals can be contained in the same frame.

To account for this, a method to provide a continuous tracking
of f0 is used. If there is a difference of more than δm = 10 lags
between consecutive estimates a decision is performed: If there
exists a candidate in the current set Pb whose difference from Pb−1

is at least 5 lags from the previous one, their positions are switched.
This will prevent sporadic jumps in the track. Additionally, a guard
interval is set such that this decision happens just when Pb of the
ACF of 4 consecutive frames (b, ..., b− 3) has contained at least
one peak above the decision threshold.

3.5. Parabolic Interpolation

The ACF can be seen as a discrete and quantized signal where
each pitch lag m = 1, ...,M is an integer, so fractional tones can
not be determined. A solution to this is to approximate the natural
occurring tone with a parabolic interpolation taking as anchors the
lag samples at positions between the local maxima [16]. If we take
three points y1 = y(x1), y2 = y(x2), y3 = y(x3) of a parabolic
function of the form y = ax2 + bx+ c around its local maximum
y(xmax), and considering that x1 = 0, x2 = 1, x3 = 2 and
y1 = rxx(mκ − 1), y2 = rxx(mκ), y3 = rxx(mκ + 1), then

∆xmax =
1

2
+

1

2

(y1 − y2)(y2 − y3)(y3 − y1)

2y2 − y1 − y3
, (14)

will give the relative position of the maximum of the parabola with
respect to y1 = rxx(mκ − 1), so that the lag is now estimated to
be at mκ + ∆xmax. Although the approximation of the shape of
the ACF to a parabola will introduce a bias to the estimation of the
frequency, it represents a better approximation of the pitch. Fig. 1
shows the lag positions and the peak resulting from this approxi-
mation. Fig.4 shows a result.

3.6. Voiced Activity Detection

For the determination of voiced and unvoiced regions, a simple
post processing procedure has been used to clean the track from

frames which are falsely labeled as voiced. This has been also a
major field of study for pitch detection algorithms, specially with
the use of speech signals. A segment is defined as voiced if, based
on the source-filter model of speech production, the signal to excite
the vocal tract filter is of a periodic nature.

Thus the pitch candidates which lie below the threshold de-
scribed in Eq. 7 are not taken in consideration. Secondly, candi-
dates whose frame’s root mean square (RMS) energy is below a
threshold ΓE = 0.705× 10−3 are also not considered and taken
as unvoiced. Lone pitches in frames which are separated more than
20 lags from the previous one are also considered as unvoiced.
Moreover, pitch candidates are only considered if the frequency
positions in the ACF are separated at least 15 lags. Lone candi-
dates which spawn over three consecutive lags, are also discarded.
This results in a continuous pitch track.

In summary, to find voiced and unvoiced regions, a frame b is
voiced if

(a) RMS{xb(n)} ≥ ΓE , (15)

and

(b) rxx(m) > qr(m), (16)

and if

(c) |mb−1 −mb| ≤ 15 (17)

which is the maximum lag so that the exchange between the
candidates does not surpass this threshold.

Fig. 6 shows the results before and after removal of false pos-
itives for a saxophone and a bassoon recording from the Bach 10
dataset.

Finally, the algorithm can be summarized for each particular
window at a frame b as follows:

1. Extract a signal segment x̂b = x(n) · w(n), where w(n) is
a hanning window of length Nw.

2. Calculate the autocorrelation function r′xx(m) according to
Sec.3.1.

3. Calculate the AMDF as in Eq. 3

4. At each lag m, calculate the weighted function r̂xx(m) as
in Eq. 5

5. Normalize the weighted ACF r̂xx(m) with respect to its
maximum

6. Get a pitch candidate vector from the autocorrelation peaks
and sort it according to Sec.3.2

7. Confirm pitch candidates according to the algorithm de-
scribed in Sec.3.3, so that a new peak vector

P̊ = {mκ, . . . ,mK}, (18)

is obtained, where m1 corresponds to the estimated pitch
lag, so that the estimated f0 of frame b is f̂0 = fs

m1
.

8. Run the tracking algorithm of Sec.3.4 for detecting discon-
tinuities.

9. Determine voiced and unvoiced frames.

DAFX-4

86



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800
f̂
0
(b

)

f̂0(b)

f0(b)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800

f̂
0
(b

)

200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400
0

200

400

600

800

b→

f̂
0
(b

)

Figure 5: Pitch track for a violin recording of Bach’s ’Ach Gott und Herr’. The bottom plot shows a result after selecting the first candidate
of the ACF without the spectral modification decision. The middle one shows the same result but with a smaller window Nw = 1024. The
uppermost plot shows the result with spectral modification with the same parameters as the bottom plot.
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Figure 7: GPA for different SNR levels using the presented algo-
rithm. The result shows an improvement on the pitch accuracy in
voiced regions.

4. RESULTS AND EVALUATION

For the evaluation of the performance of the algorithm, two data-
bases are used: The PTDB-TUG database, consisting of 10 fe-
male and 10 male speakers, each pronouncing 236 utterances from
the TIMIT set, and the Bach 10 Chorales dataset which consists

of stems for 10 different Bach songs which are recorded for vio-
lin, clarinet, saxophone and bassoon. The database also contains
a midi set, but the proposed algorithm is not tested on midi data.
The previously presented algorithm is thus evaluated on the mono-
phonic stems of the Bach 10 dataset. For both databases, the orig-
inal ground truth data is used as evaluation criterium. Results are
evaluated with the YIN algorithm and the RAPT and PEFAC im-
plementations found in the voicebox[17].

The overall accuracy is given by the F0 Frame Error (FFE),
which calculates the accuracy given a particular constrain among
all the data and all the frames in the signal. For the evaluation, an
error of 20%, 8% and 10Hz within the ground truth is chosen for
all cases. Moreover, the results are also compared taking the Gross
Pitch Error (GPE), which is the proportion of voiced frames in
both the ground truth (GT) and the result, and the Fine Pitch Error
(FPE) where the standard deviation of the distribution of relative
error values is taken into account [18, 19]. Results are shown for
the Bach 10 database in Table 1 and for the PTDB-UG in Table 2.

The algorithm achieves around 97% frame accuracy over the
Bach10 dataset and around 90% frame accuracy for the speech
examples of the PTDB, relative to 20% of the ground truth values
provided for both datasets. For the Bach 10 evaluation a window
of Nw = 1536 is used which gives a ground pitch error of 3, 4%
and a F0 frame error of about 8, 4% within 10 Hz for the whole of
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Figure 6: Voiced/Unvoiced detection is performed by applying a simple rule which combines the energy in the frame, the harmonic ratio,
and the continuity of the fundamental track.

violin clarinet sax basoon average
Algorithm GPE FPE FFE GPE FPE FFE GPE FPE FFE GPE FPE FFE GPE FPE FFE

Mod. 0.0314 1.7011 0.1107 0.0298 1.1313 0.0662 0.0209 1.1574 0.0478 0.0526 0.7795 0.0955 0.0337 1.1923 0.0801
8% 0.0185 0.5683 0.0199 0.0190 0.6052 0.0180 0.0150 0.6012 0.0155 0.0513 0.5618 0.0559 0.0260 0.5841 0.0273
20% 0.0156 0.8284 0.0179 0.0165 0.8369 0.0166 0.0122 0.8992 0.0142 0.0477 0.9681 0.0546 0.0230 0.8831 0.0258

Nw = 1536 0.0315 1.7293 0.1098 0.0301 1.1598 0.0631 0.0256 1.2116 0.0526 0.0508 0.8810 0.1111 0.0345 1.2454 0.0842
8% 0.0170 0.6175 0.0188 0.0183 0.5958 0.0183 0.0180 0.6667 0.0199 0.0492 0.6277 0.0753 0.0256 0.6269 0.0331
20% 0.0131 0.9566 0.0164 0.0151 0.9179 0.0164 0.0119 1.1938 0.0163 0.0421 1.2224 0.0720 0.0205 1.0727 0.0303

RAPT 0.0405 1.8504 0.1277 0.0343 1.1431 0.0711 0.0352 1.2343 0.0612 0.0693 0.9417 0.1090 0.0449 1.2924 0.0922
8% 0.0236 0.6702 0.0210 0.0223 0.6129 0.0198 0.0253 0.7280 0.0225 0.0675 0.6858 0.0602 0.0347 0.6742 0.0309
20% 0.0177 1.1332 0.0157 0.0181 1.0013 0.0161 0.0174 1.3514 0.0154 0.0573 1.4394 0.0512 0.0276 1.2313 0.0246

YIN 0.0555 2.286 0.1118 0.0340 1.3710 0.0561 0.0529 0.9837 0.0696 0.1510 0.4114 0.1631 0.0734 1.2622 0.1001
8% 0.0503 0.5167 0.0449 0.0281 0.5109 0.0250 0.0505 0.4570 0.0449 0.1508 0.2572 0.1344 0.0699 0.4353 0.0623
20% 0.0498 0.6102 0.0444 0.0272 0.6164 0.0241 0.0493 0.6102 0.0438 0.1504 0.3490 0.1340 0.0692 0.5387 0.0616

PEFAC 0.8670 1.7155 0.8055 0.6378 0.9186 0.5784 0.1250 0.9773 0.1338 0.1205 0.7539 0.1306 0.4376 1.0913 0.4121
8% 0.8648 0.7488 0.7698 0.6360 0.4417 0.5658 0.1202 0.5601 0.1069 0.1185 0.5756 0.1058 0.4348 0.5816 0.3871
20% 0.8594 4.478 0.7651 0.6310 1.999 0.5613 0.1083 1.6454 0.0964 0.1074 1.5181 0.0959 0.4265 2.4101 0.3797

Table 1: Results based on absolute error for the Bach 10 database. Comparison is done with the AMDF weighted ACF, with the exchange
turned on.

the dataset. The error is higher on the bassoon stems, and improves
to about 8% when the spectral modification algorithm is used. The
only parameter which is being changed is the window length for
the calculation.

For the PTDB database in Table 2, the accuracy is also pre-
sented using two different windows, atNw1 = 2048 and atNw2 =
4096 with spectral modification. The algorithm performs well
over the other for the female speech samples, although for the
smaller window size the algorithm finds problems in detecting
low frequency fundamentals. For a higher window length, the al-
gorithm performs well with spectral modification achieving over
92% accuracy for the F0 frame error and around 89% ground pitch
accuracy within 10 Hz of the ground truth.

Results under additive white gaussian noise (AWGN) at di-
fferent signal to noise ratios (SNR) also show an advantage in
comparison with the above mentioned algorithms. Fig. 7 show the
Gross Pitch Accuracy (GPA) (where GPA = 1− GPE), for the pre-
sented algorithm evaluated under a subset of 20 utterances for the
10 male and 10 female speakers of the PTDB database. By us-
ing the presented pitch tracker, an accuracy of over 70% for all
the cases, showing an increased improvement in the overall pitch
accuracy for voiced regions.

In Fig.5 a result is shown on a violin track for two particular

window sizes (Nw1 = 1024 and at Nw2 = 2048). The lower plot
shows the detection performed with Nw2 without spectral mod-
ification and the uppermost plot with the decision algorithm. It
shows that although the lowest window performs well if the track-
ing algorithm is used, the accuracy increases using a longer win-
dow without diminishing the performance. This also shows the
good performance of the spectral modification algorithm at the
time of performing a correct detection without the need of further
parametrization of the algorithm.

5. CONCLUSION

It has been shown that the algorithm proposed in this paper can
be a reliable monophonic pitch detector because it pays attention
to several properties in sound signal based on simple heuristics.
Unwanted jumps in the pitch track which can occur due to the na-
tive timbre characteristics of musical instruments, or due to the
resonant frequencies of the vocal tract at the time of uttering par-
ticular vowel qualities, can be diminished by the use of a spectral
correction function when there exist ambiguities in the output of
the weighted autocorrelation signal. Furthermore, the f0 track is
smoothed by the use of a tracking function that resolves the possi-
ble disturbances when, for example, a transient between continu-
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female male
Method GPE FPE FFE GPE FPE FFE

Mod. Nw2 0.1120 2.2640 0.0750 0.1135 2.1105 0.0805
8% 0.1152 2.1508 0.0715 0.1169 2.0854 0.0798
20% 0.1149 2.1809 0.0715 0.1150 2.1561 0.0797

Mod. Nw1 0.2516 3.8864 0.0997 0.2865 3.8846 0.1251
8% 0.2486 3.7214 0.0960 0.2918 3.8500 0.1243
20% 0.2461 3.8046 0.0959 0.2817 4.0088 0.1241

Nw = 2048 0.1063 2.5431 0.0758 0.1329 2.5086 0.1589
8% 0.1069 2.4395 0.0749 0.1375 2.4752 0.1587
20% 0.1057 2.4875 0.0749 0.1346 2.5677 0.1587

YIN 0.3028 2.2002 0.0835 0.5663 1.4291 0.1308
8% 0.3058 2.0779 0.0814 0.5728 1.4050 0.1310
20% 0.3058 2.0781 0.0814 0.5728 1.4057 0.1310

RAPT 0.1523 3.0357 0.1144 0.1523 2.8079 0.0955
8% 0.1520 2.9129 0.1065 0.1536 2.7766 0.0899
20% 0.1503 2.9803 0.1062 0.1496 2.8834 0.0891

PEFAC 0.3931 3.6037 0.2237 0.3586 3.2301 0.1885
8% 0.3827 3.4276 0.2082 0.3609 3.2083 0.1789
20% 0.3819 3.4668 0.2080 0.3562 3.3335 0.1779

Table 2: Performance results of different algorithms for the PTDB-
TUG database.

ous notes is present. The fundamental frequency track can thus be
reliably extracted by the use of the proposed ACF based algorithm
without the need for tuning particular window sizes. Although
there exist further possibilities of improvement in detecting the
moment where transitions occur and for voiced segment determi-
nation, it is possible to find a decision threshold for the application
of the presented algorithm. The spectral modification algorithm
performs well at the moment of finding these transitions, and can
be reliable for improving detection of the fundamental in voiced
speech and musical signals.
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ABSTRACT

The following article introduces a new parametric synthesis algo-
rithm for sound textures inspired by existing methods used for vi-
sual textures. Using a 2D Convolutional Neural Network (CNN),
a sound signal is modified until the temporal cross-correlations of
the feature maps of its log-spectrogram resemble those of a tar-
get texture. We show that the resulting synthesized sound signal
is both different from the original and of high quality, while being
able to reproduce singular events appearing in the original. This
process is performed in the time domain, discarding the harmful
phase recovery step which usually concludes synthesis performed
in the time-frequency domain. It is also straightforward and flex-
ible, as it does not require any fine tuning between several losses
when synthesizing diverse sound textures. Synthesized spectro-
grams and sound signals are showcased, and a way of extending
the synthesis in order to produce a sound of any length is also pre-
sented. We also discuss the choice of CNN, border effects in our
synthesized signals and possible ways of modifying the algorithm
in order to improve its current long computation time.

1. INTRODUCTION

The main difficulties encountered in sound texture synthesis be-
come apparent when trying to properly define them. While exam-
ples of textures easily come to mind (e.g. environmental noises
such as wind or rain, crowd hubbub, engine sounds, birds singing,
etc.), pinpointing their common factors proves much harder: ran-
domness appears to be one, along with a "background" aspect
caused by an important number of indistinguishable small audio
events happening at once. But this is not all, since we would
still tend to call a sound including small occasional events hap-
pening in the foreground a texture. Hence, the definition offered
by Saint-Arnaud [1], summed up by Schwartz [2], of "a superpo-
sition of small audio atoms overlapping randomly while following
a higher level organization" is incomplete because it only encom-
passes completely stationary textures. It can even be argued that
in reality no such texture can be observed: a synthesis algorithm
strictly following this definition would thus be incomplete and of
little practical use.

This means that a sound texture synthesis algorithm needs to
be able to synthesize small indiscernible and random events but
also singular, recognizable events, both harmonic (e.g. birds chirp-
ing) or not (e.g. crowd clapping). This extremely broad range
of sounds is precisely what makes texture synthesis complex and
Copyright: c© 2019 Hugo Caracalla et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

why common synthesis algorithms (for instance sinusoidal mod-
els) prove ill-suited for it, making it require dedicated ones.

Before presenting an overview of existing sound texture syn-
thesis algorithm, we will first detail more precisely what is ex-
pected from them.

In the case of textures, "re-synthesis" is a term as fitting as
"synthesis": starting from an existing texture, the goal is usually to
create a sound that is different from the original while still being
recognizable as the same kind of texture, as if it had been recorded
only moments later. Although this is the prime goal of the algo-
rithm, this obviously does not exclude the possibility of manipu-
lating the synthesized texture. For instance, it could be desirable
to allow the algorithm to synthesize texture lasting any arbitrary
length of time, or to be able to have the synthesis evolve through-
out time, altering its properties or progressively turning into an-
other texture.

To achieve such a result, a broad variety of methods have been
developed: for the needs of this article, we will split them into 3
different categories.

The first of those is physics-based synthesis. It regroups meth-
ods which goal is to first emulate the phenomenon at the source
of the texture (for instance the impact of a drop of rain on a flat
surface) via a physically informed model of it. From there one
can simulate any number of events, dimensioning and randomiz-
ing them so as to fit the target texture. The result of this is a con-
vincing physical simulation of the texture (see for instance [3]).
While this method has the potential of being extremely control-
lable and allowing the manipulation of synthesis parameters that
have a physical meaning, it also has the obvious flaw of not being
flexible at all. Each algorithm correspond to one and only one kind
of texture: a physical model of the rain will prove poorly suited to
synthesize a flock of birds twittering.

The second is granular synthesis. It regroups methods in which
the original texture is first chopped into milliseconds-long audio
particles, then reordered and concatenated to reconstruct a new
texture (see for instance [4]). While being quite versatile in the
range of texture it is capable of re-synthesizing, such a method
is also heavily dependent on the choice of atom size and requires
more complex reordering methods when one tries to synthesize a
broader array of textures. In particular, reconstructing any fore-
ground event lasting more than the size of an atom proves a hard
task.

The last synthesis category, to which our algorithm belongs, is
parametric synthesis. It regroups synthesis methods in which the
general goal is to establish a set of parameters to describe textures
with. If those parameters are properly chosen, any two textures
which parameters are equal will sound alike without necessarily
being identical. From there, one would only need to modify a
sound until its parameters are equal to those of a target texture
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in order to re-synthesize it. While in theory this method is able
to synthesize any and all kind of textures, in practice the quality
and flexibility of the synthesis entirely depend on the choice of
parameters. Those parameters need to describe the texture so as
to hold enough information to re-synthesize a similar one, while
not holding too much so as to not over-constraining the synthesis
(in which case the only way of reaching a set of parameters would
be by creating a perfect copy of the original texture). In addition
to this, the parameters must be adapted to the description of the
widest possible range of textures.

This paradigm is notably used by McDermott and Simoncelli
in [5], where a set of statistics extracted from the critical and mod-
ulation bands are used as parameters. This algorithm gives con-
vincing results for a broad range of textures, but fails when try-
ing to synthesize textures containing singular events. Inspired by
the work of Gatys et al. [6] who uses the cross-correlations be-
tween the feature maps of a trained 2D convolutional neural net-
work (CNN) as parameters to synthesize visual textures, several
attempts to convert this approach to audio have been made. In
[7], Ulyanov and Lebedev use the same principle applied to spec-
trograms, with the frequency dimension acting as color depth and
using a 1D CNN, to synthesize textures with moderate success. In
[8], Antognini et al. add to this approach several constraints aimed
at recreating rhythm with a better fidelity and increasing the diver-
sity of results. While giving convincing results, this method re-
quires fine tuning in order to balance the constraints. Since chang-
ing target texture implies tuning those synthesis parameters, this
makes the algorithm lose in flexibility. In addition to this, both
this method and Ulyanov and Lebedev’s eventually output a spec-
trogram: it is then necessary to recover its phase and invert it to
retrieve an audible time signal, using methods such as the Grif-
fin and Lim algorithm [9]. This phase recovery step is an added
burden to the synthesis as it tends to downgrade the quality of the
audio signal, even more so when working with complex sounds
such as textures.

Although not directly applied to sound texture synthesis, it
may be noted that several works such as those of Grinstein et al.
[10], Barry and Kim [11] and Tomczak [12] also use the same
parametrization extracted from the feature maps of a CNN as part
of audio style transfer processes.

In this work, we present a new parametric texture synthesis
based on the method of Gatys et al.[6]. Our synthesis algorithm
does not require any fine tuning or spectrogram inversion and works
with a wide array of textures, including those presenting strong
singular events. We also present a few examples to demonstrate its
possibilities and proceed to discuss those results.

2. METHOD

Following the principle of parametric synthesis, we first define a
set of parameters to represent a sound texture with.

2.1. Parametrization

2.1.1. Pre-processing

As our method is adapted from the work of Gatys et al. [6] on 2D
images, we require a 2D representation of our sound signal.

To this effect we work with log-spectrograms. The log-spec-
trogram S is computed using the spectrogram X , taken as the mag-
nitude of the short-term Fourier Transform (STFT) of the sound
signal:

S =
log(1 + CX)

log(1 + C)
(1)

where C a factor controlling compression: the larger C is, the
more details we will get at low amplitudes. This choice of normal-
ization is made to ensure that the spectrogram is both compressed
by the log function and comprised between 0 and 1.

In practice we work with time signals sampled at 22050 Hz,
and a choose as STFT parameters a window length of 512 and
hop-size of 256. The sound signals all have a length of 262400
samples so that their log-spectrograms are 1024 frames long, and
have a bit depth of 16. The compression factor C is set to 1000.

For the rest of this article, any time-frequency matrix will have
frequency as first axis, and time as second. For instance, S(f, t)
denotes the value of S at the f -th frequency bin and t-th time sam-
ple.

2.1.2. Network choice

Seeing as Gatys et al. use a network trained for image recognition,
our first intuition was to use an equivalent network for working
on spectrograms. As such we initially trained a simple deep 2D
CNN on recordings taken from freesound.org in scene recognition
in order to use it for synthesis. But in [13], Ustyuzhaninov et al.
show that visual textures of the same quality as those obtained by
Gatys et al. can be synthesized using a single-layer untrained CNN
with various filter size instead of a trained CNN.

This proves to still hold for sound textures: the network we
use to synthesize the textures presented in this article is a single-
layer untrained 2D CNN using filters of different sizes and ReLU
activation. Its single layer is made of 128 square filters of each of
the sizes [3, 5, 7, 11, 15, 19, 23, 27] with a stride of (1, 1) and
zero-padding so that the differently-sized convolutions can then
be stacked, followed by the rectified linear unit (ReLU) activation
layer. The weights from the filters are drawn from a uniform dis-
tribution between −0.05 and 0.05, and no bias is applied.

For generalization’s sake, the rest of the method is nonethe-
less presented with a network that has K layers (with K being
potentially more than 1), although it is still valid when using a
single-layer network.

It is worth noting that unlike the methods presented in [7,
8], we use the log-spectrograms as 2D images with time and fre-
quency replacing the two space dimensions and not as a 1D signal
with frequency as depth, hence the need for 2D convolutions.

2.1.3. Parameters computation

Let us denote F k
i,(x,y) the value of the i-th feature map of the k-

th layer at the position (x, y). In [6], Gatys et al. use the Gram
matrices of each layer of the network as parameters. The (i, j)
element of the gram matrix Gk of k-th Gram marix is defined as
the cross-correlation between the i-th and j-th feature maps of the
layer:

Gk(i, j) =
∑
(x,y)

F k
i (x, y)F

k
j (x, y) (2)

The parameter set is chosen as the list of gram matrices from
G1 to GK . Although this proves a good choice for visual tex-
tures, such parameters cannot be directly used in the case of sound

DAFX-2

91

https://freesound.org/


Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

log-spectrogram

C
N

N

pre-processing

feature
maps

feat.
maps

…..
convolution

(+activation & pooling)

conv.

(+act. & pool.)

conv.

(+act. & pool.)

temporal
cross-correlations

H1 Hk HK

texture parameters

temporal
cross-corr.

temporal
cross-corr.

….. …..

Figure 1: Computation of the 3-dimensional parameter tensors from the temporal cross-correlations of the feature maps of a CNN, .

textures. Indeed, those Gram matrices average all spatial informa-
tion when performing a sum over all positions (x, y), thus imply-
ing that the parametrization should be invariant in both directions.
This does no translate well to sound, since sound textures behave
differently regarding time and regarding frequency: while we wish
for a pseudo-stationarity over the time dimension, there is no rea-
son for there to be any invariance to pitch-shifting. As such, we
instead use the 3-dimensional tensors Hk defined as:

Hk(i, j, x) =
∑
y

F k
i (x, y)F

k
j (x, y) (3)

Defined this way, the tensors Hk with k ∈ [1,K] that we
use as parameters do indeed average all information from the time
dimension, but keep the information regarding the frequency di-
mension intact, thus achieving our goal. The parameter extraction
process is represented in Figure 1.

2.2. Texture loss

As mentioned in Section 1, the main goal of parametric synthesis
is to create a sound which has the same parameters values as a
those of a target sound. Seeing as we now have a parameter set,
we only need to define a quantitative error function which will then
be minimized throughout the synthesis process. To that effect, we
use a simple distance function between the two sets similarly to
Ustyuzhaninov et al. [13]:

L =
∑
k

‖H̃k −Hk‖2
‖H̃k‖2

(4)

with ‖.‖2 denoting the L2 norm, and the tilde denoting the target
texture parameters.

2.3. Optimization

The last step of the synthesis process is to create a sound signal
which minimizes the texture loss. Since the chain of operations
leading to the computation of the texture loss is differentiable (de-
spite passing through the complex domain due to the STFT: see
[14] for further insight), we may use any optimization algorithm
requiring the gradient of the error function to iteratively modify a

sound until it reaches a satisfying minimum of the loss function
(similar time domain synthesis can be found in [11, 12].

We observed that performing the optimization on the log-spec-
trogram is iteration-wise faster than performing the optimization
directly on the sound signal (both of them being initialized us-
ing white noises). This seems to indicate that the texture loss
is simpler to minimize when working in the time-frequency do-
main rather than when working directly in the time domain. To
take advantage of that fact, we first perform a quick synthesis of a
log-spectrogram and invert it using a random phase matrix (which
would correspond to performing one step of the Griffin-Lim algo-
rithm): while this inversion raises the value of the texture loss, it
still makes for a good initialization of the optimization in the time
domain. This allows us to skip a major part of the optimization
process on the sound signal. Once performed this optimization re-
sults in a sound signal which minimizes the texture loss, meaning
its parameters values are close to those of the target texture. The
synthesis process is illustrated in Figure 2.

As in [6] and [8], we found that the L-BFGS algorithm (in-
troduced in [15]) converges fast and yields good audio results.
Starting from a white noise image, we perform 1000 iterations of
it in the time-frequency domain to create the initialization of the
time domain optimization. The time domain optimization is then
performed over 10000 iterations. Using a GeForce GTX 1080 Ti
GPU, the whole process takes around an hour.

3. EXPERIMENTS

3.1. Experimental results

The log-spectrograms of both target and synthesized textures are
shown in Figure 3 for three sounds: a wildlife scene with crickets
chirping in the background and a bird singing in the foreground
(recognizable to its inverted "v"-shaped patterns), birds singing
both in the background and in the foreground (with one strongly
standing out the mid-frequency range), and the hubbub of a crowd
chatting. The audio signals of all three are available for listen-
ing online 1 along with other textures such as wind, bees and fire
sounds.

1See http://recherche.ircam.fr/anasyn/caracalla/
dafx19/synthesis/
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Figure 2: Organization of the texture synthesis algorithm: a quick optimization on a log-spectrogram is performed in the time-frequency
domain and its result is inverted. It then serves as initialization for the main optimization performed on a sound signal.

3.2. Discussion

3.2.1. Results analysis

The strength of this texture synthesis algorithm lies in the fact that
it manages to both synthesize background and foreground events
convincingly. The crowd chatter, which includes no singular events,
is as well recreated as the bird singing loudly in front of a flock.

Another advantage to it is the absence of any parameter tuning:
unlike the method presented by Antognini et al. [8] where three
losses need to be balanced through the optimization process and
potentially from one texture to another, the texture loss used here
is straightforward and requires no tuning. This way the algorithm
can effectively be used without needing to take into account which
texture is being synthesized.

In addition to this, because the final optimization is performed
on the time signal our algorithm does not end with a spectrogram
inversion (the harm a phase retrieval process could bring is clearly
noticeable when inverting spectrograms of existing texture and
comparing the resulting signal to the original).

3.2.2. Untrained vs. trained network

As mentioned in Section 2.1.2, both trained and untrained network
have been used in visual texture synthesis with success. The main
argument in [6] is that the CNN trained for image recognition has
learned filters adapted to common shapes encountered in images.
This, coupled with the depth of the network, is what supposedly
allows the network to recreate a large array of shapes when trying
to reproduce the cross-correlations between the activations of its
filters once the network has been fed an image (in this case, a visual
texture). This argumentation is challenged by Ustyuzhaninov et al.
in [13], who demonstrate that a single-layered untrained CNN can
perform as well as a trained network given enough filters. This
would tend to imply that given enough random filters, the space of

shapes recreated when synchronizing some of those filters is wide
enough to compensate for the lack of training.

This translates seamlessly to sound textures: while we first
worked with networks trained for acoustics scene recognition in
an attempt to emulate the process of [6], experiments with un-
trained network show that they perform just as well. This being
said, it could be interesting to explore the difference between the
use of the two further: for instance, trained CNN might require
less filters than untrained ones, thus making our parameter ten-
sors lighter and the computations faster. The depth of the trained
CNN might also help it capture correlations across distant events
in the spectrogram. This would indeed be useful, seeing as birds
textures from Figure 3 show that while the algorithm manages to
reproduce the local pattern of bird cries well, it fails to reproduce
the larger pattern of groups of cries separated by gaps of a few
seconds. This is also quite audible when listening to the attempt
at (non-texture) singing voice synthesis: since the human voice is
rich in harmonics, it spans over a large portion of the frequency
spectrum. Because our algorithm does not enforce long-distance
correlations, the upper harmonics are not synchronized with the
lower ones, thus creating another high-pitched voice speaking on
its own. In the fire synthesis, this is also clearly noticeable when
looking at impacts: since those short and sharp events span over
most frequencies, the algorithm has trouble generating them and
mostly manages to recreate impacts that only span over part of
the frequency axis, resulting in less convincing synthesized tex-
tures. This could potentially be solved even when using untrained
network by choosing bigger filters, which would then "see" larger
chunks of the log-spectrogram at once.

3.2.3. Border effect

Our texture synthesis presents one intriguing property: at the start
and end of the sound, the synthesized texture is identical to the
original one (for instance, this is slightly visible at the start of the
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Figure 3: Log-spectrograms of both originals textures (on the left) and synthesized textures (on the right) using the method presented in this
article.

log-spectrogram of the birds texture from Figure 3). In all of our
synthesis, the leftmost and rightmost frames present exactly the
same patterns in both original and synthesized textures. Although
this effect is interesting, it dissipates quickly and only affects the
time dimension: this means that even if we were to not get rid of
this artifact, slightly cropping the start and end of the synthesized
texture does completely discard it.

Gatys et al. [6] notice a similar effect in his visual texture syn-
thesis where a distinctive part of the image is always reproduced
around the same spot, and suggest that this effect originated from
the zero-padding used in the convolution layers. To test this the-
ory we experimented with synthesizing textures using only "valid"
convolutions (i.e. without any padding): our results still presented
the same border artifacts, which would indicate that they do not
originate from the zero-padding. We do not have any alternative
explanation to present at the moment.

It is worth noticing that this effect lasts around the length of
the biggest filter used (in our case, 27 frames): for now, this means
that we need to choose a filter size large enough to ensure the good
reproduction of correlations between events, while small enough
so that the border effect does not spoil too much of the interior of
the synthesized texture.

3.2.4. Computation time

As mentioned in Section 2.1.3, computation time is for now far be-
hind real-time since it takes around an hour to synthesize 12 sec-
onds of audio with one GPU. While tedious for now, this process
could potentially be alleviated by removing as much redundant in-
formation from the target parameters as possible (as of now, we
have around ∼100M parameters in the parameter tensors Hk).

Using the same network as described in Section 2.1.2, we re-
moved all cross-correlations between filters of different size from
the parameter tensor: this dropped the number of parameters to
∼16M without altering the quality of synthesized textures. An-
other lead is to use a trained CNN instead of an untrained one,
seeing as trained filters should prove efficient at describing pat-

terns without needing to be as numerous as in an untrained CNN.
We believe it should also be possible to drop the number of param-
eters even lower, for instance by using principal component analy-
sis to select which cross-correlations need to be imposed over the
synthesized signal as Gatys et al. [6] did.

Another potential lightening of the algorithm could come from
changing signal representation: so far we have used log-spectro-
grams, but using another time-frequency representation could be
greatly beneficial. For instance, using mel bands instead of the
raw frequency bins of the spectrogram would reduce the number
of parameters while staying perceptually sensible.

3.2.5. Extension

The basis for the texture synthesis having been set, it is also possi-
ble to develop on it and add ways of creatively alter the synthesized
texture. An example of manipulation is the creation of an indefi-
nitely long sound texture.

In order to do so, we use a principle resembling the "exquisite
cadaver" game, where one has to continue the drawing of someone
else while only seeing the border of the other’s drawing. In our
case we first synthesize an initial sound texture from a given target
and copy the end of it onto the start of a white noise signal: we
then perform another synthesis using this signal as initialization
and keeping the same target texture. While doing this, we also
prevent the optimization to be performed on the section that was
copied from the previous synthesis. This results in a continuous
texture seamlessly extending on the copied part, thus being able
to perfectly follow where the previous synthesis left off. We only
need to concatenate the newly generated texture to the previous
one to create a longer sound texture. This process can obviously
be repeated any number of times so as to obtain a texture of any
desired length. One iteration of this process is shown on figure 4,
while an example of such a synthesis is available online.2

2See http://recherche.ircam.fr/anasyn/caracalla/
dafx19/extended_synthesis/
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Figure 4: Extension of a first synthesis by copying its end onto the start of a white noise signal. This signal is then used as initialization of
another synthesis, while preventing the common part from being modified. The tiles are then concatenated to form a longer texture. Sound
signals are represented by their log-spectrogram for explanation’s sake.

4. CONCLUSIONS

We introduced a new parametric texture synthesis based on the
work of Gatys et al. [6] in visual textures: using the temporal
cross-correlations between the feature maps of a CNN as param-
eters, we iteratively modify a sound signal until the values of its
parameters reach those of a target texture. While the input of the
CNN is the log-spectrogram of the sound, the optimization pro-
cess is made directly in the time domain so as to avoid any phase
recovery step in the synthesis.

The algorithm yields convincing results on a wide array of tex-
ture, even if they include singular events in the foreground. It
can be straightforwardly applied without requiring the fine tun-
ing of synthesis parameters from one texture to another. Its major
flaws as of now lie in its long computation time and its trouble
re-synthesizing correlations of events far apart in the log-spectro-
gram. A number of possible ways to address the first issue have
been presented, for instance by subsampling the parameters tensor
and altering the time-frequency representation. As for the second,
the influence of the CNN architecture, and most notably the shape
of its filters, are currently being investigated.
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ABSTRACT

Deep generative neural networks have thrived in the field of com-
puter vision, enabling unprecedented intelligent image processes.
Yet the results in audio remain less advanced and many applica-
tions are still to be investigated. Our project targets real-time sound
synthesis from a reduced set of high-level parameters, including
semantic controls that can be adapted to different sound libraries
and specific tags. These generative variables should allow expres-
sive modulations of target musical qualities and continuously mix
into new styles.
To this extent we train auto-encoders on an orchestral database
of individual note samples, along with their intrinsic attributes:
note class, timbre domain (an instrument subset) and extended
playing techniques. We condition the decoder for explicit control
over the rendered note attributes and use latent adversarial train-
ing for learning expressive style parameters that can ultimately be
mixed. We evaluate both generative performances and correlations
of the attributes with the latent representation. Our ablation study
demonstrates the effectiveness of the musical conditioning.
The proposed model generates individual notes as magnitude spec-
trograms from any probabilistic latent code samples (each latent
point maps to a single note), with expressive control of orchestral
timbres and playing styles. Its training data subsets can directly
be visualized in the 3-dimensional latent representation. Wave-
form rendering can be done offline with the Griffin-Lim algorithm.
In order to allow real-time interactions, we fine-tune the decoder
with a pretrained magnitude spectrogram inversion network and
embed the full waveform generation pipeline in a plugin. More-
over the encoder could be used to process new input samples, after
manipulating their latent attribute representation, the decoder can
generate sample variations as an audio effect would. Our solu-
tion remains rather light-weight and fast to train, it can directly
be applied to other sound domains, including an user’s libraries
with custom sound tags that could be mapped to specific genera-
tive controls. As a result, it fosters creativity and intuitive audio
style experimentations. Sound examples and additional visualiza-
tions are available on Github1, as well as codes after the review
process.

1https://github.com/acids-ircam/Expressive_WAE_FADER
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1. INTRODUCTION

Modern music production techniques rely on large and hetero-
geneous sound sample libraries along with diverse digital instru-
ments and effects. It opens to a great variety of sound design pos-
sibilities and limitless contents to compose with, however princi-
pled interactions and scaled visualisations are still lacking in order
to efficiently explore such potential and use it to generate target
sound qualities.
Unsupervised generative models learn an underlying data distri-
bution solely based on the observation of examples, in order to
consistently generate novel content. They have been successfully
applied to complex computer vision tasks such as processing fa-
cial expressions, landscapes, visual styles and paintings. Some
solutions to audio emerged more recently, including pioneer musi-
cal systems such as NSynth (Neural Synthesizer [1]) for real-time
high-quality sound synthesis. However, the heavy model architec-
ture and prohibitive training time restrict its dissemination. The
learned internal representation remains mostly uninformative and
its many generative parameters are still too little correlated to ex-
plicit semantic qualities.
In this paper, we develop a high-level sound synthesis system with
meaningful data visualisations and explicit musical controls. It is a
lighter non-autoregressive model that can be trained fast on small
datasets, including an user’s personal libraries. Our goal is to learn
expressive style variables from any sound tags, so that the model
fosters creativity and assists digital interactions in music produc-
tion. Considering note samples of orchestral instruments, we could
for instance synthesise novel timbres or playing style hybrids.
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Figure 1: High-level note sample generation from the latent rep-
resentation and musical conditioning in the decoder with FiLM.
Intermediate features are modulated by the note targets and expres-
sive style controls in order to synthesize new timbres and effects.
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We train Wasserstein Auto-Encoders (WAEs [2][3]) on Mel- spec-
trogram magnitudes to organise a generative latent representation
of individual note samples spanning the tessitura of 12 orches-
tral instruments. The considered database has intrinsic attributes:
note classes, playing styles and timbres (each instrument subset),
that we wish to control when generating new notes from the latent
space. Thus we extend the WAE model with musical conditioning
in the decoder and Adaptive Instance Normalization (AdaIN [4]).
Using Feature Wise Linear Modulation (FiLM [5]) and adversar-
ial training with a Fader latent discriminator [6], our WAE-Fader
model effectively learns these generative controls along with ex-
pressive style variables that can be mixed continuously.
We evaluate these features in terms of generative performances and
representation. We perform an ablation study and show that the
model can sustain a good test reconstruction quality while achiev-
ing an accurate attribute-conditional generation. The success of
the method relies on an attribute-free latent representation so that
the decoder is pushed to learn the conditioning. These distribu-
tions can be visualized directly in the 3-dimensional latent space
where clusters denote an undesired attribute encoding. We mea-
sure it with inter-class statistics and latent post-classification. The
experiment validates correlations between low attribute encoding
and effective conditioning.
We obtain an expressive note sample generator with 3-dimensional
representations of the training sound domains, decoding proba-
bilistic latent samples with explicit control over the rendered note
qualities. The learned style variables of the orchestra can ulti-
mately be mixed continuously, as faders do, in order to intuitively
explore new musical effects. Generated spectrogram magnitudes
can approximately be inverted to waveform with the Griffin-Lim it-
erative algorithm (GLA [7]). Ultimately we fine-tune the decoder
with a pretrained inversion network [8] for real-time waveform
synthesis. We embed the resulting generative system in a plugin
allowing for MIDI mapping, live exploration and Digital Audio
Workstation (DAW) integration.

2. STATE-OF-ART

2.1. Generative models and regularized auto-encoders

Generative models aim to find the underlying probability distribu-
tion of the data p(x) based on a set of examples in x ∈ Rdx . To
do so, we consider latent variables defined in a lower-dimensional
space z ∈ Rdz (dz � dx), a higher-level representation that
could have led to generate any given example. The latent vari-
able generative model is defined by the joint probability distri-
bution p(x, z) = p(x|z)p(z), where the prior p(z) is usually
modelled with simpler distributions such as Gaussian or uniform
while a complex conditional distribution p(x|z) maps latent codes
to the data space. The model could be evaluated with the max-
imum marginal likelihood over the considered dataset. However
for complex distributions that could model real-world data, inte-
gration cannot be computed in closed form.
Regularized auto-encoders have been used to reformulate the prob-
lem as an optimization by jointly learning the generative mapping
pθ(x|z) ∈ G and an encoding distribution qφ(z|x) ∈ Q from fam-
ilies G,Q of approximate densities both parameterized with neural
networks. This was initially proposed through Variational Infer-
ence in the Variational Auto-Encoder (VAE [9]) that maximizes a
lower bound of the data log-likelihood:

Eqφ(z|x)
[

log pθ(x|z)
]
−DKL

[
qφ(z|x) ‖ pθ(z)

]
≤ log pθ(x) (1)

This amounts to optimizing the Evidence Lower Bound Objective
(ELBO) that can be interpreted as follow, the first term is the Nega-
tive Log-Likelihood (NLL) data reconstruction cost and the second
is the Kullback-Leibler Divergence (KLD) that quantifies the error
made by using the approximate qφ(z|x) rather than the true pθ(z).
This latent regularization pushes the encoder to remain close to the
prior latent density and can be weighted with a β parameter that
balances these two objectives.

LELBO
θ,φ = −Eqφ(z|x)

[
log pθ(x|z)

]
+ β ·DKL

[
qφ(z|x) ‖ pθ(z)

]
(2)

The VAE is implemented with a stochastic encoder that parame-
terises an isotropic Gaussian latent distribution qφ(z|x)
∼ N (µφ(x), σφ(x)) regularized against an unit variance prior.
These assumptions allow analytical KLD computation and differ-
entiable latent sampling for direct optimization of the ELBO.
The KLD forces each individual latent code to resemble the prior,
which implicitly matches the whole encoded distribution. How-
ever a fitted ELBO value does not always result in an effective
inference. Since the latent codes of different inputs are individ-
ually regularized, the KLD may prevent the encoder from learn-
ing any useful features (posterior collapse [10]) while the decoder
only produces pθ(x) regardless of the encoded information. Other
conflicting solutions of the ELBO lead to undesired solutions and
known limitations of VAEs such as blurriness of generated sam-
ples or uninformative latent dimensions ([11]).
With justifications stemming both from Likelihood-free Optimiza-
tion (InfoVAE [3]) and the theory of Optimal Transport (WAE [2]),
a more general framework for training regularized auto-encoders
was recently proposed and that we call Wasserstein Auto-Encoders
(WAEs). Considering a deterministic decoder Gθ : z → x and
any family of conditional encoder distribution Qφ(z|x) ∈ Q, it
is sufficient that the marginal QZ(z) := EX

[
Q(z|x)

]
matches

any prior PZ . In comparisons with VAEs, WAEs can optimize any
non-negative cost function C and any divergence measure DZ be-
tween latent distributions, without requiring a stochastic encoder
nor restricting the latent model to Gaussian prior:

LWAE := infQ(z|x)∈Q EXEQ(z|x)
[
C(x, G(z))

]
+ β ·DZ(QZ(z), PZ) (3)

Thus we set our experiment in the more flexible WAE framework.
These regularized auto-encoders are powerful unsupervised repre-
sentation learning models, rather light-weight and fast to train, per-
forming both inference (encoder) and generation (decoder). They
are effective on small datasets (hundreds of training examples),
learning a structured latent representation with disentangling ca-
pacities encouraged when β > 1. Once trained, probabilistic sam-
ples of the latent prior are consistently decoded into new samples
and latent interpolations map to smooth data variations.

2.2. Maximum Mean Discrepancy Regularization

As shown for VAEs, the choice of latent divergence heavily im-
pacts the resulting model performances. Since the point-wise KLD
has strong intrinsic limitations, a more flexible regularization is re-
quired for WAEs. Such differentiable divergence on latent distri-
butions was developed in the Reproducing Kernel Hilbert Space
(RKHS) as a distance between probabilistic moments µp,q com-
puted with a non-parametric kernel k:

||µp − µq||2H = 〈µp − µq, µp − µq〉 (4)

= Ep,pk(x, x′) + Eq,qk(y, y′)− 2Ep,qk(x, y)
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It defines the Maximum Mean Discrepancy (MMD [12]) between
two distributions x ∼ p(x) and y ∼ q(y), where Ep,q is the expec-
tation that can be evaluated with the Radial Basic Function (RBF)
kernel of free parameter Σ:

k(RBF)(x, y) = exp

(
||x− y||2

−2Σ2

)
(5)

To the extent of latent regularization, MMD can be computed be-
tween every deterministic mini-batch encoding zencoder = Q(x)
and random samples from any latent prior zprior ∼ PZ . Through-
out the model optimization, MMD is thus matching the aggregated
encoder posterior to the prior rather than regularizing each latent
point individually. In comparisons with KLD, WAE-MMD allows
for less constrained inference and richer latent representations. For
instance, increasing β to two orders of magnitude above the re-
construction cost does not impede the decoder training. Since the
WAE objective does not optimize the bounded NLL, the overall
generative performances can be improved.
Other kernel functions can be used, which may be more discrim-
inating at the expense of heavier computations. Alternatively to
MMD, the WAE-GAN uses an adversarial latent discriminator to
assess the divergence, thus optimizing a parametric function that
could match even closer the encoder to the prior. However, since
we consider a low-dimensional latent space of only 3 dimensions
and remain with a simple isotropic Gaussian prior, MMD-RBF is
sufficient yet light and stable to train on.

2.3. Conditioning and feature normalizations

Regularization in auto-encoders encourages disentanglement of in-
dependent generative factors onto separate latent dimensions that
would in turn control the corresponding decoded data variations.
However this is only partly achieved on toy datasets (β-VAE [13])
and in most cases the unsupervised latent dimensions are hardly re-
lated to explicit generative parameters. An additional supervision
signal may be applied to the generative neural network in order to
control and render specific attributes of the data. Thus we consider
observations x paired with attribute annotations y, and condition
the decoder as G : {z,y} → x.
The simplest conditioning for categorical attributes is to encode
them into one-hot vectors that are concatenated to the latent codes
before being processed by the decoder. However more advanced
conditioning techniques have been developed as for visual style
transfer, using full images as conditions (conditional style trans-
fer [14]). In the Feature-wise Linear Modulation (FiLM [5]) ap-
proach, a separate generator learns a mapping from any style in-
puts to adaptive biases βFiLM(y) and scales γFiLM(y) applied to
the conditional network computations. This modulation may be
placed anywhere within the architecture and proved to be particu-
larly suited to Adaptive Instance Normalization (AdaIN [4]). Con-
sidering the l-th hidden layer output activations hl = gl(hl−1) of
a generative neural network, the conditional modulation is thus be
computed as:

AdaIN(hl,y) = γlFiLM(y)

[
hl − µ(hl)

σ(hl)

]
+ βlFiLM(y) (6)

in which mean and standard deviation {µ,σ} are computed across
features, independently for each channel and each sample. In the
context of style transfer, it can be interpreted as aligning the mean

and variance of the content features with those of the style con-
dition. It is a versatile conditioning technique, requiring little ad-
ditional computations (particularly when applied channel-wise in
convolution layers). It also suits well to handling multiple condi-
tions that may more efficiently be mapped throughout the network
rather than arbitrarily concatenated to the input. Thus we will use
FiLM and AdaIN for conditioning the decoder on both note and
style classes. However, such normalization is not suited to clas-
sification tasks since content features are individually normalized.
In order to preserve its inference power, we will use Batch Nor-
malization (BN) on the encoder’s hidden activations.

2.4. Adversarial latent training

Adversarial regularization was proposed as an alternative to MMD
in the WAE-GAN. For simple low-dimensional latent distributions,
the expense of an additional parametric adversarial regularizer is
not required. Nonetheless, adversarial latent training remains rel-
evant for expressive conditioning. As detailed in the previous sec-
tion, adaptive conditioning techniques paired with specific feature
normalizations substantially improved feed-forward style transfer.
However, in an auto-encoder setting, if the latent space implic-
itly encodes the attributes of interest, the decoder bypasses the
conditioning and does not learn any effective generative controls.
This problem was tackled in image generation with the introduc-
tion of an adversarial Fader latent discriminator F (Fader Net-
works [6]) that competes with the non-conditional encoder in or-
der to prevent correlations between attributes and latent distribu-
tions. As for the conditional models, we consider annotated data
samples {x,y} and for simplicity, a categorical one-hot repre-
sentation y ∈ {0, 1}n with a single yi = 1 and its opposite
ȳ := 1n − y. Such attribute-free latent representation is imple-
mented in two separate optimization steps, first latent classification
of the true attribute F : z → ŷ ∼ pψ(y|Q(x)), then adversarial
confusion of the latent classifier at predicting the opposite:

Lclass.(ψ|φ) = −
∑
x,y

log(pψ(y|Q(x)))

Ladv.(φ|ψ) = −
∑
x,y

log(pψ(ȳ|Q(x)))
(7)

As the encoder is pushed to remain invariant to attributes, the de-
coder is forced to learn the conditioning in order to reconstruct
every input samples along with their source attributes. Thus it
replaces adversarial training in the high-dimensional pixel space
with latent attribute confusion in the low-dimensional latent space
in order to efficiently learn style transfer variables. Applied to fa-
cial expressions, these Fader variables can continuously modulate
complex visual features such as gender (female ↔ male) or age
(younger ↔ older). Moreover, in mixing several attributes, one
could generate new style qualities.

2.5. Audio synthesis

Neural networks can be trained on spectrogram magnitudes (and
other spectral features) for audio analysis purpose. It eases the sub-
sequent modelling task, often involving pattern detection, from a
pre-processed structured sound representation. However, for gen-
erative purpose, an inversion from magnitude to waveform is re-
quired since the complex phase information was discarded. It is
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commonly done offline with GLA [7]. Further advances in gener-
ative neural networks for audio have targeted raw waveform mod-
elling through specific architecture design. Wavenet [15][1] is
amongst them the most popular solution. It uses several stacks
of dilated causal convolutions in order to aggregate multiple tem-
poral granularities and structure long-term dependencies, which is
challenging at the high audio sample rate. The output is a sin-
gle auto-regressive sample prediction given all the previous sam-
ple context p(xt|x1..xt−1). It results in high-quality real-time au-
dio synthesis. However this sample level modelling requires long
training times, heavy architectures that offer little knowledge over
their learned features.
The Multi-head Convolutional Neural Network (MCNN [8]), a re-
cent alternative for audio waveform modelling, was designed as
a feed-forward real-time magnitude spectrogram inversion system
that is not restricted to linear frequency scale. It proved to out-
perform GLA quality for speech. The use of differentiable GPU-
based STFT computations enables a faster optimization onto spec-
tral losses, rather than auto-regressive sample predictions:

x
|STFT|−−−→ |S| MCNN−−−→ x̂

STFT−−−→ Ŝ =⇒ LMCNN(S, Ŝ)

LMCNN = λ0 · LSC + λ1 · LlogSC + λ2 · LIF + λ3 · LWP
(8)

where |S| can be any spectrogram magnitude (including Mel-scaled
frequencies). The model is well tailored to audio with multiple
heads of 1-dimensional temporal up-sample convolutions. These
heads focus on different spectral components and sum into wave-
form. It remains light-weight and could be adapted in an end-to-
end waveform auto-encoder. Four objectives were originally pro-
posed, using the complex STFT for the Instantaneous Frequency
(IF) and Weighted Phase (WP) losses, that we could not optimize
successfully. Hence we will only use the Spectral Convergence
(SC) and log-scale magnitude (logSC) losses:

LSC(S, Ŝ) = ‖|S|−|Ŝ|‖F /‖|S|‖F with ‖.‖F the Frobenius norm

LlogSC(S, Ŝ) = ‖ log(|S|+ ε)− log(|Ŝ|+ ε)‖1 (9)

3. METHOD

Our experiment begins with the WAE-MMD, isotropic unit vari-
ance Gaussian prior zprior ∼ N (0, 1), RBF kernel and BN in both
encoder and decoder in order to structure a 3-dimensional gener-
ative latent sound representation. Given a magnitude spectrogram
|S| and a corresponding set of annotated attributes y, we are learn-
ingQ : |S| → z andG : z→ |Ŝ| such as |S| ≈ |Ŝ| = G(Q(|S|))
with Binary Cross-Entropy (BCE) reconstruction cost:

LWAE = BCE(|S|, |Ŝ|) + β ·MMDRBF(z, zprior)

BCE(x, x̂) = −
[
x log x̂+ (1− x) log(1− x̂)

]
; |x| < 1

(10)

We can sample random codes from the latent prior and consistently
decode new magnitude samples, however there is no control on the
output features. For the orchestra, we consider y = {ynote,ystyle}
with ynote = {semitone, octave}. We define the timbre attribute as
the class of an instrument subset, which comprises the Ordinario
mode as well as diverse extended playing techniques such as Stac-
cato, Flatterzunge or Pizzicato. When considering a single subset,
we thus aim at controlling the playing techniques of the consid-
ered instrument as ystyle. When considering multiple instruments,

z

zprior ⇠ N (0, 1)

�(y) �(y)

00 01 0 00 0 0
00 0 1 00 0 0

00 0
0

pclass.(ystyle|Q(|S|))

ˆ|S|Q : encoder|S| G : decoder

β-MMD

FiLMF : fader

ystyleȳstyle := 1 � ystyle

α-adversarial

ynote

00 00 0 10 0 0 0

concat.

Figure 2: How information flows in the adversarial optimization
of the WAE-Fader

instead we aim at controlling the different timbres, either in Ordi-
nario or with mixed playing styles within each instrument subset.
For explicit controls over the rendered attributes, we condition the
decoder as G : {z,y} → |Ŝ| using AdaIN. An additional FiLM
generator is fed with concatenated one-hot vectors of the three
attribute classes (semitone, octave and style). It learns an adap-
tive mapping to biases βFiLM(y) and scales γFiLM(y) that are used
to modulate the normalized decoder activations. In order to ef-
fectively learn the style conditioning and expressively modulate
timbres or playing techniques, we use adversarial training with a
Fader latent discriminator F : z → ŷstyle ∼ pclass.(ystyle|Q(|S|))
that competes with the non-conditional encoder in classifying the
considered styles from latent codes:

Lclass. = − log pclass.(ystyle|Q(|S|))
LWAE-Fader = LWAE − α · log pclass.(ȳstyle|Q(|S|))

(11)

with ȳstyle := 1−ystyle andα that weights the adversarial loss in the
encoder. Classification is optimized on the NLL with Softmax pro-
bilities. The resulting attribute confusion prevents the latent space
from implicitly encoding the style distributions, thus the decoder
is forced to use the conditioning to reconstruct the source features
from the attribute-free code. Ultimately these learned style vari-
ables can continuously be mixed, as actual faders do. We refer to
this final model as WAE-Fader, that still uses MMD regularization.
It allows for controlling the strength of each rendered attribute and
intuitively exploring hybrid sound effects from any custom tags,
here either chosen from extended playing techniques or from di-
verse orchestral timbre domains.
The resulting generative system maps any latent coordinate z ∼
N (0, 1) ∈ R3 to target note spectrograms with expressive musi-
cal style controls. Inversion from spectrogram magnitudes to audio
waveforms can be done offline with GLA. Alternatively, we pre-
train a MCNN on a larger corpus of musical note samples to allow
real-time rendering. In order to improve the final audio quality, we
fine-tune the full generative model by freezing the encoder param-
eters and jointly optimizing the learned decoder with the pretrained
MCNN as:

x
STFT−−−→ S

|Mels|−−−→ |S| Q−→ z
G◦MCNN−−−−−→ x̂

STFT−−−→ Ŝ =⇒ LMCNN(S, Ŝ) (12)

This waveform pipeline {G ◦ MCNN} is embed in a plugin for
live interactions and DAW integration. Using a MIDI interface,
we can for instance trigger target note classes ynote with keys and
map the continuous generative parameters to faders. These are the
latent dimensions z, that can also be randomly sampled, and most
interestingly the adversarially learned style variables ystyle that can
be mixed to explore new sound effects.
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4. EXPERIMENT

4.1. Dataset

We use the Studio-On-Line (SOL [16]) library of around 15000 in-
dividual note samples, across the tessitura of 12 orchestral instru-
ments grouped in 4 families and with many extended playing tech-
niques, that may be specific or shared across instrument families.
These are Wind (Alto-Saxophone, Bassoon, Clarinet, Flute, Oboe),
Brass (English-Horn, French-Horn, Tenor-Trombone, Trumpet),
String (Cello, Violin) and Keyboard (Piano). Notes are consis-
tently tagged with the intrinsic attributes of the dataset: note classes
(12 semitones across 9 octaves), several dynamics and playing
styles of every instrument. We define two style experiments for the
orchestra. If training on a single instrument, we aim for expressive
synthesis of its playing styles. If training on multiple instruments,
we aim for timbre control. Each instrument subset defines a timbre
domain, either in Ordinario (its common mode) or with all styles
mixed.
Audio files are down-sampled to 22050Hz and pre-processed into
Mel-spectrograms with a FFT size of 2048, hop size of 256 and
500 bins ranging the full spectrum. As we consider a generator
of individual notes, we set a common audio length of 34560 sam-
ples (∼1.6s) from the attack which amounts to 128 STFT frames.
We choose this duration as a trade-off between input and latent di-
mensionality, limiting the amount of silence after shorter playing
modes (eg. Pizzicato) while keeping some sustain for longer notes
(from which some sustain and decay may have been cropped).
Magnitudes are floored to 1e-3 and log-scaled in [0,1] according
to the BCE range. Each playing style subset of each instrument is
split into 80% training, 10% validation and 10% test notes. In av-
erage each instrument has 10 playing styles and 100 to 200 notes
for each.

4.2. Implementation details

Architecture of the WAE-Fader: Our experiments have been
implemented in the PyTorch environment and our codes will be
shared with this dependency. All convolution layers use 2-d. square
kernels, an input zero-padding of half the kernel size and are fol-
lowed by 2-dimensional feature normalization. All fully-connected
linear layers are followed by 1-dimensional feature normalization.
The non-linear activation used after every normalization is CELU.
The deterministic encoder has 5 convolution layers with [12, 24,
48, 96, 128] output channels, kernel size 5 and stride 2, that down-
sample the input spectrograms into 128 output maps that are flat-
tened into an intermediate feature vector of size 8192. It is fol-
lowed with a bottleneck of 3 linear layers of output sizes [1024,
512, 3] mapping to the latent space. For input Mel-spectrograms
of size (500,128), it amounts to a dimensionality reduction of more
that 5 orders of magnitude. All normalizations are BN. The de-
coder mirrors this structure with 3 linear layers of output sizes
[512, 1024, 8192]. This vector is then reshaped into 128 maps. To
avoid the known checkerboard artifacts [17] of the transposed con-
volution, we use nearest neighbor up-sampling followed with con-
volution of stride 1. These maps are processed with 4 up-sampling
of ratios 3, the last one directly mapping to the input dimensional-
ity of (500,128), and 5 convolutions with [96, 48, 24, 12, 1] output
channels and kernel sizes [5, 5, 7, 9, 7]. All normalizations are
AdaIN and the decoder output activation is sigmoid, bounded in
[0,1] according to the BCE range. The FiLM conditioning is ap-
plied feature-wise at the output of the first two linear layers and

channel-wise after. It amounts to 3688 modulation weights com-
puted by an additional FiLM generator of 3 linear layers of output
sizes [512, 1024, 3688]. Its output is split into biases and scales of
sizes [512, 1024, 128, 96, 48, 24, 12]. The Fader latent discrim-
inator has 3 linear layers of output sizes [1024, 1024, nstyle] with
LeakyReLU activations and a dropout ratio of 0.3, mapping latent
codes to probabilities of the nstyle classes.
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Figure 3: The Fader latent discriminator tries to infer the true style
attribute while the encoder adversarially aims at fooling it. It en-
courages attribute invariance in the latent representation and learn-
ing of continuous generative controls in the decoder.

Training parameters: We train our models with the Adam op-
timizer, an initial learning rate of 5e-4 and a batch size of 90.
All model weights are initialized with Xavier uniform distribution.
Depending on the considered data subset size, between 200 and
800 epochs are needed. A single instrument (1000-1500 notes)
can be modelled in less than 2 hours on one NVIDIA TITAN
Xp GPU. Training over all instruments and styles at once (around
11000 notes) takes less than 12 hours. In the first part of the train-
ing (30 to 100 epochs), we only optimize the reconstruction and
classification objectives. Then we gradually introduce the MMD
regularization (β-warmup) and the adversarial feedback in the en-
coder (α-warmup) until the first half of training epochs. The rest of
the training jointly optimizes all training objectives at their target
strengths β = 40 and α = 4. These value were estimated in order to
approximately balance the gradient magnitudes back-propagated
by each loss. However, for the baseline WAE-MMD models we
warmup β to 500 since it does not prevent from optimizing the re-
construction cost.

Signal reconstruction: The above described model trains on in-
puts with 128 frames of Mel-spectrogram, which amount to 34560
waveform samples according to our STFT settings. The gener-
ated Mel-magnitudes can be approximated back to the linear fre-
quency scale and iteratively inverted with GLA for 100 to 300 it-
erations. To allow real-time rendering and a possibly improved
audio quality, we reproduce the original MCNN architecture for
Mel-spectrogram magnitudes inversion. We use 8 heads, λ0 =
1 and λ1 = 6. We could not successfully optimize the complex
losses, however, we compute these magnitude losses on both the
linear and Mel frequency scales. We pretrain this model on a larger
dataset of around 50 hours audio comprising SOL and subsets of
the Vienna Symphonic Library (VSL). Ultimately, we fine-tune the
trained decoder with this pretrained MCNN. To do so, we freeze
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the encoder weights and optimize G ◦MCNN on the model train
set. In equation (12), the auto-encoder pair G,Q maps to Mel-
spectrogram magnitudes |S| which are inverted to signals by the
MCNN. However, the loss computation LMCNN(S, Ŝ) is not neces-
sarily restricted to this frequency scale. Thus we evaluate and sum
LSC LlogSC from equation (9) on both linear and Mel frequency
scaled magnitudes.

classified attribute (nstyle) train set validation test
Semitone (12) 1.00 0.99 0.99

Octave (9) 1.00 0.99 1.00
Ordinario timbres (12) 1.00 1.00 1.00
Extended timbres (12) 1.00 1.00 1.00

Violin playing styles (10) 1.00 0.97 0.95
Clarinet playing styles (10) 1.00 0.96 0.94
Piano playing styles (10) 1.00 0.92 0.95

Trumpet playing styles (10) 1.00 0.92 0.94
Alto-Saxophone pl. styles (10) 1.00 0.98 1.00
Tenor-Trombone pl. styles (11) 1.00 0.90 0.90

Table 1: Reference F1-scores of the pretrained data classifiers
used for the evaluation of conditional note generations

4.3. Evaluations

Generative performances: First, we evaluate the ability of our
models to produce accurate spectrograms by computing the re-
construction scores on the test set with Root-Mean Squared Er-
ror (RMSE) and Log-Spectral Distance LSD =

√∑[
10 log10(|S|/|Ŝ|)

]2.
Regarding the conditioning aspects, we first pretrain data classi-
fiers to reliably discriminate the different attribute classes and re-
port their performances in Table 1. These classifiers share the same
architecture as the encoder but map to the nstyle classes of interest.
We use them as references to evaluate the effectiveness of the con-
ditioning. Then, we sample an evaluation batch of 1000 random
latent points from the prior, along with random semitone and oc-
tave targets. This evaluation batch is decoded to each attribute of
the model (either playing styles or timbres) and classified with the
corresponding reference classifier. A high accuracy means an ef-
fective conditioning for the task of musical note generation. We
report the average accuracy for all the target conditions, with ran-
dom octaves both in [0-8] (full orchestral range) or in [3-4] where
models train on the overlap of every instrument tessitura.

Latent space structure: The effectiveness of the conditioning re-
lies on learning an attribute-free latent representation of the data.
If the attribute distributions are clustered, the decoder may learn
their correlations with latent dimensions and bypass the condition-
ing signal. This phenomenon is alleviated with adversarial training
of the non-conditional encoder against a Fader latent discrimina-
tor. As we map to 3-dimensional spaces, we can directly visualize
this latent organization. We also propose two evaluations of the
attribute representations. First, we compute the average inter-class
latent statistics with MMD. In this case, low values mean that the
attribute distributions blend in the final representation. Second, we
also perform a post-classification task by training classifiers at pre-
dicting the attributes from the learned latent representation. These
models use the same architecture as the Fader discriminator, and

model test rec. note cond. acc. style cond. acc.
MSE LSD st.34 oct.34 st.08 oct.08 style34 style08

Violin playing styles (nstyle=10) 1475 training note samples
WAE-MMD 0.76 68.2 NA NA NA NA NA NA
WAE-note 0.69 55.4 0.73 0.72 0.47 0.43 NA NA
WAE-style 0.74 59.6 0.47 0.39 0.30 0.22 0.20 0.17
WAE-Fader 0.80 91.1 0.96 0.77 0.97 0.48 0.88 0.93

Ordinario timbres (nstyle=12) 1784 training note samples
WAE-MMD 1.04 88.3 NA NA NA NA NA NA
WAE-note 0.84 71.6 0.99 0.96 0.62 0.53 NA NA
WAE-style 0.80 65.7 0.64 0.58 0.30 0.24 0.33 0.19
WAE-Fader 1.01 105 1.00 1.00 0.94 0.68 0.95 0.70

Extended timbres (nstyle=12) >11000 training note samples
WAE-MMD 0.93 175 NA NA NA NA NA NA
WAE-note 0.69 173 0.99 0.98 0.72 0.64 NA NA
WAE-style 0.65 172 0.84 0.83 0.44 0.39 0.61 0.34
WAE-Fader 1.32 182 1.00 1.00 0.90 0.71 0.95 0.64

Table 2: The ablation study confirms the effectiveness of the
WAE-Fader conditioning, both on target notes and playing styles
or timbres. The conditional latent sampling is either performed
with random octaves in [3,4] (the overlap of every tessitura) and [0-
8] (the full orchestra range), we report the accuracy of the condi-
tioning with respect to the targets note34,08 (st. is semitone classe
and oct. is octave classe) and style34,08.

we report their final accuracy. In this case, low scores mean that
the latent representation did not encode the attributes.

5. RESULTS

5.1. Ablation study

We defined both generative and representation evaluations to as-
sess the effectiveness of our proposed musical conditioning. To
study the benefits and compromises of each model feature, we
train the base WAE-MMD and compare it with ablations of the
WAE-Fader. The incremental model comparisons are WAE-MMD
(no conditioning), WAE-note (semitone and octave conditioning),
WAE-style (note and style conditioning) and WAE-Fader. In or-
der to simplify the notation, we do not specify the MMD but this
regularization is used for all models. We performed this abla-
tion study on the violin subset that has the following annotated
playing styles: Ordinario, Sustained, Short, Non-vibrato, Stac-
cato, Pizzicato-secco, Medium-vibrato-short, Tremolo, Medium-
vibrato-sustained and Pizzicato-l-vib. We also compare the WAE-
Fader on instrument timbres, either in ordinario or for all extended
techniques mixed per instrument subset. Table 2 reports the suc-
cessive generative performances of the models. Table 3 reports
the latent evaluations, showing how the conditioning tasks are re-
flected in the learned representations. It confirms the effective-
ness of the expressive conditioning when the attribute-invariance
assumption is achieved.
As we can see, conditioning WAE-note on the semitone and oc-
tave classes shows that the WAE-MMD model can partly learn
the note controls with FiLM conditioning. Accordingly, the la-
tent space structure does not exhibit strong correlations with the
note classes anymore but with the style attributes that become the
main unsupervised data feature. We also notice that this additional
supervision improves the reconstruction quality. However, when
adding the style conditioning in WAE-style, it seems that most
performances drop. Indeed, the overall conditioning becomes lit-
tle effective, both for the target note and style conditions. The final
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model inter-class MMD post-class. acc.
st. oct. style st. oct. style

Violin playing styles (nstyle=10) 1475 training note samples
WAE-MMD 0.25 0.26 0.30 0.92 0.94 0.56
WAE-note 0.03 0.10 0.50 0.04 0.49 0.82
WAE-style 0.12 0.16 0.35 0.25 0.55 0.59
WAE-Fader 0.02 0.01 0.46 0.08 0.34 0.64
Ordinario timbres (nstyle=12) 1784 training note samples

WAE-MMD 0.12 0.38 0.28 0.75 0.87 0.59
WAE-note 0.02 0.28 0.51 0.33 0.57 0.83
WAE-style 0.04 0.40 0.35 0.13 0.60 0.63
WAE-Fader 0.33 0.08 0.03 0.17 0.25 0.23
Extended timbres (nstyle=12) >11000 training note samples
WAE-MMD 0.02 0.41 0.12 0.71 0.89 0.48
WAE-note 5e-3 0.30 0.22 0.07 0.49 0.71
WAE-style 4e-3 0.32 0.18 0.07 0.56 0.55
WAE-Fader 3e-3 0.20 0.11 0.11 0.46 0.43

Table 3: The ablation study allows to monitor the latent organi-
zation in the different models and throughout their training, as
shown in Figure 4. We use both inter-class statistics and latent
post-classification to estimate the final attribute invariance in the
learned representation.

results show that the adversarial latent training enables the WAE-
Fader model to effectively learn the complete conditioning, at the
expense of a possible drop in its reconstruction accuracy.
It also seems that the task of modelling the playing styles when
learning on a single instrument is more challenging than changing
the timbres across multiple instruments. This can be seen in the
lower performance of the WAE-style model applied to the violin.
This may also be explained by the reduced size of the training data
when the learning is restricted to single instrument subsets. These
observations are supported by the resulting audio outputs of the
conditional note generations. Indeed, it appears that meaningful
and expressive variations when switching to any attribute condi-
tions are only achieved with our proposed WAE-Fader model. This
is successful for conditioning applied on both timbre attributes or
playing styles.

5.2. Expressive note sample generations

In this section, we report additional experiments on the WAE-
Fader models when conditioned on the playing styles of differ-
ent instruments and families. As shown in Table 4, our model
seems to train successfully on playing styles in every instrument
families, as well as across the 12 instrument timbres of the orches-
tra as shown in the previous ablation study. This amounts to a
great variety of sound qualities spanning extended modes of the
orchestra, and let us hypothesize that the model could be applied
to other sound domains as long as the tags are consistent with the
data. Furthermore, the style variables learned with the Fader la-
tent discriminator are continuous independent controls that can be
mixed. Hence, this can allow our system to modulate the strength
of rendered styles and create new effects by combining multiple
attributes. Our model can also be used for sample modifications,
akin to traditional audio effects, by encoding a given sample and
manipulating the attribute conditions in order to decode different

TSNE → 2D

A B
epoch 24 epoch 674

Figure 4: Latent organization as the WAE-Fader model trains on
the ordinario timbres, each instrument domain being represented
by a separate color. In A, at epoch 24, the encoder does not op-
timize the adversarial loss yet. Its unsupervised representation
exhibits the attribute classes. In B, at epoch 674, the α-warmup
is finished and the adversarial latent training had blended the at-
tribute distributions. The 2-dimensional projections are performed
with t-Distributed Stochastic Neighbor Embedding (TSNE).

sample transformations.

5.3. Audio outputs and plugin development

As discussed previously, our proposed models can generate mag-
nitude spectrograms, while controling their expressive qualities.
These spectrograms can be either inverted to waveform offline
with GLA or real-time if paired with MCNN. When fine-tuning the
learned decoders with the pretrained MCNN on magnitude losses,
we obtain a quality almost equivalent to the GLA approximation.
We provide audio examples of test set reconstructions and condi-
tional note generations inverted with both GLA and MCNN for
individual listening evaluation on the companion webpage. While
the audio quality of these results can still be improved, we can
already confirm the ability of the model to provide semantic con-
trols. As the learned style variables of WAE-Fader can be mixed
continuously, we also provide some sound examples that were gen-
erated when modifying multiple orchestral attributes.
Our proposal provides intuitive sound synthesis of target sound
qualities with learned style variables that can be modulated and
combined. The unsupervised latent dimensions organize remain-
ing data features, which can be directly visualized in a 3-d. space,
in order to perform sampling or explicit control. These features
allow to generate timbres, playing styles and hybrid effects across
multiple attribute combinations through intuitive interactions. We
provide a real-time implementation of our models by relying on the
fine-tuned {G ◦MCNN} generation. This implementation relies
on the LibTorch C++ API, which converts trained PyTorch mod-
els, that we further embed in a PureData external. This plugin
can be mapped to a MIDI controller or integrated in a DAW for
composition and musical performance. This allows to play notes
with a keyboard, while using continuous faders to control latent
coordinates and mix style conditions.

6. CONCLUSION

We developed an expressive musical conditioning of the Wasser-
stein Auto-Encoders able to model a collection of orchestral note
samples. The model learns effective target semitone and octave

DAFX-7

102



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

model test rec. note cond. acc. style cond. acc. inter-class MMD post-class. acc.
MSE LSD st.34 oct.34 st.08 oct.08 style34 style08 st. oct. style st. oct. style

Clarinet 0.87 116 0.96 0.99 0.98 0.45 0.97 0.92 0.05 0.58 0.12 0.15 0.76 0.41
Piano 0.99 113 0.53 0.91 0.47 0.72 0.72 0.64 0.03 0.03 0.08 0.16 0.20 0.43

Trumpet 0.90 107 0.91 0.93 0.96 0.37 0.90 0.87 0.60 0.11 0.02 0.42 0.50 0.29
Alto-Sax. 1.22 131 0.96 0.99 0.98 0.40 0.76 0.71 0.14 0.09 0.50 0.08 0.48 0.48

T. Trombone 0.96 100 1.00 1.00 0.92 0.41 0.83 0.77 0.04 0.14 0.34 0.06 0.55 0.47

Table 4: Additional WAE-Fader results on the playing techniques of instruments in other orchestral families

controls as well as continuous style variables. We considered ex-
tended playing techniques and timbre subsets as attributes, and
used adversarial latent training to encourage an attribute-invariant
representation in the WAE-Fader. Our ablation study validates the
effectiveness of style conditioning when this invariance condition
is obtained.
We fine-tuned the decoders with a Mel magnitude spectrogram in-
version network that allows real-time waveform rendering and are
currently working on refining the audio quality. This results in a
note sample generator with meaningful data visualizations and in-
tuitive controls of audio styles. These parameters can be mixed,
as faders, in order to explore hybrid sound effects. Our final gen-
erative model is embed in a plugin for MIDI mapping and live
interactions. This system provides assisted music production and
fosters creative sound experimentations. We provide sound exam-
ples from our orchestral models, either inverted offline with GLA
or with the fine-tuned waveform generation pipeline. These sounds
allow for subjective evaluation of both semantic and audio quali-
ties of our solution.
Although we used clearly defined metadata attributes pertaining
to instrumental playing styles, the model can potentially be ap-
plied to any sound domain. For instance, a user library with cus-
tom tags could be mapped to sound synthesis parameters. Further-
more, as the architecture is rather light and scales to small datasets,
it could be trained on user libraries. Future experiments will tar-
get the quality of the waveform modelling systems for variable
note lengths and real-time synthesis. Ultimately, our models could
be implemented as a standalone instrument with physical controls
that can be mapped to pretrained style variables. This would allow
an intuitive and creative exploration across a vast amount of sound
variations with a reduced set of adaptive parameters.
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ABSTRACT

The ubiquity of sound synthesizers has reshaped music pro-
duction and even entirely defined new music genres. How-
ever, the increasing complexity and number of parameters
in modern synthesizers make them harder to master. Hence,
the development of methods allowing to easily create and
explore with synthesizers is a crucial need.

Here, we introduce a novel formulation of audio synthe-
sizer control. We formalize it as finding an organized latent
audio space that represents the capabilities of a synthesizer,
while constructing an invertible mapping to the space of its
parameters. By using this formulation, we show that we
can address simultaneously automatic parameter inference,
macro-control learning and audio-based preset exploration
within a single model. To solve this new formulation, we
rely on Variational Auto-Encoders (VAE) and Normalizing
Flows (NF) to organize and map the respective auditory and
parameter spaces. We introduce a new type of NF named
regression flows that allow to perform an invertible mapping
between separate latent spaces, while steering the organiza-
tion of some of the latent dimensions. We evaluate our pro-
posal against a large set of baseline models and show its su-
periority in both parameter inference and audio reconstruc-
tion. We also show that the model disentangles the major
factors of audio variations as latent dimensions, that can be
directly used as macro-parameters. Finally, we discuss the
use of our model in creative applications and its real-time
implementation in Ableton Live1.

1. INTRODUCTION

Synthesizers are parametric systems able to generate audio
signals ranging from musical instruments to entirely unheard-
of sound textures. Since their commercial beginnings more
than 50 years ago, synthesizers have revolutionized music
production, while becoming increasingly accessible, even
to neophytes with no background in signal processing.

1All code, supplementary figures, results and plugins are available on a
supporting webpage: https://acids-ircam.github.io/flow_synthesizer/
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Figure 1: Universal synthesizer control. (a) Previous meth-
ods perform direct inference from audio, which is limited
by non-differentiable synthesis and lacks high-level control.
(b) Our novel formulation states allows to learn an orga-
nized latent space z of the synthesizer’s audio capabilities,
while mapping it to the space v of its synthesis parameters.

While there exists a variety of sound synthesis types [1],
they all require an a priori knowledge to make the most
out of a synthesizer possibilities. Hence, the main appeal
of these systems (namely their versatility provided by large
sets of parameters) also entails their major drawback. In-
deed, the sheer combinatorics of parameter settings makes
exploring all possibilities to find an adequate sound a daunt-
ing and time-consuming task. Furthermore, there are highly
non-linear relationships between the parameters and the re-
sulting audio. Unfortunately, no synthesizer provides in-
tuitive controls related to perceptual and semantic proper-
ties of the synthesis. Hence, a method allowing an intuitive
and creative exploration of sound synthesizers has become
a crucial need, especially for non-expert users.

A potential direction taken by synth manufacturers, is to
propose macro-controls that allow to quickly tune a sound
by controlling multiple parameters through a single knob.
However, these need to be programmed manually, which
still requires expert knowledge. Furthermore, no method
has ever tried to tackle this macro-control learning task, as
this objective appears unclear and depends on a variety of
unknown factors. An alternative to manual parameter set-
ting would be to infer the set of parameters that could best
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reproduce a given target sound. This task of parameter in-
ference has been studied in the past years using various tech-
niques. In Cartwright et al. [2], parameters are iteratively
refined based on audio descriptors similarity and relevance
feedback provided by the user. However, this approach ap-
pears to be rather inaccurate and slow. Garcia et al. [3] pro-
posed to use genetic programming to directly grow mod-
ular synthesizers to solve this problem. Although the ap-
proach is appealing and appears accurate, the optimization
of a single target can take from 10 to 200 hours, which
makes it unusable. Recently, Yee-king et al. [4] showed
that a bi-directional LSTM with highway layers can pro-
duce accurate parameters appproximations. However, this
approach does not allow for any user interaction. All of
these approaches share the same flaws that (i) though it is
unlikely that a synthesizer can generate exactly any audio
target, none explicitly model these limitations, (ii) they do
not account for the non-linear relationships that exist be-
tween parameters and the corresponding synthesized audio.
Hence, no approach has succeeded in unveiling the true re-
lationships between these auditory and parameters spaces.
Here, we argue that it is mandatory to organize the param-
eters and audio capabilities of a given synthesizer in their
respective spaces, while constructing an invertible mapping
between these spaces in order to access a range of high-level
interactions. This idea is depicted in Figure 1

The recent rise of generative models might provide an
elegant solution to these questions. Indeed, amongst these
models, the Variational Auto-Encoder (VAE) [5] aims to
uncover the underlying structure of the data, by explicitly
learning a latent space [5]. This space can be seen as a
high-level representation, which aims to disentangle under-
lying variation factors and reveal interesting structural prop-
erties of the data [5, 6]. VAEs address the limitations of
control and analysis through this latent space, while be-
ing able to learn on small sets of examples. Furthermore,
the recently proposed Normalizing Flows (NF) [7] allow to
model highly complex distributions in the latent space. Al-
though the use of VAEs for audio applications has only been
scarcely investigated, Esling et al. [8] recently proposed a
perceptually-regularized VAE that learns a space of audio
signals aligned with perceptual ratings via a regularization
loss. The resulting space exhibits an organization that is
well aligned with perception. Hence, this model appears as
a valid candidate to learn an organized audio space.

In this paper, we introduce a radically novel formula-
tion of audio synthesizer control by formalizing it as the
general question of finding an invertible mapping between
two learned latent spaces. In our case, we aim to map the
audio space of a synthesizer’s capabilities to the space of
its parameters. We provide a generic probabilistic formal-
ization and show that it allows to address simultaneously
the tasks of parameter inference, macro-control learning,
audio-based preset exploration and semantic dimension dis-
covery within a single model. To elegantly solve this for-
mulation, we introduce conditional regression flows, which

map a latent space to any given target space, while steering
the organization of some dimensions to match target distri-
butions. Our complete model is depicted in Figure 2.

Based on this formulation, parameter inference simply
consists of encoding the audio target to the latent audio
space that is mapped to the parameter space. Interestingly,
this bypasses the well-known blurriness issue in VAEs as
we can generate directly with the synthesizer. We evaluate
our proposal against a large set of baseline models and show
its superiority in parameter inference and audio reconstruc-
tion. Furthermore, we show that our model is the first able
to address the new task of automatic macro-control learn-
ing. As the latent dimensions are continuous and map to
the parameter space, they provide a natural way to learn the
perceptually most significant macro-parameters. We show
that these controls map to smooth, yet non-linear param-
eters evolution, while remaining perceptually continuous.
Furthermore, as our mapping is invertible, we can map syn-
thesis parameters back to the audio space. This allows in-
tuitive audio-based preset exploration, where exploring the
neighborhood of a preset encoded in the audio space yields
similarly sounding patches, yet with largely different pa-
rameters. Finally, we discuss creative applications of our
model and real-time implementation in Ableton Live.

2. STATE-OF-ART

2.1. Generative models and variational auto-encoders

Generative models aim to understand a given set x ∈ Rdx
by modeling the underlying probability distribution of the
data p(x). To do so, we consider latent variables defined in
a lower-dimensional space z ∈ Rdz (dz � dx), a higher-
level representation that could have led to generate a given
example. The complete model is defined by the joint dis-
tribution p(x, z) = p(x|z)p(z). Unfortunately, real-world
data follow complex distributions, which cannot be found
analytically. The idea of variational inference (VI) is to
solve this problem through optimization by assuming a sim-
pler approximate distribution qφ(z|x) ∈ Q from a family of
approximate densities [9]. The goal of VI is to minimize the
difference between this approximation and the real distribu-
tion, by minimizing the Kullback-Leibler (KL) divergence
between these densities

q∗φ(z|x) = argminqφ(z|x)∈QDKL
[
qφ (z|x) ‖ p (z|x)

]

By developing this KL divergence and re-arranging terms
(the detailed development can be found in [5]), we obtain

log p(x)−DKL

[
qφ(z|x) ‖ p(z|x)

]

= Ez

[
log p(x|z)

]
−DKL

[
qφ(z|x) ‖ p(z)

]
(1)

This formulation describes the quantity we want to model
log p(x) minus the error we make by using an approximate
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q instead of the true p. Therefore, we can optimize this alter-
native objective, called the evidence lower bound (ELBO)

Lθ,φ = E
[

log pθ(x|z)
]
− β ·DKL

[
qφ(z|x) ‖ pθ(z)

]
(2)

The ELBO intuitively minimizes the reconstruction error
through the likelihood of the data given a latent log pθ(x|z),
while regularizing the distribution qφ(z|x) to follow a given
prior distribution pθ(z). We can see that this equation in-
volves qφ(z|x) which encodes the data x into the latent
representation z and a decoder pθ(x|z), which generates
x given a z. This structure defines the Variational Auto-
Encoder (VAE), where we can use parametric neural net-
works to model the encoding (qφ) and decoding (pθ) distri-
butions. VAEs are powerful representation learning frame-
works, while remaining simple and fast to learn without re-
quiring large sets of examples [10].

However, the original formulation of the VAE entails
several limitations. First, it has been shown that the KL
divergence regularization can lead both to uninformative la-
tent codes (also called posterior collapse) and variance over-
estimation [11]. One way to alleviate this problem is to rely
on the Maximum Mean Discrepancy (MMD) instead of the
KL to regularize the latent space, leading to the Wasser-
steinAE (WAE) model [12]. Second, one of the key aspect
of VI lies in the choice of the family of approximations. The
simplest choice is the mean-field family where latent vari-
ables are mutually independent and parametrized by distinct
variational parameters q(z) =

∏m
j=1 qj(zj). Although this

provide an easy tool for analytical development, it might
prove too simplistic when modeling complex data as this as-
sumes pairwise independence among every latent axis. Nor-
malizing flows alleviate this issue by adding a sequence of
invertible transformations to the latent variable, providing a
more expressive inference process.

2.2. Normalizing flows

In order to transform a probability distribution, we can rely
on the change of variable theorem. As we deal with prob-
ability distributions, we need to scale the transformed den-
sity so that it still sums to one, which is measured by the
determinant of the transform. Formally, let z ∈ Rd be a
random variable with distribution q(z) and f : Rd → Rd
an invertible smooth mapping. We can use f to transform
z ∼ q(z), so that the resulting random variable z′ = f(z)
has the following probability distribution

q(z′) = q(z)

∣∣∣∣ det
∂f−1

∂z′

∣∣∣∣ = q(z)

∣∣∣∣ det
∂f

∂z

∣∣∣∣
−1

(3)

where the last equality is obtained through the inverse func-
tion theorem. We can perform any number of transforms to

obtain a final distribution zk ∼ qk(zk) given by

qk(zk) = q0(f−11 ◦ ... ◦ f−1k (zk))
k∏

i=1

∣∣∣∣det
∂f−1i
∂zi

∣∣∣∣

= q0(z0)

k∏

i=1

∣∣∣∣det
∂fi
∂zi−1

∣∣∣∣
−1

(4)

This series of transformations, called a normalizing flow [7],
can turn a simple distribution into a complicated multimodal
density. For practical use of these flows, we need transforms
whose Jacobian determinants are easy to compute. Interest-
ingly, Auto-Regressive (AR) transforms fit this requirement
as they lead to a triangular Jacobian matrix. Hence, dif-
ferent AR flows were proposed such as Inverse AR Flows
(IAF) [13] and Masked AR Flows (MAF) [14]

Normalizing flows in VAEs. Normalizing flows allow
to address the simplicity of variational approximations by
complexifying their posterior distribution [7]. In the case of
VAEs, we parameterize the approximate posterior distribu-
tion with a flow of length K, qφ(z|x) = qK(zK), and the
new optimization loss can be simply written as an expecta-
tion over the initial distribution q0(z)

L = Eqφ(z|x) [log qφ(z|x)− log p(x, z)]

= Eq0(z0) [ln q0(z0)]− Eq0(z0) [log p(x, zK)]

− Eq0(z0)

[
k∑

i=1

log
∣∣∣∣det

∂fi
∂zi−1

∣∣∣∣

] (5)

The resulting objective can be easily optimized since q0 is
still a Gaussian from which we can easily sample. However,
the final samples zk used by the decoder are drawn from a
more complex distribution.

3. OUR PROPOSAL

3.1. Formalizing synthesizer control

Considering a set of audio samples D = {xi} , i ∈ [1, n]
where the xi ∈ Rd follow an unknown distribution p(x),
we can define latent factors z ∈ Rz to model the joint dis-
tribution p(x, z) = p(x | z)p(x) as detailed in Section 2.1.
In our case, some x̄ ∈ Ds ⊂ D inside this set have been
generated by a given synthesizer. This synthesizer defines a
generative function fs(v; p, i) = x̄ where v ∈ Rs is a set of
parameters that produce x̄ at a given pitch p and intensity i.
However, in the general case, we know that if xj 6∈ Ds, then
xj = fs(v) + ε where ε models the error made when trying
to reproduce any audio xi with a given synthesizer. Finally,
we consider that some audio examples are annotated with
a set of categorical semantic tags ti = {0, 1}t, which de-
fine high-level perceptual properties that separate unknown
latent factors z and target factors t. Hence, the complete
generative story of a synthesizer can be defined as

p(x,v, t, z) = p(x|v, t, z)p(v|t, z)p(t|z)p(z) (6)
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cut

Figure 2: Universal synthesizer control. We learn an organized latent audio space z of a synthesizer capabilities with a VAE
parameterized with NF. This space maps to the parameter space v through our proposed regression flow and can be further
organized with metadata targets t. This provides sampling and invertible mapping between different spaces.

This very general formulation entails our original idea that
we should uncover the relationship between the latent au-
dio z and parameters v spaces by modeling p(v, z). The
advantage of this formulation is that the reduced dimen-
sionality Rz � Rx of the latent z simplifies the problem
of parameters inference, by relying on a more adequate and
smaller input space. Furthermore, this formulation also pro-
vides a natural way of learning macro-controls by inferring
p(v|z) in the general case, where separate dimensions of z
are expected to produce smooth auditory transforms. Al-
though we provide a complete formalization, due to space
constraints, we do not detail the use of metadata t in our
model. We provide this information in the supporting web-
page and companion article. Here, we consider that tags t
are included in the latent factors z and define the model as

pθ(x,v, z) = pθ(x|v, z)pθ(v|z)pθ(z) (7)

3.2. Mapping latent spaces with regression flows

In order to map the latent z and parameter v spaces, we first
separate our formulation so that

log pθ(x,v, z) = log(pθ(x|v, z)pθ(z)) + log pθ(v|z) (8)

This allows to separately model the variational approxi-
mation detailed in Section 2.1, while solving separately the
inference problem pθ(v|z). To address this inference, we
need to find the optimal parameters ψ of a transform fψ so
that v = fψ(z) + ε, where ε ∼ N (0,Cv) models the in-
ference error as a zero-mean additive Gaussian noise with
covariance Cv . Here, we assume that the covariance de-
composes into C−1v =

∑
i exp(λi)Qi, where Qi are fixed

basis functions and λ are hyperparameters. Therefore, the
full joint likelihood that we need to optimize is given by

Lfψ,λ = log [pθ(v|fψ, λ, z)pθ(fψ|z)pθ(λ|z)] (9)

If we know the optimal transform fψ and parameters λ,
the likelihood of the data can be easily computed as

pθ(v | fψ, λ, z) = N (v; fψ(z),Cv) (10)

However, the two posteriors pθ(fψ|z) and pθ(λ|z) re-
main intractable in the general case. In order to solve this
issue, we rely again on variational inference by defining an
approximation qφ(fψ, λ|v, z) (see Section 2.1) and assume
that it factorizes as q(fψ, λ|v, z) = q(fψ|v, z)q(λ|v, z).
Therefore, our final inference problem is

Lfψ,λ = log [pθ(v|fψ, λ, z)]

+DKL [qφ(fψ|z,v)‖pθ(fψ|z)] (11)
+DKL [qφ(λ|z,v)‖pθ(λ|z)] (12)

Hence, we can optimize our approximations through the KL
divergence if we find a closed form. To solve for λ, we
use a Gaussian distribution for both the prior pθ(λ|z) =
N (λ, µλ, Cλ) and posterior qφ(λ|z,v) = N (λ, µq, Cq). To
solve this issue, we introduce the idea of regression flows.
This allows to obtain a simple analytical solution. However,
the second part of the objective might be more tedious. In-
deed, to perform an accurate inference, we need to rely on a
complicated non-linear function, which cannot be assumed
to be Gaussian. To address this issue, we introduce the idea
of regression flows. We consider that the transform fθ(z) is
a normalizing flow (see Section 2.1) and provides two dif-
ferent way of optimizing the approximation.

Posterior parameterization. First, we follow a reasoning
akin to the original formulation of normalizing flows by pa-
rameterizing the posterior qφ(fψ|z,v) with a flow qk(vk).

DAFX-4

107



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

Hence, by developing the KL expression, we obtain

DKL [qφ(fψ|z,v)‖p(fψ|z)] = Eq0 [log q0(v0)]

− Eq0 [log p(vk)]− Eq0

[
k∑

i=1

log
∣∣∣∣det

∂fi
∂vi−1

∣∣∣∣

]
(13)

Hence, we can now safely rely on Gaussian priors for
q0(v0) and p(vk). This formulation allows to consider v as
a transformed version of z, while being easily invertible as
z = f−1[k,1](v). We denote this version as Flowpost.

Conditional amortization. Here, we consider that the
parameters ψ of the flow are random variables that are op-
timized by decomposing the posterior KL objective as

DKL [qφ(fψ|z,v)‖p(fψ|z)] = DKL [qφ(ψ|z)‖p(ψ|z)]

+ Eq0(v0)

[
k∑

i=1

log
∣∣∣∣det

∂fi
∂vi−1

∣∣∣∣

]
(14)

As we rely on Gaussian priors for the parameters, this
additional KL term can be computed easily. In this version,
denoted Flowcond, parameters of the flow are sampled from
their distributions before computing the resulting transform.

4. EXPERIMENTS

4.1. Dataset

Synthesizer. We constructed a dataset of synthesizer sounds
and parameters, by using an off-the-shelf commercial syn-
thesizer Diva developed by U-He2. It should be noted that
our model can work for any synthesizer, as long as we ob-
tain couples of (audio, parameters) as input. We selected
Diva as (i) almost all its parameters can be MIDI-controlled,
(ii) large banks of presets are available and (iii) presets in-
clude well-organized semantic tags pairs. The factory pre-
sets for Diva and additional presets from the internet were
collected, leading to a total of roughly 11k files. We manu-
ally established the correspondence between synth and MIDI
parameters as well as the parameters values range and distri-
butions. We only kept continuous parameters and normalize
all their values to [0, 1]. All other parameters are set to their
fixed default value. Finally, we performed PCA and manual
screening to select increasing sets of the most used 16, 32
and 64 parameters. We use RenderMan3 to batch-generate
all the audio files by playing the note for 3 sec. and record-
ing for 4 sec. to capture the release of the note. The files are
saved in 22050Hz and 16bit floating point format.

Audio processing. For each sample, we compute a 128
bins Mel-spectrogram with a FFT of size 2048 with a hop of
1024 and frequency range of [30, 11000]. We only keep the
magnitude of the spectrogram and perform a log-amplitude
transform. The dataset is randomly split between a train-
ing (80%), validation (10%) and test (10%) set before each

2https://u-he.com/products/diva/
3https://github.com/fedden/RenderMan

training. We repeat the training k times to perform k-fold
cross-validation. Finally, we perform a corpus-wide zero-
mean unit-variance normalization based on the train set.

4.2. Models

Baseline models. In order to perform an objective evalua-
tion of our proposal, we implemented several recent high-
capacity models similar to [4]. We implement a 5-layers
MLP with 2048 hidden units per layer, Exponential Lin-
ear Unit (ELU) activation, batch normalization and dropout
with p = .3. The final layer is a sigmoid activation. We
implement a gated variant of this model, denoted MLPg .
We implement a convolutional model composed of 5 lay-
ers with 128 channels of strided dilated convolutions with
kernel size 7, stride 2 and an exponential dilation factor of
2l with batch normalization and ELU activation. The con-
volutions are followed by a 3-layers MLP identical to the
previous model. We also implement the gated variant de-
noted CNNg . Finally, we implemented a variant of Resid-
ual Networks, with parameters settings identical to CNN
and denote this model ResCNN .

Our models. We implemented various *AE architec-
tures to evaluate different aspects of our proposal. To per-
form a fair comparison, we rely on the same setup as be-
fore, but halve the number of parameters to obtain roughly
the same capacity as the baselines. First, we implement a
simple deterministic AE without regularization. We imple-
ment the V AE by adding a KL regularization to the latent
space and the WAE by replacing the KL by the MMD.
Finally, we implement a V AEflow by adding a normaliz-
ing flow composed of 16 successive IAF transforms to the
V AE latent posterior. All AEs map to a latent space of di-
mensionality equal to the number of synthesis parameters.
For probabilistic models, we perform warmup [10] by lin-
early increasing the regularization β from 0 to 1 for 100
epochs. We also apply the same weight annealing for the
regression loss. We first evaluate all these models by using
a simple 2-layers MLP to predict the parameters based on
the latent space. Finally, we evaluate our regression flows
by adding them to the V AEflow, with an IAF of length 16.

Optimization. We train all models for 500 epochs with
the ADAM optimizer, initial learning rate of 0.0002, Xavier
initialization and a scheduler that halves the learning rate if
the validation loss stalls for 20 epochs. With this setup, the
most complex V AEflow with regression flows only needs
5 hours to complete training on a NVIDIA Titan Xp GPU.

5. RESULTS

5.1. Parameters inference

We compare the accuracy of our proposal with all baseline
models on the parameters inference task. To do so, we eval-
uate the distance between predicted parameters and their
real values in the test dataset, by computing the magnitude-
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Parameter Audio
MSEn SC MSE

MLP 0.236 ± .44 6.226 ± .13 9.445 ± 3.1
MLPg 0.195 ± .45 1.731 ± .31 7.787 ±1.9
CNN 0.171 ± .43 1.372 ± .29 6.329 ±1.9
CNNg 0.174 ± .44 1.245 ± .28 6.496 ±2.0

ResCNN 0.191 ± .43 1.004 ± .35 6.422 ±1.9
AE 0.181 ±.40 0.893 ±.13 5.557 ±1.7

V AE 0.182 ±.32 0.810 ±.03 4.901 ±1.4
WAE 0.159 ±.37 0.787 ±.05 4.979 ±1.5
V AEfl 0.199 ±.32 0.838 ±.02 4.975 ±1.4

Flowpost 0.197 ±.31 0.752 ±.05 4.409 ±1.6
Flowcond 0.199 ±.31 1.085 ±.02 6.303 ±2.1

Table 1: Comparison between baseline, *AEs with MLP
regression and our proposed regression flows on the test set.
Parameters accuracy is evaluated with normalized MSE and
the audio with Spectral Convergence (SC) and MSE.

normalized Mean Square Error (MSEn). We average these
results across k-folds and report across-runs variance. More
importantly, we evaluate the distance between the audio syn-
thesized based on these inferred parameters and the original
audio through the Spectral Convergence (SC) and MSE dis-
tances, where SC is the Frobenius norm normalized over
time and frequency. The results are displayed in Table 1.

As we can see, baseline models are able to perform an
accurate approximation of the parameter vectors, with the
CNN providing the best inference. Based on this parame-
ter distance criterion solely, the best results are obtained by
the deterministic WAE model that outperforms traditional
approaches. Although it would seem, at first, that our for-
mulation only provides a marginal improvement on the pa-
rameters inference task, and that our proposal is even out-
performed by baseline models, the analysis of the corre-
sponding synthesized audio tells an entirely different story.
Indeed, all AEs approaches strongly outperform the base-
line models when it comes to audio accuracy, with the best
results obtained with our probabilistic formulationFlowpost.
These results show that, even though AE models do not pro-
vide an exact approximation of parameter vectors, they are
able to account for the importance of these different param-
eters on the corresponding audio result. An even more inter-
esting observation is that our proposed Flowpost is outper-
formed by most baseline models on the parameters accuracy
distance. However, it strongly outperforms all other meth-
ods on the resulting audio approximation accuracy. This
supports our original hypothesis that learning the latent space
of the synthesizer audio capabilities is a crucial component
to understand its behavior. Furthermore, this might imply
that our model can provide closely-sounding parameter set-
tings based on the audio latent space, even though the pa-
rameters are quite different. This assumption is evaluated
in the following section. Finally, this analysis also seems to
be supported by the across-run variance, where probabilis-
tic models obtain a more consistent accuracy, indicating that
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Figure 3: Reconstruction analysis. Comparing parameters
inference and corresponding synthesized audio on the test
dataset between the best performing models.

they provide a better generalization.

5.2. Reconstructions and latent space

We provide an in-depth analysis of the relations between
inferred parameters and corresponding synthesized audio to
support our previous claims. First, we selected two samples
from the test set and compare the inferred parameters and
synthesized audio in Figure 3.

As we can see, although the CNN provides a close in-
ference of the parameters, the synthesized approximation
completely misses important structural aspects, even in sim-
pler instances as the slow ascending attack in the second
example. This confirms that direct inference models are
unable to assess the relative impact of parameters on the
audio. Indeed, the errors in all parameters are considered
equivalently, even though the same error magnitude on two
different parameters can lead to dramatic differences in the
synthesized audio. Oppositely, even though the parameters
inferred by the VAE are quite far from the original preset,
the corresponding audio is largely closer. This indicates
that the latent space provides knowledge on the audio-based
neighborhoods of the synthesizer. Therefore, this allows to
understand the impact of different parameters in a given re-
gion of the latent audio space.

To evaluate this hypothesis, we encode two distant pre-
sets in the latent audio space and perform random sampling
around these points to evaluate how local neighborhoods are
organized. We also analyze the latent interpolation between
those examples. The results are displayed in Figure 4.
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Audio space

Latent interpolation
zi

Figure 4: Latent neighborhoods. We select two examples
from the test set that map to distant locations in the latent
space z and perform random sampling in their local neigh-
borhood to observe the parameters and audio. We also dis-
play the latent interpolation between those points.

As we can see, our hypothesis seems to be confirmed
by the fact that neighborhoods are highly similar in terms
of audio but have a larger variance in terms of parameters.
Interestingly, this leads to complex but smooth non-linear
dynamics in the parameters control.

5.3. Macro-parameters learning

Our formulation is the first to provide a continuous mapping
between the audio z and parameter v spaces of a synthe-
sizer. As latent VAE dimensions has been shown to disen-
tangle major data variations, we hypothesized that we could
directly use z as macro-parameters defining the most inter-
esting variations in a given synthesizer. Hence, we intro-
duce the new task of macro-parameters learning by map-
ping latent audio dimensions to parameters through p(v|z),
which provides simplified control of the major audio varia-
tions for a given synthesizer. This is depicted in Figure 5

We show the two most informative latent dimensions
z based on their variance. We study the traversal of these
dimensions by keeping all other fixed at 0 to assess how
z defines smooth macro-parameters through the mapping
p(v|z). We report the evolution of the 5 parameters with
highest variance (top), the corresponding synthesis (middle)
and audio descriptors (bottom).

First, we can see that latent dimension corresponds to
very smooth evolutions in terms of synthesized audio and
descriptors. This is coherent with previous studies on the
disentangling abilities of VAEs [6]. However, a very in-
teresting property appear when we map to the parameter
space. Although the parameters evolution is still smooth,
it exhibits more non-linear relationships between different
parameters. This correlates with the intuition that there are

lots of complex interplays in parameters of a synthesizer.
Our formulation allows to alleviate this complexity by au-
tomatically providing macro-parameters that are the most
relevant to the audio variations of a given synthesizer. Here,
we can see that the z3 latent dimension (left) seems to pro-
vide a percussivity parameter, where low values produce a
very slow attack, while moving along this dimension, the
attack becomes sharper and the amount of noise increases.
Similarily, z7 seems to define an harmonic densification pa-
rameter, starting from a single peak frequency and increas-
ingly adding harmonics and noise.

5.4. Creative applications

Our proposal allows to perform a direct exploration of pre-
sets based on audio similarity. Indeed, as the flow is invert-
ible, we can map parameters to the audio space for explo-
ration, and then back to parameters to obtain a new preset.
Furthermore, this can be combined with vocal sketch con-
trol where the user inputs vocal imitations of the sound that
he is looking for. This allows to quickly produce an ap-
proximation of the intended sound and then exploring the
audio neighborhood of the sketch for intuitive refinement.
We embedded our model inside a MaxMSP external called
flow_synth˜ by using the LibTorch API and further in-
tegrate it into Ableton Live by using the Max4Live interface.

6. CONCLUSION

In this paper, we introduced several novel ideas including
reformulating the problem of synthesizer control as match-
ing the two latent space defined as the user perception space
and the synthesizer parameter space. We showed that our
approach outperforms all previous proposals on the seminal
problem of parameters inference. Our formulation also nat-
urally introduces the original tasks of macro-control learn-
ing, audio-based preset exploration and semantic parame-
ters discovery. This proposal is the first to be able to simul-
taneously address most synthesizer control issues at once.

Altogether, we hope that this work will provide new
means of exploring audio synthesis, sparkling the develop-
ment of new leaps in musical creativity.
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ABSTRACT

Extraction of symbolic information from signals is an active field
of research enabling numerous applications especially in the Mu-
sical Information Retrieval domain. This complex task, that is
also related to other topics such as pitch extraction or instrument
recognition, is a demanding subject that gave birth to numerous ap-
proaches, mostly based on advanced signal processing-based algo-
rithms. However, these techniques are often non-generic, allowing
the extraction of definite physical properties of the signal (pitch,
octave), but not allowing arbitrary vocabularies or more general
annotations. On top of that, these techniques are one-sided, mean-
ing that they can extract symbolic data from an audio signal, but
cannot perform the reverse process and make symbol-to-signal
generation. In this paper, we propose an bijective approach for
signal/symbol translation by turning this problem into a density es-
timation task over signal and symbolic domains, considered both
as related random variables. We estimate this joint distribution
with two different variational auto-encoders, one for each domain,
whose inner representations are forced to match with an additive
constraint, allowing both models to learn and generate separately
while allowing signal-to-symbol and symbol-to-signal inference.
In this article, we test our models on pitch, octave and dynamics
symbols, which comprise a fundamental step towards music tran-
scription and label-constrained audio generation. In addition to its
versatility, this system is rather light during training and generation
while allowing several interesting creative uses that we outline at
the end of the article.

1. INTRODUCTION

Music Information Retrieval (MIR) is a growing domain of au-
dio processing that aims to extract information (labels, symbolic
or temporal features) from audio signals [1, 2]. This field embeds
both musical and scientific challenges paving the way to a large va-
riety of tasks. Such abundant industrial and creative applications
[3] have attracted the interest of a large number of researchers with
plentiful results. Among the diverse sub-tasks included in MIR,
music transcription comprises an active research field [4, 5] which
is not only interesting by itself but finds generic applicability as
a sub-task for other MIR objectives (cover recognition, key de-
tection, symbolic analysis). Music transcription can be described
Copyright: c© 2019 Axel Chemla–Romeu-Santos1,2, Stavros Ntalampiras1, Philippe

Esling2, Goffredo Haus1, Gérard Assayag1 et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-
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as associating symbols to audio signals composed of one or more
musical instruments. Thus, this field embeds pitch and multi-pitch
estimation tasks but also other musical dimensions, such as dy-
namics. Currently, most pitch estimation techniques are based on
fundamental frequency detection [6]. However, such approaches
may prove insufficient in multi-pitch contexts, where the need for
more sophisticated approaches appears crucial.

In parallel, the recent rise of generative systems provided in-
teresting alternatives to supervised machine learning approaches
focusing on classification [7]. These unsupervised learning mod-
els aim to discover the inner structure of a dataset based on a re-
construction task. Such methods are usually defined as probabilis-
tic density estimation approaches, Bayesian inference and auto-
encoding structures. Among those, the Variational Auto-Encoders
(VAE) provides a powerful framework, which explicitly targets the
construction of a latent space [8]. Such spaces are high-level rep-
resentations with the ability to reveal interesting properties about
the inner structure of different types of data [8][9], and also more
recently in audio [10]. Such learning procedures can be mixed
with supervised learning to perform label extraction and condi-
tional generation, showing the flexibility and the efficiency of this
approach. Last but not least, latent spaces can also be explicitly
shared by several systems acting on different data domains, pro-
viding an elegant way of performing domain-to-domain translation
or multi-modal learning [11].

In this article, we propose a generative modeling approach
to musical transcription by formulating it as a density estimation
problem. Our approach allows to directly model pairs (x,y), where
x represents the spectral features and y represents the correspond-
ing musical annotations. Following a multi-modal approach in-
spired by Higgins & al. [12], we train two different VAEs on
these separate domains whose latent representations are progres-
sively shared through explicit distribution matching. In addition
to providing a Bayesian formulation of musical transcription com-
patible with arbitrary vocabularies, our method also naturally han-
dles the reverse audio generation process, and thus allows both
signal-to-symbol and symbol-to-signal inference. Furthermore, di-
rect data/symbol generation is also available by latent space ex-
ploration, providing an interesting method for creative audio syn-
thesis. Finally, we bind our transcription approach with a novel
source-separation approach, based on explicit source decompo-
sition with disjoint decoders. The idea behind our method is to
use the knowledge previously acquired on individual instruments
in order to ease their recognition in the mixture signal. A novel
form of inference network is trained on the product space of the
decoders latent space, with additional latent dimensions that per-
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forms Bayesian inference directly over mixture coefficients.

2. STATE OF THE ART

Here, we provide a brief state-of-the-art of the most common ap-
proaches for musical transcription. Then, we introduce variational
auto-encoders and detail their use for cross-modal inference and
generation.

2.1. Automatic music transcription

Automatic music transcription (AMT) aims at closing the gap be-
tween acoustic music signals and their corresponding musical no-
tation. The main problem in AMT is detecting multiple and pos-
sibly overlapping in time pitches. Classical approaches for pitch
and multi-pitch extraction are mostly based on spectral or spectral
analysis using fundamental harmonics localization [13], such as
the Yin algorihtm [6]. As these methods were originally conceived
for monophonic signals, their extension to multi-pitch estimation
contexts often implies recursive processes (multi-fundamental recog-
nition, harmonic subtraction) that reduce their efficiency. In paral-
lel, other methods relying on spectrogram factorization have been
proposed. These are based on the decomposition of the spectro-
gram into a linear combination of non-negative factors. These
include Non-negative Matrix Factorisation (NMF) [14] or prob-
abilistic latent component analysis (PLCA) [15]. However, spec-
trogram factorization methods usually fail to identify a global op-
tima, a limitation which led many researchers to hypothesize the
need for supplementary external knowledge to attain more accu-
rate decompositions [16, 17].

Recently, deep learning approaches have been proposed to ad-
dress the multi-pitch detection problem. For instance, piano tran-
scription task has been tackled via a variety of neural networks in
[18, 19, 20, 21]. Interestingly, the MusicNet dataset [22] includes
multi-instrument music conveniently structured to address poly-
phonic music transcription. Finally, a method based on convolu-
tional neural networks is presented in [23], which aims at learning
meaningful representations allowing accurate pitch approximation
in polyphonic audio recordings.

2.2. Generative models and variational auto-encoders

2.2.1. Variational inference

Generative models define a class of unsupervised machine learn-
ing approaches aiming to recover the probability density p(x) un-
derlying a given dataset. This density is usually conditioned on
another set of random variables z, called latent variables. This set
acts as a higher-level representation that controls the generation in
the data domain. Formally, generative models can be described as
modeling the joint probability p(z,x) = p(x|z)p(z), where p(z)
acts as a Bayesian prior over the latent variables. The genera-
tive process takes a latent position z to produce the corresponding
probability density p(x|z) in the data domain. Conversely, we also
want to estimate the posterior distribution p(z|x), that gives the
latent distribution corresponding to a data sample x. Retrieving
this posterior distribution from a given generative process is called
Bayesian inference, and is known to be a very robust inference
framework. Unfortunately, this inference is generally intractable
for complex distributions or requires limiting assumptions on both
generative and inference processes. Variational inference (VI) is a
framework that overcomes this intractability by turning Bayesian

inference to an optimization problem [24]. To do so, variational
inference posits a parametric distribution q(z|x) that can be freely
designed, and optimizes this distribution to approximate the real
posterior p(z|x). This optimization is performed thanks to the fol-
lowing bound

log p(x) ≥ Eq(z|x)
[
p(x|z)

]
+DKL

[
q(z|x)‖p(z)

]
= LELBO(q)

(1)
where DKL denotes the Kullback-Leibler divergence. We can see
that maximizing the right term of this inequality inherently op-
timizes the evidence p(x) of our model. This bound, called the
Evidence Lower-BOund (ELBO), can be interpreted as the sum of
a likelihood term p(x|z) and of a divergence term that enforces the
approximated posterior q(z|x) to match the prior p(z). This varia-
tional formulation is less restrictive than direct Bayesian inference,
as it only requires the tractability of these two terms. Thus, we are
able to model complex dependencies between x and z for both
pθ(x|z) and qφ(z|x) while retaining the benefits of a Bayesian
formulation [25].

2.2.2. Variational auto-encoder and cross-modal learning

To define the approximate distribution, we can model both gener-
ative and inference models as normal distributions

q(z|x) = N
(
µq(x),σ

2
q(x)

)
p(x|z) = N

(
µp(z),σ

2
p(z)

)
such that parameters (µq,σ

2
q) and (µp,σ

2
p) are respectively ob-

tained by deterministic functions fθ(x; θ) and gφ(z;φ). When
these functions are parametrized as neural networks, we obtain the
original Variatonal Auto-Encoder (VAE) formulation proposed by
Kingma & al. [8]. The prior is usually defined as an isotropic
normal distribution p(z) = N (0, I), which acts as a regular-
izer to enforce the independence of latent dimensions. Similar
to auto-encoding architectures, fθ(x; θ) and gφ(z;φ) are respec-
tively called the encoder and the decoder of the system. These
functions are jointly trained until convergence on parameters {θ, φ}
with a back-propagation algorithm. Despite the apparent simplic-
ity of its formulation, this system allows very expressive encoding
and generative processes while providing a highly structured latent
space, whose smoothness is provided by the DKL reconstruction
term.

3. CROSS-MODAL VAE FOR MUSIC TRANSCRIPTION

3.1. Signal/symbol transfer through shared latent spaces

In this paper, we propose to reformulate the audio transcription
problem as the estimation of a joint probability density p(x,y),
where x represents the spectral information of the analyzed audio
signal and y represents the corresponding set of symbolic infor-
mation. Previous works showed the efficiency of VAEs for audio
processing when used on spectral frames, in terms of both repre-
sentational and generative abilities [10, 26]. However, we intend
here to estimate not only the probability density p(x), but also the
joint probability density p(x,y). Considering y as label informa-
tion, some approaches proposed to include an additional discrimi-
nator on the latent space, that is jointly trained during the learning
process [27]. Here, we take inspiration from the SCAN approach
proposed by Higgins & al., that trains a mirrored VAE on symbolic
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data whose latent representation is constrained to match the latent
space obtained from the signal VAE [12]. Hence, modelling our
symbolic information as binary vectors y = [y1, ..., yL], we can
train this VAE over the label space

q(z|y) = N
(
µq(y),σ

2
q(y)

)
p(y|z) =

L∏
i=1

B
(
µp,i(z)) or

L∏
i=1

Cat(µp,i(z))

where B
(
µp,i(z)) denotes a Bernouilli distribution of mean µp,i

for binary symbols, and Cat(µp,i(z)) denotes a Categorical dis-
tribution of classwise probabilities µp,i in the case of multi-label
symbols. We enforce its latent representation to fit the one ob-
tained with the signal VAE by adding a term to the ELBO

Lscan(q) = L(q) +DKL
[
q(z|x)‖q(z|y)

]
(2)

such that the latent distributions provided by the two inference pro-
cesses match for a given pair (x,y). The ordering of terms in the
Kullback-Leibler divergence is chosen such that the distribution
q(z|y) is forced to cover the whole mass of q(z|x). Hence, the
correct label for a given x is encouragqed even for low-probability
areas of q(z|x). Both VAEs are jointly trained, so that the la-
tent representation obtained is a compromise between both auto-
encoder performances. It should be noted that, as both signal and
symbolic VAEs are independent, we are still able to perform semi-
supervised learning for incomplete pairs (x,y) by training only
one of the two auto-encoders.

3.2. Bidirectional signal-to-symbol mappings

Our approach extends the multi-pitch detection problem on several
aspects. First, our model is inherently bi-directional as we can
recover symbolic inference with the process

p(y|x) = p(y|z)q(z|x)

This can be understood as a Bayesian formulation of audio seman-
tic labeling. Hence, multi-pitch transcription is simply a special
case of our formulation, where y is defined as being solely the
pitch information. Furthermore, we can also naturally handle sig-
nal generation from symbolic constraints, by taking the reverse
process

p(x|y) = p(x|z)q(z|y)
such that we can recover the appropriate spectral distribution from
the symbolic data, as depicted in Fig. 1. Another interesting prop-
erty of our method is its applicability to arbitrary symbols. In
this paper, we model symbolic information y as a triplet [pitch
class, octave, dynamics], where we add dynamics es-
timation to the pitch estimation task. Thus, we have p(y|x) =
p(yp|z)p(yo|z)p(yd|z), where each p(y·|z) is defined as a cate-
gorical distribution. We use this property to extend this method to
multi-pitch applications, where x is a mixture signal with M dif-
ferent sources. Hence, we formulate the symbolic information as
a product p(y|z) = p(y1|z)...p(yM|z), where each p(y·|z) fol-
lows the previous specification. In addition to performing multi-
pitch estimation, it also specifies the corresponding instrument if
a given symbolic ordering is held during training. Finally, our for-
mulation can be extended to polyphonic instruments in a straight-
forward manner. In this case, we simply replace the above condi-
tioning by p(y|z) = p(yp|x)p(yo|z), where we define p(yp|z) to
be a Bernoulli distribution over a one-hot pitch vector.

p(z) ⇠ N (0, I)z

µ(z) �2(z)

q(z|x) = N (z|µ(x),�2(x))

+

p(y|z) = N (y|µ(z),�2(z))

q(z|y) = N (z|µ(y),�2(y))

p(x|z) = N (x|µ(z),�2(z))

µ(z) �2(z)

+

[E; 5; pp]

encoding

decoding

decoding

encoding

Signal domain

Symbol domain

Figure 1: Multi-modal variational auto-encoding process. Our
model is based on two separate variational auto-encoder, one in
the signal domain and one in the symbolic domain, sharing a com-
mon latent space.

4. EXPERIMENTS

4.1. Datasets

To evaluate our approach we use the Studio One Line (SOL) [28],
a database that contains solo instrument recordings for every note
across their tessitura. Each note is recording over a range of dif-
ferent dynamics (ff,mf,pp). Here, we selected five instruments: vi-
olin, alto-sax, flute, C-trumpet and piano, for a total amount of
800 files. First, audio files are all resampled to a sample rate of
22050Hz. Then, we transform the raw audio data to the spectral
domain by using a Non-Stationary Gabor Transform (NSGT) [29].
Interestingly, this multi-resolution spectral transform allows to de-
fine custom frequency scales, while remaining invertible. Here,
we use a constant-Q scale with 48 bins per octave. For each model
training, we split our dataset with 80% as training and 20% as test
sets. As our dataset is composed of monophonic signals, we ran-
domly create instrument signal mixtures during training such that
every combination is seen during the training.

4.2. Models

To show the efficiency of our proposal, we rely on VAEs with very
simple architectures. Nevertheless, depending on the complexity
of the input data, we adjust the dimensionality of both the latent
space and hidden layers. For single-instrument models we use 32
dimensions for the latent space, and define both encoding and de-
coding functions for the signal VAE as 2-layers multi-layer per-
ceptrons (MLP) with 2000 hidden units. For the symbolic auto-
encoder, encoding and decoding MLPs have 2 layers and 800 hid-
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Table 1: Signal reconstruction and transfer performances

− log p(x|z) ISD − log p(x|y) ISD
Alto-Sax (Sax) -694.1 0.093 -416.6 0.177

Violin (Vn) -671.4 0.104 -551.1 0.151
Trumpet-C (TpC) -706.9 0.073 276.71 0.35

Flute (Fl) -706.2 0.076 -379.2 0.147
Piano (Pn) -813.5 0.044 -361.13 0.112
Sax + Vn -358.71 0.364 -27.37 0.852

Sax + Vn + Fl -268.7 0.624 692.4 3.813

den units. For mixtures of two different instruments, the number
of hidden units for the signal encoders/decoders are set to 5000.
For the mixture of three instruments, hidden layers have 5000 and
1500 units for the signal and the symbolic encoders / decoders re-
spectively. All models are trained using the ADAM optimizer, and
we use the warm-up procedure that slowly brings the regulariza-
tion from 0 to 1 during the first 100 epochs. As recommended by
Higgins & al., the additional term presented in (2) is scaled up to a
factor 10. The learning rate is first set to 1e-3, and is increasingly
reduced as the derivative of the error decreases.

4.3. Evaluation

In addition to performing a standard evaluation on the test set, we
also evaluate our model on a separate dataset containing recordings
of flute arpeggios, scales and melodies [30] with source audio files
and aligned MIDI files. Unfortunately, this dataset does not pro-
vide information about symbolic dynamics, so we do not evaluate
the dynamics inference on this set. We compare the efficiency of
our model with results obtained from a baseline approach. To this
end, we rely on an architecture similar to our model, but designed
in a supervised way to emphasize the gain provided by our model.
This baseline classifier first performs a Principal Component Anal-
ysis (PCA) from the signal data to perform dimensionality reduc-
tion, mocking the compression between the input data and the la-
tent space. Then, we use a 2-layer MLP with the same amount
of hidden units than the corresponding symbolical decoder, to out-
put the desired labels. The whole system is trained on a standard
cross-entropy loss. The classifier is trained until convergence with
the same optimization strategy.

5. RESULTS

In this section, we present the results of our methods. The source
code, audio examples and additional figures and results are avail-
able on our support page https://domkirke.github.io/
latent-transcription/.

5.1. Signal reconstruction and transfer performances

First, we analyze the results obtained on the SOL examples. Signal
reconstruction and transfer scores are provided in Table 1, relying
on two evaluation metrics. The first metric is the log-likelihood
of the original spectrum with respect to the distribution decoded
by the model. The second is the Itakura-Saito Divergence (ISD), a
metric that reflects the perceptual dissimilarity between the origi-
nal and reconstructed spectrum [31]. Both scores are presented for
signal-to-signal reconstruction (left) and symbol-to-signal infer-
ence (right). In addition to these scores, reconstruction examples

Table 2: Symbolic inference reconstruction and classification re-
sults (successively pitch, octave and dynamics). Scores without
parenthesis are reconstruction scores obtained within the symbolic
domain, while scores in parenthesis are obtained when performing
transfer from the signal domain

− log p(y|z) Success Ratio (%) loose (%) Baseline (loose)

Sax
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

94%
97%
46%

Vn
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

89.8%
99.0%
35.3%

TpC
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)

-0.998 (-1.0)

99.9% (100%)
100% (100%)
99.7% (100%)

-
-
-

76.1%
99.8%
47.8%

Fl
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)
-1.0 (-1.0)

100% (100%)
100% (100%)
100% (100%)

-
-
-

52.4%
81.8%
41.4%

Pn
p
o
d

-1.0 (-1.0)
-1.0 (-1.0)

-1.0 (-0.999)

100% (100%)
100% (100%)

99.9% (100.0%)

-
-
-

51.6%
63.9%
40.0%

Sax + Vn
p
o
d

-0.534 (-0.871)
-0.782 (-0.980)
-0.712 (-0.939)

54.0% (87.9%)
84.6% (99.2%)
74.4% (95.9%)

62.6% (81.6%)
94.9% (88.7%)
82.4% (66.3%)

65.3%
79.1%
52.0%

Sax + Vn + TpC
p
o
d

-0.381 (-0.725)
-0.377 (-0.641)
-0.347 (-0.616)

38.6% (75.0%)
42.4% (67.8%)
34.6% (62.4%)

62.6% (84.5%)
79.3% (88.7%)
66.9% (69.5%)

56.6%
62.3%
41.2%

are depicted in Fig. 2. We can see that performances in both sig-
nal reconstruction and transfer decrease with the number of instru-
ments, as the complexity of the incoming signal increases. Both re-
construction and signal-to-transfer scores are almost perfect in the
case of solo instruments, providing convincing and high-quality
sound samples generation. In the case of mixtures of two or more
instruments, reconstruction scores maintain an acceptable perfor-
mance, but symbol-to-signal transfer scores clearly decrease. This
observation correlates with the decrease of performance observed
in the symbolic domain, as discussed in the following sub-section.

5.2. Symbolic inference performances

Here, we evaluate the performances of our model in the symbolic
domain. We provide in Table 2 four different classification scores,
separately for each family of labels: octave, pitch class and dy-
namics. In the case of multi-instrument mixtures, these losses are
averaged over every instrument of the mixture. Every column (ex-
cept for the baseline) show two scores : the first are the scores ob-
tained symbol-to symbol (reconstruction), and the second within
parenthesis are the ones obtained signal-to-symbol (transfer).

The first loss, written − log p(y|z), denotes the likelihood of
the true labels with respect to the distributions decoded by the sym-
bolic part of the VAE. The percent scores located at the right of the
likelihood correspond to classification scores, obtained by taking
the highest probability of the categorical distribution and obtain-
ing the corresponding ratio of well-classified symbols. The first
column, called success ratio, denotes the classification score ob-
tained by the symbolical VAE. The second column, called loose
ratio, is specific in the case of mixed instruments, considering a
label to be correct regardless of the instrument (we will come back
to the motivation behind this score). Finally, the last column dis-
play the scores obtained by our baseline classifier, that does not
have symbol-to-symbol scores.

We note that symbolic reconstruction and signal-to-symbol
scores are almost perfect in the case of single-source signals, out-
performing the equivalent baseline system. We argue that is due to
two main aspects of the proposed approach. First, thanks to the re-
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Original

Fl

Sax + Vn

Sax
+Vn + TpC

Reconstructions Transfers

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

octave pitch dynamics

Figure 2: Signal & symbolic reconstruction samples in 1-instrument, 2-instruments and 3-instruments settings. The first column shows the
original spectral & symbolic contents : for spectra, the blue line represents the final mixture, and the thinner lines the different components
of the mixture. For symbols, labels are grouped by family and are symbolized by a peak at the correct label. The second column represents
reconstruction results. For spectra, the orange line represents the reconstructed spectra (the original spectra in blue is left for comparison).
Regarding the symbolic reconstructions, the corresponding categorical distributions are displayed right to the original one-hot vectors. The
third column finally shows the transfer results, where we decode a latent position given by the encoder of the other domain.

construction task, the construction of the latent space is organized
to reflect the inner structure of both signal and symbol domains.
The latent space can be thus understood as a feature space, carry-
ing higher-level information that allow signal/symbolic coupling
to be more efficient. Second, the Bayesian approach matching the
latent spaces allows a smoother and more efficient mapping than a
deterministic approach, that would just provide pairwise mappings
between incoming examples.

In the case of instrument mixtures, scores are decreasing as
the complexity of both the spectrum and symbolic distributions in-
crease. While the system still performs convincingly with two in-
struments mixtures, it struggles with mixtures of more than three
instruments. We argue that this is partly due to a combinatorial
problem, as can be seen when analyzing the loose classification
ratio : indeed, it becomes harder for the model to accurately affect
a label to the corresponding instrument as the number of different
possible sources increase. This can be seen with the loose ratio in
table 2 : where the classification ratio significantly increase if the
label is considered correct regardless the affected instrument. This
effect can also be seen figure 2, where some peaks are correct but
unfortunately distributed to the wrong instrument. A more subtle
strategy to tackle this effect has to be considered ; we leave this to
a future work.

5.3. Monophonic flute transcription

Here, we analyze the results obtained with an external dataset of
flute recordings, as depicted in Table 3. Performances in sym-
bolic inference is still convincing, showing that our model does
not suffer from strong over-fitting. Compared to the results ob-
tained with the reference dataset 1, the reconstruction results ob-

Table 3: Results obtained on an external flute dataset

Likelihood ISD Class. Ratio Baseline

2648 (1057) 1.065 (0.632) 65.4%
81.9%

63.8%
76.8%

tained here have decreased. This is due to several points : first,
we have trained the model solely on the stationary part of each in-
strument signals, such that the attack and release of the signal are
not understood by our model. This anomaly is clearly percepti-
ble when listening to the reconstructions. Second, a more subtle
comparison between the reference dataset and this dataset showed
important differences in terms of harmonic content. Specifically,
a 1-octave lower harmonic is globally present in this dataset, and
not in the reference one. This may explain the important decrease
in octave classification, and may indicate that an increased amount
of various instruments of the same type may be required to enforce
the generalization of the model.

6. DISCUSSION AND FUTURE WORKS

6.1. Performance aspects

We think that the efficiency of the proposed approach mainly re-
lies on the hybridization of its learning process, that combines both
unsupervised and supervised learning. Indeed, while each encoder
learns to extract domain-dependant features in an unsupervised
manner, latent spaces are matched by enforcing a supervised cou-
pling of signal/symbol pairs. This process thus intends to learn
transferable features, that are then used by each decoder to project
them back into their respective data domains. Furthermore, this
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process allows the model to train on incomplete data, such that
each domain’s encoding / decoding functions can still be trained
individually even if some signal / symbol couplings are missing.
This means that the training method is scalable to bigger datasets
where some symbolic information may be absent, such that incom-
plete data can yet be used to reinforce the reconstruction abilities
of the system.

However, in spite of the strengths of the proposed approach,
the actual state of the model suffers some issues, that we aim to
tackle in the future. The first main issue is that, while the sys-
tem performs well in the single-instrument case, its performance
weakens with two instruments and clearly fails when applied on
more. We think that this falls to several reasons. First, we think
this is due to the capacity of the model, as we still use very simple
systems even for complex signals like the 3-instruments case. Sec-
ondly, the complexity of the problem is such that, as we showed
when comparing the loose and non-loose version of the classifica-
tion ratio, the system struggles to correctly allocate the good label
to the good instrument. We think that the incoming signal repre-
sentation may be not precise enough to alleviate some ambiguities,
as for examples in the case of octaves or fifths where instrument
identification may be hard to disentangle. Furthermore, the model
does not prevent instrument-wise symbolic outputs to focus on the
same spectral components, and thus to perform redundant symbol
predictions, and thus may also lead to a permutation problem.
Finally, another issue with the proposed model is that the tem-
poral evolution is not considered by the system. Including tem-
poral features could bring decisive enhancements : in addition to
allow full-sound generation and increased pitch and dynamics in-
ference, it may even be mandatory for applying our model to cus-
tom symbolic dictionaries (playing modes, temporal symbols such
as trills...) and provide a substantial advantage over more casual
pitch-detection methods.

6.2. Creative aspects

Finally, an important aspect of the proposed model is the diversity
of creative applications it provides (see figure 3). As generation
of both symbolic and signal content is both based on the latent
space, one may use it as a continuous control space and mean-
ingfully explore it in either an unsupervised or semi-supervised
fashion. Indeed, this space can be explored in a fully unsuper-
vised manner by direct interaction: both signal and symbol infor-
mation are then generated, such that the user can have a direct
symbolic feedback on the data he is generating. Alternately, it can
also be used in a semi-supervised fashion, constraining the nav-
igation to the distribution inferred by a given symbol or a given
sound. For example, in our case, we can directly generate a note
with given pitch, octave and dynamics by inferring a distribution
with the symbolic encoder, and then navigate inside it to access
the diversity of signals retained under the corresponding label in-
formation. This allows us, translating first MIDI information in
pitch/octave/dynamics pairs, and then transferring this symbolic
information in the signal domain, to generate audio content from a
MIDI file. We list below various use cases that can be carried out
by our model:

• sequence generation: we can use a sequence of labels to
recover the corresponding distribution in the latent space
that we can freely sample and/or navigate,

• spectral morphing: we can take two latent target distribu-
tions, and draw a trajectory that we can sample regularly
to obtain a smooth transformation between the two target
sounds,

• free trajectory: take a totally free trajectory in the latent
space,

• symbol extraction: we can infer symbolic information from
an incoming signal, and still train the corresponding signal
encoder/decoder with the incoming data. This could be a
particularly interesting feature especially in real-time con-
texts.

Corresponding examples for each of the above navigation strate-
gies are given at support webpage. Finally, also note that, in
our example, the vocabulary is easy to learn, such that retrieving
the underlying distribution p(y) of the symbolic data itself is not
really useful. Indeed, the different labels are all independent, and
are approximately equally distributed in their own domain. How-
ever, our system can also learn on much more complex vocab-
ularies where learning the underlying distribution in the symbolic
domain itself has an interest, and thus open additional perspectives
for its use in creative and/or MIR applications.

MIDI 

Labelling 

Original spectrum

Reconstruction

Symbol-to-signal
generation

z ⇠ q(z|y)

z ⇠ q(z|x)

Signal-to-symbol
generation

Figure 3: Diagram showing in-domain and cross-domain infer-
ence. If we give a spectrum to the signal encoder and draw from
the corresponding distribution a latent position z, we can decode it
with the signal generation network (in-domain) and obtain the re-
construction. Alternatively, we can decode it with the symbol gen-
eration network (cross-domain) to perform signal-to-symbol gen-
eration, that here is equivalent to transcription. Reversely, if we
draw a latent position from the symbol inference network with a
given set of labels, we can decode it with the signal decoder to per-
form symbol-to-signal generation, that allows us to "play" a MIDI
file with our model.

7. CONCLUSION

In this paper, we proposed a novel formulation for bijective sig-
nal/symbol translation, based on the latent space matching of domain-
wise variational architectures. We studied the benefits and draw-
backs of the proposed system, and concluded that while improv-
able this model performed well and proposed a very interesting
alternative to signal-symbol algorithms, and furthermore provided
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additional applications that were not possible in previous mod-
els. Indeed, our method is bi-directional, and performs well in
both audio-to-symbol and symbol-to-audio prediction. Further-
more, our method is compatible with any kind or arbitrary sym-
bolic information, and is then opened to user-defined vocabularies.
Besides, as our model is based on a latent space that can be con-
sidered as a continuous control space, it is also opened to diverse
creative uses as sequence generation, sound interpolation, or free
navigation, whether in an supervised manner or semi-supervised
manner, guided with symbolic information. For future work, we
plan to solve the symbolic ambiguities that raise in the case of nu-
merous instruments, to incorporate temporal features to allow dy-
namical features extraction, and to design user interfaces to make
our model compatible with artistic practises.
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ABSTRACT

Chaotic oscillators are exciting sources for sound production due
to their simplicity in implementation combined with their rich sonic
output. However, the richness comes with difficulty of control,
which is paramount to both their detailed understanding and in
live musical performance. In this paper, we propose perceptually-
motivated parameter planes as a framework for studying the be-
havior of chaotic oscillators for musical use. Motivated by analysis
via winding numbers, we extend traditional study of chaotic oscil-
lators by using local features that are perceptually inspired. We
illustrate the framework on the example of variations of the circle
map. However, the framework is applicable for a wide range of
sound synthesis algorithms with nontrivial parametric mappings.

1. INTRODUCTION

The use of nonlinear and chaotic oscillators for sound synthesis
poses a trade-off. On the one hand, many of them have very simple
algorithmic realizations and very diverse and rich sonic outcomes.
On the other hand, the output becomes complex with increased
nonlinearity. This complexity is often referred to as chaos and is
characterized by drastic changes in output in response to minor
parametric changes and a sensitivity to initial values. Because of
their desirable properties, chaotic oscillators have repeatedly found
their way into sound synthesis research and musical practices [1,
2, 3, 4, 5, 6, 7, 8, 9] and recently has found a renewed interest with
in the context of live musical performance [10].

Despite this longstanding interest, there are a number of areas
which are central to understanding chaotic oscillators for musi-
cal use which remain under-explored. Individual chaotic oscilla-
tors are usually studied on specific parameter examples [11] while
making it difficult to predict outcomes under change of parame-
ters. A large set of algorithms that exhibit chaotic oscillation exist
[10], but their relationship is poorly, if at all, understood. This
makes it difficult to chose oscillators with intention.

In live music performance, the ability of the musician to navi-
gate the possibilities of the sound synthesis algorithm can be criti-
cal. This relationship of synthesis parameters to performer control
is recognized as a central problem in musical instrument design
known as the mapping problem [12]. However the mapping rela-
tionship in this case is complex, calling for strategies that support
the performer’s ability to have a sense of predictability of the per-
formance choices made.

Copyright: c© 2019 Georg Essl et al. This is an open-access article distributed under

the terms of the Creative Commons Attribution 3.0 Unported License, which permits

unrestricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

The purpose of this paper is to propose a framework for mak-
ing the relationship of parametric choice and sonic outcome of
chaotic oscillators accessible visually. More specifically, in this
paper we propose perceptually motivated parametric planes (some-
times also called “atlases” [13]). These are parametric spaces
which visualize features of the chaotic oscillator over a range of
performance parameters. The visual space helps us understand de-
pendence of parameters to outcomes, and the selection of features
allows us to probe different aspect of the outcome potential.

2. RELATED WORK

Visualizations have long played an important role in the study of
nonlinear oscillators. Perhaps closest to our proposed approach
are two forms of visualization: (1) Arnold Tongues [14] and (2)
Spectral Bifurcation Diagrams [15, 16].

Originally, Arnold tongues referred to stability regions of the
circle map rendered as a plane with linear frequency Ω of the map
as one coordinate, and increasing nonlinearity k as the other [14].
Since then, Arnold tongues have been more broadly referred to as
regions of stability representing mode-locking in chaotic dynam-
ical systems in general [17, 18, 19, 20, 13]. The literature dis-
cussing aspects of Arnold tongues is, in fact, so vast that it cannot
be sensibly included here. The pervasiveness of this approach to
studying nonlinear dynamics is one of the main motivations of us-
ing it as a starting point for our proposed approach. This should al-
low comparison to the vast existing body of research on nonlinear
oscillators. Our proposed work can be understood to generalizing
the parameter planes of Arnold tongue to depict behavior that is
perceptually motivated in nature and in particular studies the use
of spectral content.

Spectral Bifurcation Diagrams constitute another visualization
approach for nonlinear phenomena proposed in the context of study-
ing their acoustics [15, 16]. They are rendered by drawing the
short-time spectrum of the iterative map with increasing iterative
steps. Hence it is a method for depicting the onset of chaos over
time within an oscillatory system. Our approach also uses spectral
content. However, we are looking for different parametric rela-
tionships, and primarily those useful for control changes.

Within the realm of musical use of chaotic oscillators, this
work is related to recent proposals to modify chaotic oscillators by
injecting delay lines to make them more friendly to control by mu-
sical performers and the associated emergence of a large number
of proposed nonlinear oscillators [10] . However, our understand-
ing of the detailed aspects of the effect of delay lines to diverse
nonlinear oscillators as well as the relationships and differences
between these oscillators is currently preliminary. Our work looks
to provide a concrete framework to study nonlinear oscillators for
musical use and supplement their performance visually, hence is
intended to help us systematically probe these open questions.
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(a) Oscillator

p−→

(b) Time Series

FFT−−→

(c) Spectrum

×k−→

(d) Spectrogram

Ω×D−−−→

(e) Parameter Plane

Figure 2: Visual representations of a nonlinear oscillator depicting intermediate steps of constructing parameter planes: (a) Circle Map as
example of an iterative map, (b) projection of the map into a time series, (c) amplitude spectrum of the time series, (d) spectrogram of
the time series over increased nonlinearity k with fixed linear frequency Ω, (e) parameter plane computing the PeakSparsity feature over a
range of Ω.

3. CIRCLE MAPS AS NONLINEAR OSCILLATOR

While the proposed framework is not limited to a specific nonlin-
ear oscillator, a concrete example will facilitate the discussion of
the method. For this reason we will utilize circle maps [8, 11].

The most general form of circle maps refers to all mappings
from the circle to itself [8]. Here we will restrict this to a pertur-
bative form of the linear oscillator defined as follows:

yn+1 =

(
yn + Ω− k

2π
f(yn)

)
mod 1 (1)

Here f(·) refers to a nonconstant function that reflects a chosen
type of nonlinearity. k is the strength of the nonlinearity. If k is
0 then the map is linear. Ω is a linear increment on the circle and
reflects the distance traveled by a linear oscillator for one time step.
yn is the iterative position on the circle. y0 is an initial value of the
position. Technically the circle map hence has three parameters,
Ω, k, and y0. Finally the choice of the nonlinear function f(·)
provides a further source of variation. One of the most widely
studied circle map uses a sine function (equation (7)) as nonlinear
perturbation and we will call this particular instance of the circle
map the sine circle map [21]. In Figure 2(a) successive iterations
of a sine circle map are connected by straight lines.

3.1. Choice of Projection

There is no set way to arrive at a time series from an iterative map
such as the circle map. For our purpose, we follow [8] and define
a projection p(·) onto an orthogonal axis:

pn = sin(2πyn) (2)

This choice of projection is justified because it mimics the projec-
tion used to construct a linear discrete sinusoidal oscillator from a
phase function. In this case a constant increment Ω in the phase
yields a sinusoidal output. Hence we can interpret the circle map
equation (1) as an iterative nonlinear phase function, where Ω cor-
responds to the constant phase increase of a linear oscillator, and
where k corresponds to the strength of a nonlinear contribution
f(·) to phase change.

It is important to note that this choice of projection is arbitrary.
One could use cos or in fact any other orthogonal projection of the
circle for p(·). One could also simply interpret the yn as time se-
ries. A wide range of further choices are also possible. We do be-
lieve that the sin is a natural choice as y0 = 0 corresponds to a zero

phase sinusoidal oscillation, and because it allows the interpreta-
tion of the circle map as a one-parameter nonlinear perturbation of
a linear oscillator, hence grounding the map in a well-understood
base configuration.

This particular justification is specific to this nonlinear dynam-
ical system, and other dynamical systems may justify different pro-
jection functions.

4. PARAMETER PLANES AS FRAMEWORK FOR
ANALYSIS

For the purpose of this paper we refer to parameter planes as two-
dimensional visual renderings of behavior of a sound synthesis al-
gorithm under the variation of two control parameters. This is dif-
ferent from other dense visual renderings such as a spectrogram,
where typically the coordinate parameters are not necessarily di-
rectly related to control parameters, though the content of the vi-
sualization may well be responsive to parameter changes.

Assume any synthesis algorithm with two or more control pa-
rameters. The parameter plane would be the rendering along two
control parameters (or combinations of control parameters that re-
duces their number to two). The local visual content is the output
of the synthesis algorithm reduced by some feature process to a
one-dimension that is then rendered as color gradient. Hence, pa-
rameter planes constitute the relationship of control parameter to
some feature-specific output.

A pertinent established example of a parameter plane in the
study of nonlinear oscillators are Arnold tongues. Arnold tongues
are rendered by varying the two control parameters (Ω, k) of equa-
tion (1) or comparable comparable parameters of other nonlinear
oscillators. The local feature traditionally used are winding num-
bers, which allow for the classification of the type of winding, and
was used to discover mode-locking for mild nonlinearities in non-
linear oscillators [14].

Our proposed use of parameter planes can be understood as a
generalization of Arnold tongue planes, but with the computation
of the local value changed from the winding number to some other
local feature of interest that is more suitable for understanding of
audio properties.

The overall process through intermediary steps is depicted in
Figure 2. We are given a nonlinear oscillator (Figure 2(a)). The
choice of connecting the nonlinear oscillator to a time-series (Fig-
ure 2(b)) that is taken to be a sampled audio signal is not obvious.
Hence we require a choice of function (projection) p(·) that es-
tablishes this relationship. Over a certain range of time-steps, we
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compute local features. In our examples all newly introduced local
features are spectral in nature, hence we compute the FFT (Figure
2(c)). It is important that this and the next step are flexible. One
could choose a non-spectral feature (such as zero-crossings). In
the spectral case, one can compute a further intermediary step of
arranging a spectrogram over one control parameter (Figure 2(d)).
This step is also not strictly required but we found it to be a very
useful intermediate visualization to probe aspects of spectral evo-
lution under parameter changes. Finally, a feature mapping D(·)
derives from the spectrum a one-dimensional local representation
that is arranged into the plane (Figure 2(e)) over the control param-
eter which we label here k and Ω for consistency with our chosen
example of the circle map (section 3).

The specific aspects that are of interest for investigation and
performance dictate further choices in this process. Oscillators
can have initial transients. While these can be interesting subjects
on their own right, for the purpose of this paper we have sought
to capture steady state behavior. For this reason all figures in this
paper, unless otherwise noted, compute the first 1000 iterations
without consider them for rendering1 The length of the time series,
and the size of the FFT are further choices that can impact fidelity
of the rendering and the information that will be drawn out. The
following process was used to compute spectral information: A
fast Fourier transform (FFT) was performed with a length of 8192
bins. Time series intervals were rendered for half that length and
zero padded. The signal was weighted using a Blackman window
function. Only the amplitude spectrum was considered. Neighbor-
ing bins were averaged to reduce the number of bins to the figure
widths rendered in the paper (300 points). All aggregate feature
computations were computed on the 300 bin averaged spectrum to
create maximum relation between visual representations of spec-
tra, spectrograms, and parameter planes. We do not propose this as
a necessary aspect of the process. In other applications it may be
desirable to compute feature on larger (or smaller number of bins).

Finally, a color gradient is chosen to render the one-dimensional
feature D. This relationship can be linear or be further modified
by a transfer function. It is common to use the logarithm on one-
dimensional audio measures. In this paper all figures based on
spectral information were color rendered on a logarithmic scale,
normalized to the range of the color gradient.

Figure 2(e) shows the chosen color column to the right. The
normalized color gradient ranged from zero to one and is com-
posed of four equal intervals of length 1/4. It is computed as linear
interpolation of RGB colors black (0, 0, 0), blue (0, 0, 255), green
(0, 255, 0), yellow (255, 255, 0), and red (255, 0, 0). Hence black
reflecting a value of 0, pure green reflecting a value of 0.5, and
pure red reflecting a value of 1. For spectrogram computations
we replaced black with white to achieve a white background look,
with the color gradient otherwise unchanged.

Our Java implementation of the process for all features dis-
cussed in the next section took between 30 seconds to a few min-
utes depending primarily on the spectral window size used. In
order to facilitate interactive use (for musical purposes or in inter-
active demonstration) we stored the resulting array of features in a
file for instantaneous recall.

11000 was chosen after it was observed that this was sufficient to cap-
ture rare long transitions in parameter ranges of interest. The vast majority
of transitions are very short and do not exceed just a few steps.

5. LOCAL FEATURES

A key component of computing parameter planes is finding local
features that fill the plane to inform about the underlying behav-
ior of the synthesis algorithm at a parameter point (Ω,K). The
choice of this local feature carries reduces all of the behavior of
the synthesis algorithm to a number, with the goal for this number
to represent information of interest. By spanning a plane that al-
lows one to inspect the evolution of local behavior under parameter
change.

In order to understand that choice of feature we first discuss
a widely established example in the study of nonlinear dynamical
systems, which will motivate why we need more measures to study
the sound of these systems.

5.1. Winding Numbers and Arnold Tongues

The construction of Arnold tongues is an example of a parame-
ter plane visualization. Arnold tongues are areas in the parameter
plane which exhibit mode locking [14, 17, 18, 22, 23] as well as
provide a range of information about the transition into chaotic
regimes. The winding number W (interchangably also referred to
as rotation number [18]) is the local feature used for their con-
struction. Given an iterator producing incremental states yn, the
winding numberW is the average long-term map increment, hence
describes the long-time average phase of the map. For iterations
that are not subject to periodicity induced by modulo operations,
they can be computed as [8]:

W = lim
n→∞

yn − y0
n

(3)

In practical computation the length of winding n is finite but suffi-
ciently large to overcome initial transients. We chose 1000 for our
depictions of Arnold tongues throughout this paper, matching our
assumed maximum transients.

Computing the winding number over parameters of nonlinear
oscillators led to the discovery of mode-locking (though phase-
locking [24] is probably a more precise term in the case of the
circle map). With mild increase in nonlinearity one finds that non-
linear oscillators tend to form areas of constant winding number
even though the underlying parameters are changing. If depicted
as a function of constant nonlinearity these form a staircase shape,
which have been called “devil’s staircase”. When plotted over in-
creasing nonlinearity, the family of devil’s staircases widen, form-
ing tongue-like shapes in the plane. We see depictions of Arnold
tongues for the sine circle map in the bottom part of Figure 3(a).
For low nonlinearity k < 1 we observe that widening regions of
locked modes occur.

As we will see, Arnold tongue-like properties are very persis-
tent features, even if we change the local feature we are computing.
However, the winding number is still not a great feature to use to
study sonic qualities of nonlinear dynamics. The winding num-
ber following equation (3) can be interpreted as a very-long-time
averaged behavior of the state of the dynamical system. In fact,
the equation can be formulated such that it is identical to the com-
putation of the mean with the length of the mean being extended
to infinity [24]. From this we observe that the winding number
does not capture more localized properties of the dynamics, such
as local periodicity, short-term spectral changes and so forth. Fur-
thermore, given that we project the circle map into a discrete sine
oscillator, giving us the interpretation of a phase function, we re-
alize that the winding number here is really the long-term average
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(a) Winding Number (b) MeanBalance (c) PeakSparsity (d) Entropy

Figure 3: Comparison of features computed in the parameter plane: (a) winding number (Arnold Tongues), (b) Spectral Mean Balance, (c)
Spectral Peak Sparsity, (d) Spectral Entropy. (top) k = [0, 13.3̇) (bottom) k = [0, 1.33̇) Arnold tongues use black contours to emphasize
mode-locking transitions.

phase. While the precise response to phase in sound is a compli-
cated phenomena, and it can play a role in specific settings [25],
our ear generally does not associate perceptible qualities to phase.
Hence a feature that primarily looks at phase is not the best feature
to consider unless one is trying to capture very specific effects.

There are numerous aspects of iterative maps that could re-
place the winding number. For example, one can compute initial
transient times by computing the winding number incrementally
and checking when the computed winding numbers of successive
steps fall below a value ε. The iteration count n then provides a
measure of the duration of the transient. One can also probe for
other mathematically interesting properties such as fixed points
[11]. These would correspond to DC signals and help identify
regions of silence, which is easily captured as part of richer and
more broadly descriptive features.

5.2. Perceptually Motivated 1-D Features

Understanding the results of a synthesis algorithm is eminently
perceptual, motivating the need for visual guidance of complex
synthesis methods to predict perceptually interesting aspects of the
expected sonic outcomes.

Perceptual cues are a particular form of features derived from

audio time series. A wide array of audio features have been pro-
posed [26] for they play important roles in all forms of audio anal-
ysis, including in creating meaningful starting points for machine
classification. The body of audio features are dominated by needs
of understanding human vocalization and musical signals. While
nonlinear oscillators produce resonant spectra quite well suited by
this body of work, especially at higher nonlinearities the sounds
exhibit a range of differing noisy outcomes [11]. The literature
dealing with noise is substantially smaller [27, 28]. This may go
along with our understanding of human sound perception having
substantially more detailed results for resonant spectral content
than otherwise [29]. For the purpose of presenting the method,
we were looking for features that would give clear visual differ-
ences over the same parameter space. After initial experimenta-
tion, we decided to present here three features that we believe to
have a particular motivation given the output of nonlinear oscilla-
tors. Nonlinear oscillators have a range of effects: At low non-
linearities they tend to behave similar to wave shaping [8] in that
the nonlinearity introduces spreading resonant spectra. At higher
nonlinearity complicated noise-like patterns can emerge. Hence
we were interested in features that could carry information about
both resonant and noisy content.
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Figure 4: Arnold Tongues (winding numbers) of the sine circle map for initial values y0 = 0.0, 0.25, 0.5, and 0.75.

5.2.1. MeanBalance Feature

The MeanBalance feature is quantifying if a spectrum is domi-
nated by contributions that lie above or below the mean of the
spectrum. The intuition is that a flat but noisy spectrum will be bal-
anced with respect to the number of values that lie above and below
the mean. For a spectrum of distinct and sparse narrow peaks, most
values lie below the mean due to the sparsity of the peaks. A spec-
trum characterized that occasionally dips in the spectrum would,
conversely, have most values lie above the mean. More precisely,
the feature is computed as:

mean =
1

N

N∑
n=1

fn X[c] =

{
0, if c is false
1, otherwise

b =

N∑
n=1

X[b > mean] a =

N∑
n=1

X[b < mean]

DMB =


b/a if a > 0

1 if a = 0 and b = 0

b otherwise
(4)

mean is the customary mean over all FFT bins fn. b is the count
of FFT bins that lie below the mean of the spectrum, and a is the
count of FFT bins above the mean of the spectrum. If a = 0, we
define DMB = b. If all bins are equal to the mean DMB = 1.

We expect DMB to return high values for sparse peak spectra,
return average values for flat spectra, and return low values for
spectra with occasionally dips.

5.2.2. PeakSparsity Feature

The PeakSparsity feature takes an integral approach to estimat-
ing how peak-dominated a spectrum is. The core idea is that the
area underneath the spectrum, characterized by the mean, can be
arrived at in various ways. If the spectrum is peaky, we expect
that there is more area under a peak. Hence high peaks will oc-
cupy more of the area than a flat spectrum. The spectrum sorts the
peaks in the spectrum and then counts how many sorted bins are
needed to arrive at the mean. If lots of area in within a few very
high peaks it will take only a few bins to reach the mean. If the
spectrum is flat, we expect to have to count all bins to arrive the

mean. Hence PeakSparsity is a measure of sparsity peaks in the
spectrum. It is computed as follows:

arean =
n∑

m=1

sortm(f) sortn(f) are sorted FFT bins

cn =

{
1 if

∑n
m=1 aream ≤ mean

0 otherwise

DPS =
N∑
n=1

cn (5)

5.2.3. Spectral Entropy Feature

Spectral entropy [27] is the computation of the Shannon entropy
over all FFT bins:

DEnt = − 1

logN

N∑
n=1

fn log(fn) (6)

fn are the FFT bins andN is the number of bins up to half Nyquist
frequency. Description by Shannon entropy leads to information-
theoretic interpretation of the measure. High entropy corresponds
to the requirement to describe more information content. Hence
it is a kind of measure of information-theoretic complexity of the
spectrum. We expect sparse spectra to contain less information
than dense spectra, but per chance have some information-theoretic
differentiation between different forms of dense spectra.

6. PARAMETER SPACES FOR CIRCLE MAPS

We are now ready to proceed to give concrete illustrations of pa-
rameter planes using these chosen features on variations of the cir-
cle maps introduced in section 3.

6.1. Comparisons of features

Figure 3 compares different choices of local features computed
in the (Ω, k) parameter plane for the sine circle map. The figure
shows both a weak nonlinearity regime (k ∈ [0, 1.7)) in the bot-
tom row as well as a strong nonlinearity region (k ∈ [0, 17)) in
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the top column. We include the winding number as classical local
feature on the left.
Mild nonlinearity: Each of the four illustrated features highlight
very different structures in the very low nonlinearity regime k ∈
[0, 0.3). The winding number does not show the emerging reso-
nant spectral aspects that emerge in this region. Specifically the
PeakSparsity feature shows an overall increase in resonant peaks
with additional fine structure. While Entropy displays a different
structure than any other feature it shares with the winding number
the lack of detail in this very mild nonlinearity regime.
nonlinearity near invertibility: The sine circle map becomes non-
invertible at k ≥ 1 [8]. This point is marked on the k-axis with a
red marker. We expect more pronounced nonlinear effects to occur
after this point, and early cascades into chaos are possible. Overall
we see that both the MeanBalance and the PeakSparsity measure
show substantial fine structure in the region k ∈ [1, 1.33̇). While
the winding number exhibits a lot of structure it does not align well
with these transitional properties. Entropy shows little change un-
til chaos onset, when we see a smooth transition.
Persistent macroscopic properties and their variation: Arnold
Tongue shapes are visible with all chosen features which make
them very robust properties. This means that they do not merely
correspond to mode-locking, but also have spectral and entropic
effects. Unsurprisingly, fixed point regions (crossing diagonal re-
gions) can be identified with all features as they correspond to con-
stant value, and DC component spectral content. It is noteworthy
however that the Entropy feature provides additional information
in fixed point regions because it differentiates information content
by the level of the DC component. These feature as not percep-
tually relevant, suggesting that unmodified entropy may not be an
ideal feature for perceptually motivated modeling.
Strong nonlinearity: For a parameter range of k � 1 chaotic be-
havior, potentially interspersed with fixed-point regions, that then
re-cascade into chaos, are dominating the behavior of the sine cir-
cle map for all features. Here the winding number presents the
most diversity in value ranges, but is poor at resolving some visible
trends that emerge using the other features. There are some subtle
differences which of these trends are highlighted how strongly be-
tween MeanBalance, PeakSparsity and Entropy. For example us-
ing Entropy we see trend lines at the half-way point between fixed
point diagonal regions. MeanBalance shows more structure that
follows central fixed point and stability regions around Ω = 0.5.

6.2. Initial Value Sensitivity

As illustrated on a number of examples [11], the circle map ex-
hibits initial value sensitivity, a feature that is known to be typical
of chaotic systems, and a widely propagated narrative in popu-
lar culture involving butterfly wings. While known examples [11]
make clear that observable and clearly perceptible differences due
to initial value differences can occur through the parameter plane,
inspection of the parameter plane allows us to look for initial value
effects more broadly. Arnold Tongues exhibit initial value sensi-
tivity as discernible differences in the plane, in particular in areas
that approach recurrent chaotic regimes, as well as in the behavior
of crossing fixed point regions.

Figure 4 exhibits this effect. We see that for increasing initial
values, certain regions change. With respect to fixed point regions,
we see that for initial values below 0.5, one side overlaps the other,
while this directionality is flipped for initial values above 0.5.

In order to understand if these differences are perceptually rel-
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Figure 5: Four nonlinearities functions explored: (a) Sine, (b) Tri-
angle, (c) Piecewise linear cardiorespiratory coupling model [20],
(d) truncated Fourier-series. Figure from [11].

evant, we observe initial value conditions on a perceptual feature
instead of the winding numbers used in Arnold tongues (Figure 3).
We see that the features at the top end of fixed point diagonals in
the winding number plane is not captured by any of the other mea-
sures. Some of these effects can perceptually be treated as phase
effects and hence are not usually perceptually relevant. Mathe-
matically they do not appear in our features due to using only the
amplitude spectrum.

7. VARIATION OF NONLINEAR FUNCTION

To explore the impact of the variation of the nonlinear function
f(·) we use four exemplar functions discussed in [11]:

f(yn) = sin(2πyn) (7)

f(yn) =


4 · yn if 0 ≤ yn < 1/4

(1/4− yn) · 4 + 1 if 1/4 ≤ yn < 3/4

(yn − 3/4) · 4− 1 otherwise.
(8)

f(yn) =


yn+T

1+2·ε·T if 0 ≤ yn < B
yn+(1−2·ep)·T

1−2·ε·T if b ≤ yn < 1− T
yn+T−1
1+2·ε·T if 1− T ≤ yn ≤ B + 1
yn+(1−2·ε)·T−1

1−2∗ε·T otherwise.

(9)

f(yn) =
1

A

4∑
m=1

am sin(2πmyn) (10)

With T = 0.5, ε = 0.25 and B = 0.5 + (ε − 1) · T in (9) and
with am = {1, 1

22
, 1
32
, 1
42
} and A = a1 + a2 + a3 + a4 in (10).

Equation (8) is a triangle function. Equation (9) is a piecewise lin-
ear function from the biomedical literature [20] and equation (10)
is a Fourier-series composition with four terms. The functions are
shown in Figure 5. The variation of nonlinear function is depicted
in Figure 6 using the PeakSparsity feature. Obviously the varia-
tion of the nonlinear function has substantial large scale impact on
the response, though Arnold tongue-like features are persistent in
all cases. For the continuous piecewise linear (triangle) function,
we observe a well-known effect of tongues pinching together with
increase nonlinearity. This effect has been called "Sausages" [30].
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(a) Sine (b) Triangle (c) Cardiorespiratory (d) Fourier

Figure 6: Variation of nonlinear perturbation function in the circle map using the PeakSparsity spectral value in the (k,Ω)-plane (top)
mild nonlinearity with k ∈ [0, 1.33̇) (bottom) strong nonlinearity with k ∈ [0, 13.3̇) (a) sine, (b) continuous rectilinear, (c) discontinuous
rectilinear, (d) mixed three sine.

The asymmetric non-continuous piecewise linear case (cardiores-
piratory model) shows that symmetry can be broken as well as
that fixed point regions can be very substantially extended. Some
of this behavior can be explained by understanding occurance of
fixed points by the slope of the function against an intersection
with the identity map yn = yn+1 depicted in Figure 5 as a red di-
agonal line. If the angle is shallow it creates fixed points. For the
triangle case we observe no fixed points due to the choice of slope,
while in the cardiorespiratory case we see an abundance of fixed
points for the choice of slope and intersection with the identity.
Overall we note that while there are persistent structure between
nonlinear function, the choice of nonlinearity plays a substantial
role in the sound of a chaotic oscillator. This suggests that the
study of their variation is an interesting subject of further investi-
gation.

8. CONCLUSIONS

The study of chaotic oscillators is an extremely rich topic ripe for
long-standing research. The proposed framework described in this
paper offers a strategy to further our understanding of their behav-
ior for sound synthesis.

The present framework is applicable to many more cases than
the ones discussed in this paper. A comparative analysis of wave
shaping, modulation techniques, feedback, and circle maps is forth-
coming [31]. Yet a detailed study on a wide range of chaotic os-
cillators [10] would help crystallize criteria for picking algorithms
and their respective similarities and differences.

The parameter space itself could be subjected to further anal-
ysis. For example, similarity measures [32] could be applied to
related different points and regions in the parameter plane and
hence provides a form of reparametrization that replaces paramet-
ric closeness with perceptual closeness.

Finally feature discovery and a deeper understanding of the
perception of differing noisy sounds are key aspects that can help
us get further understanding of nonlinear oscillators. We see the
use of feature discovery by maximum discrimination as a promis-
ing strategy for detailed study of existing features [33] and also as a
possible pathway towards understanding what aspects of the signal
are poorly captured by the current feature landscape. Deepening
our understanding of perception of noise is less straightforward
and will require new perceptual experimentation with novel mod-
els ideas about what could constitute perceptually relevant mecha-
nisms that discriminate difference versions of noise.
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ABSTRACT

Due to recent increases in computational power, physical modeling
synthesis is now possible in real time even for relatively complex
models. We present here a modular physical modeling instrument
design, intended as a construction framework for string- and bar-
based instruments, alongside a mechanical network allowing for
arbitrary nonlinear interconnection. When multiple nonlinearities
are present in a feedback setting, there are two major concerns.
One is ensuring numerical stability, which can be approached us-
ing an energy-based framework. The other is coping with the com-
putational cost associated with nonlinear solvers—standard itera-
tive methods, such as Newton-Raphson, quickly become a compu-
tational bottleneck. Here, such iterative methods are sidestepped
using an alternative energy conserving method, allowing for great
reduction in computational expense or, alternatively, to real-time
performance for very large-scale nonlinear physical modeling syn-
thesis. Simulation and benchmarking results are presented.

1. INTRODUCTION

One goal of physical modeling synthesis is the emulation of exist-
ing musical instruments, perhaps with extensions in terms of de-
sign and functionality not easily realisable in the real world. An-
other is the design of new instruments, without a real-world ref-
erent. The hope is that through adherence to the laws of physics,
synthetic sound of a natural acoustic character can be produced. In
this setting, modularity is an important concept—the idea is to give
the user control over instrument design through the interconnec-
tion of semi-independent modules. In this contribution, a modular
network, consisting of a set of string- or bar-like elements coupled
through an auxiliary nonlinear connection network is presented.

Modularity in physical modeling synthesis is not new. The ear-
liest attempt at a complete synthesis system, due to Cadoz [1], had
such a modularity principle explicitly built in—the basic elements
were masses and springs, through the interconnection of which
more elaborate instruments could be constructed. The MOSAIC
(later Modalys) system [2] uses the same notion, now employing
modal synthesis [3]. Modular networks have also been proposed
using wave-based methods [4] and time-stepping schemes—see,
e.g., [5, 6]. The main difficulty is in simulating a network con-
nected in a feedback configuration—a problem compounded when
nonlinearities, essential for any musically-interesting sound out-
put, are present. The complications are similar to those which oc-
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cur in virtual analog modeling, but now in a mechanical setting,
where individual elements have a distributed character.

Two main technical concerns emerge: one is ensuring numeri-
cal stability, as numerical methods for nonlinear systems are prone
to explosive unstable solution growth. Another is computational
efficiency; iterative methods (such as, e.g., Newton-Raphson [7])
commonly used in nonlinear ODE/PDE solvers, can lead to large
increases in computational cost. For the problem of numerical
stability, energy techniques are probably the only known method.
Such methods, in different guises, have been popular in virtual
analog applications (port-Hamiltonian approaches [8], wave dig-
ital filtering [9, 10], and used in PDE solvers [11]). For general
nonlinearities, however, including those involving collision or in-
termittent contact, energy methods are available, but usually re-
quire the use of iterative methods. See, e.g., [12, 13, 14].

Recently, a new class of methods mas been proposed in the
context of virtual analog modeling, relying on energy quadratisa-
tion [15], leading to numerical methods which are resolvable with-
out recourse to iterative methods, and which maintain the notion
of an energy balance leading to a numerical stability guarantee—
see [16, 17], as well as [18] in the context of audio systems. Such
an approach reduces computational costs by as much as an order
of magnitude, and allows for the simulation of relatively complex
nonlinear systems in real time on standard hardware.

In Section 2, a modular physical modeling synthesis system
is presented, consisting of an interconnection of string- or bar-
like primitives, and with nonlinear connections which allow in-
termittent contact. A numerical discretisation scheme is presented
in Section 3, allowing for energy-stable non-iterative simulation.
Simulation results, illustrating characteristic behaviour of such a
modular synthesis system appear in Section 4. Performance re-
sults for a C implementation are presented in Section 5, demon-
strating the possibility of real-time operation of relatively complex
instrument designs. Some perspectives appear in Section 6.

2. A MODULAR INSTRUMENT MODEL

The canonical building block here is the linear bar or string (re-
ferred to henceforth here as a stiff string), of circular cross section,
assumed to vibrate transversely in a single polarisation. The basic
equation of motion (see, e.g., [11], as well as other closely-related
forms [19, 20]), under unforced conditions, is of the form

Lu = 0 (1)

where the linear partial differential operator L is defined as

L = ρA∂2
t − T∂2

x + EI∂4
x + 2ρAσ0∂t − 2ρAσ1∂t∂

2
x (2)

Here, u(x, t) is the transverse displacement of the stiff string, in
m, as a function of time t ≥ 0, in s, and spatial coordinate x ∈
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D = [0, L], for some string length L in m. ∂t and ∂x represent
partial differentiation with respect to t and x, respectively.

The various parameters which define the stiff string are the
material density ρ, in kg· m−3, Young’s modulus E in Pa, tension
T in N, and string radius r in m, from which follow the cross-
sectional area A = πr2 and moment of inertia I = 1

4
πr4. σ0 and

σ1 are loss parameters, allowing for a simple frequency-dependent
loss characteristic (though much more realistic loss models are
available [21]). The symbol γ is used here to represent the set
of parameters defining a particular string; its minimal form is:

γ = {ρ,E, r, T, σ0, σ1, L} (3)

Two boundary conditions must be supplied at each end of the
string; many choices are possible (see [11]), but in this work, sim-
ply supported conditions will be enforced, so that

u = ∂2
xu = 0 at x = 0, L (4)

The equation (1) requires two initial conditions: u(x, 0) and ∂tu(x, 0).
In a synthesis setting, initial conditions are usually set to zero, but
will be maintained here in order to examine energetic behaviour
under unforced conditions.

System (1) satisfies an energy balance. Multiplying (1) by
∂tu, and integrating over D gives∫

D
∂tuLu dx = 0 (5)

Defining the L2 norm of a function f(x) over the domain D as

‖f‖D =

√∫
D
f2dx (6)

and using integration by parts, as well as the boundary conditions
(4) leads to the energy balance

dHs/dt+Qs = 0 (7)

where

Hs =
ρA

2
‖∂tu‖2D +

T

2
‖∂xu‖2D +

EI

2
‖∂2
xu‖2D (8a)

Qs = 2ρAσ0‖∂tu‖2D + 2ρAσ1‖∂x∂tu‖2D (8b)

Hs is the total stored energy for the string, and Qs is the power
loss. Given that Hs ≥ 0 and Qs ≥ 0, under unforced conditions,
this implies that dHs/dt ≤ 0, and thus energy is monotonically
non-increasing, and may be used to bound the growth of the state u
itself—such a balance may be employed in discrete time to arrive
at energy-based numerical stability conditions. See Section 3.

2.1. Excitation

For system (1), an excitation may be added as

Lu = δ(x− xe)fe(t) (9)

where here, fe(t) is an externally-supplied force signal (in N), and
δ (x− xe), is a spatial Dirac delta function selecting the excitation
location xe ∈ [0, L]. The pointwise character of the excitation can
be easily extended to the case of distributed contact (as in, e.g.,
the case of a piano hammer [19] or bow [22]). Simple choices of

the excitation function, if intended to model a strike or pluck, are
raised cosine distributions of the form

fe(t) =

{
1
2
fe,max

(
1− cos

(
qπ(t−te)

Te

))
, te ≤ t ≤ te + Te

0, otherwise
.

(10)
where te is the starting time of the excitation, Te is the duration,
fe,max is the maximum force, in N, and where q = 1 for a pluck
and q = 2 for a strike. See Figure 1.

Figure 1: Excitation functions fe(t) for a pluck (left) and strike
(right), as per the form given in (10).

From an energetic standpoint, one may again multiply (9) by
∂tu, and then integrate over D to obtain the energy balance:

d

dt
Hs +Qs = ∂tu(xe)fe︸ ︷︷ ︸

,P

(11)

where Hs and Qs are as in (8), and where P is the instantaneous
input power due to the excitation. Thus the rate of growth of en-
ergy in the system may be bounded in terms of supplied power.

2.2. Connection to a Lumped Object

Consider now a coupled system of a string under excitation, and
in pointwise contact, at location x = xc, with a lumped object
of mass M which is constrained to travel parallel to the plane of
polarisation of the string, and with displacement w = w(t):

Lu = −δ(x− xc)fc + δ(x− xe)fe M
d2w

dt2
= fc (12)

Here, fc = fc (η) is the connection force, assumed dependent on

η = u(xc, t)− w(t) (13)

the relative displacement between the lumped object and the string
at the connection point. See Figure 2.

Figure 2: Stiff string, under an excitation force and coupled to a
lumped object, as per (12).

Many choices for the interaction force fc are possible. A basic
linear/cubic restoring force served as a basis for the modular net-
work presented in [5]. A more general choice, allowing for inter-
mittent loss of contact (or collisions), and considerably widening
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the range of possible sound output, is the following choice:

fc (η) = K[|η| − ε]α+sgn (η) (14)

Such a force law is parameterised by K ≥ 0, a stiffness constant,
α ≥ 1, a nonlinearity exponent inspired by models in contact dy-
namics [23, 19], and ε ≥ 0, an effective length of the lumped
object, which is now able to rattle, and which allows for a dead
zone where no force is exerted by the lumped object on the string
and vice versa. The notation [·]+ indicates the “positive part of."
See Figure 3. Note that when ε = 0, so that the lumped mass and
string are always in contact, the force (14) reduces to a linear con-
nection when α = 1, and a cubic nonlinear force when α = 3. It is
also possible to go further here, and introduce a model of contact
loss, as per similar models in contact dynamics (see, e.g., [23]),
and employed in musical instrument modeling [13].

Figure 3: Nonlinear force characteristics of the form given in (14).
Left: with K = 106, α = 1 and ε = 0.001, and right: with
K = 1012, α = 3 and ε = 0.001. The dead zone, over which
there is no connection force, is shown as a blue shaded region.

At this point, we introduce the potential φ (η), such that

φ (η) ≥ 0 fc = dφ/dη (15)

and note that, through the chain rule,

dφ/dt = fcdη/dt (16)

Given the non-negativity of φ, it is also possible to define ψ as

ψ =
√

2φ fc = ψdψ/dη (17)

This quadratisation of the potential energy has been employed in
the context of virtual analog modeling and musical acoustics in
[17, 24, 16], and also, recently, in much more general numerical
settings, where it is referred to as invariant energy quadratisation—
see, e.g., [15]. In the case of the force characteristic given in (14),
the corresponding forms of φ and ψ are

φ (η) =
K

α+ 1
[|η| − ε]α+1

+ ψ (η) =

√
2K

α+ 1
[|η| − ε]

α+1
2

+

(18)
Though the forms in (15) and (17) are equivalent, in the nu-

merical context, they lead to distinct energy-conserving methods—
in particular, the form in (15) leads to a form requiring iterative
solution, and that in (17) to one which may be resolved explicitly.
For a direct comparison of this distinction in a simplified case, see
the companion paper [18].

From an energetic standpoint, multiplying the first of (12) by
∂tu and integrating over D yields

dHs/dt+Qs = P − fc∂tu (xc) (19)

Multiplying the second by dw/dt gives

d

dt

(
M

2

(
dw

dt

)2
)

=
dw

dt
fc (20)

Adding (19) and (20) gives, then

d

dt
Hs +Qs +

d

dt

(
M

2

(
dw

dt

)2
)

+ fc

(
∂tu (xc)−

dw

dt

)
= P

(21)
But, using

dη/dt = ∂tu (xc)− dw/dt (22)
as well as (16) leads to the energy balance

dH/dt+Qs = P (23)

where

H = Hs +Hc ≥ 0 Hc =
M

2

(
dw

dt

)2

+ φ ≥ 0 (24)

Thus the total energyH of the system may be decomposed into the
energy of the stiff stringHs and that of the connection mechanism
Hc, and as before is non-negative—its rate of growth may again
be bounded in terms of the input power P . Such a connection
mechanism is passive (and furthermore lossless).

2.3. A Complete Modular Network

The step to constructing an arbitrary network is relatively straight-
forward, using the model above as a starting point.

Suppose a network is defined with Ns stiff string elements,
each characterised by a parameter set γ(q), q = 1, . . . , Ns, of the
form given in (3). For each element, the associated transverse dis-
placement is u(q) = u(q)

(
x(q), t

)
, for x(q) ∈ D(q) = [0, L(q)],

and the associated partial differential operator is L(q). Suppose
also that there are Nm lumped objects, of mass M (j) kg, and of
displacement w(j)(t), j = 1, . . . , Nm. See Figure 4.

Figure 4: Modular network of stiff strings and lumped masses,
with connections indicated as yellow lines.

Now suppose that there are Nc individual connections, each
associated with a force f (ν)

c , ν = 1, . . . , Nc. The νth connection
links the qν th stiff string, at location x(qν) = x

(ν)
c with the jν th

lumped object, where qν ∈ {1, . . . , Ns} and jν ∈ {1, . . . , Nm}.
The force f (ν)

c will be of the form

f (ν)
c = f (ν)

c

(
η(ν)

)
η(ν) = u(qν)

(
x(ν)
c

)
− w(jν) (25)
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The force f (ν)
c

(
η(ν)

)
is assumed to be related to an underlying

potential energy φ(ν)
(
η(ν)

)
≥ 0 as

f (ν)
c = dφ(ν)/dη(ν) (26)

In this case, φ(ν) will be chosen to be of the form (18), but any
non-negative form is possible. Furthermore, define the index sets

I(q)c = {ν ∈ {1, . . . , Nc} | qν = q} (27a)

I(j)c = {ν ∈ {1, . . . , Nc} | jν = j} (27b)

Finally, assume Ne excitation functions f (ξ)
e , ξ = 1, . . . , Ne,

acting on the stiff strings with index qξ where qξ ∈ {1, . . . , Ns}
at locations x(ξ)

e . Define also the index set

I(q)e = {ξ ∈ {1, . . . , Ne} | qξ = q} (28)

The excitation functions f (ξ)
e could be chosen as in (10).

The complete system is:

L(q)u(q) = −
∑
ν∈I(q)c

f (ν)
c δ

(
x(q) − x(ν)

c

)
(29a)

+
∑
ξ∈I(q)e

f (ξ)
e δ

(
x(q) − x(ξ)

e

)

M (j) d
2w(j)

dt2
=

∑
ν∈I(j)c

f (ν)
c (29b)

Energy analysis is an extension of the case of the single string.
Multiplying (29a) by ∂tu(q), and integrating over D(q) gives

d

dt
H(q)
s +Q(q)

s +
∑
ν∈I(q)c

f (ν)
c ∂tu

(q)
(
x(ν)
c

)
= P(q) (30)

where H(q)
s and Q(q)

s are stored energy and power loss for stiff
string q, as defined in (8), with parameter set γ(q), and where P(q)

is of the form given in (21). Summing over all strings gives

d

dt
Hs +Qs +

Ns∑
q=1

∑
ν∈I(q)c

f (ν)
c ∂tu

(q)
(
x(ν)
c

)
= P (31)

where

Hs =

Ns∑
q=1

H(q)
s Qs =

Ns∑
q=1

Q(q)
s P =

Ns∑
q=1

P(q) (32)

are the total stored energy, dissipated power and supplied power
for the set of stiff strings. Recognising that the sets I(q)c form a
partition of the set {1, . . . , Nc}, one has, simply,

d

dt
Hs +Qs +

Nc∑
ν=1

f (ν)
c ∂tu

(qν)
(
x(ν)
c

)
= P (33)

Similarly, multiplying (29b) by dw(j)/dt, and summing over
j ∈ {1, . . . , Nm}, again using the partitioning property of I(j)c ,
gives

d

dt

Nm∑
j=1

(
M (j)

2

(
dw(j)

dt

)2
)
−

Nc∑
ν=1

f (ν)
c

d

dt
w(jν) = 0 (34)

Adding (33) and (34) gives, using (25) and (26),

dH/dt+Qs = P (35)

where

H = Hs+Hc ≥ 0 Hc =

Nm∑
j=1

M

2

(
dw(j)

dt

)2

+

Nc∑
ν=1

φ(ν) ≥ 0

(36)

3. DISCRETE-TIME SIMULATION

Finite difference schemes for the stiff string are covered in detail
in [11], and will be reviewed only briefly here.

Assume first a sample rate fs (and associated time step k =
1/fs), to be employed uniformly across all components in the net-
work. Consider now a single stiff string as defined by (1). The
grid function unl represents an approximation to u(x, t) at t = nk
and x = lh, for integer n and l, and where h is the grid spacing.
In particular, 0 ≤ l ≤ N , where h = L/N , for integer N . The
discrete domains d, d̄ and d̄ are defined as

d = {0, . . . , N} d̄ = {0, . . . , N − 1} d̄ = {1, . . . , N − 1}
(37)

A discrete inner product and norm may be defined over a dis-
crete domain b ⊂ Z with grid spacing h (such as d, d̄ or d̄ in (37)
above), for grid functions fnl , gnl , as

〈fn, gn〉b =
∑
l∈b

hfnl g
n
l ‖fn‖b =

√
〈fn, fn〉b (38)

3.1. Shift and Difference Operators

The forward and backward time-shift operators et+ and et− may
be defined, with regard to the grid function unl , as

et+u
n
l = un+1

l et−u
n
l = un−1

l (39)

Forwards, backwards and centered approximations to a first time
derivative may be defined in terms of shifts as

δt+ =
et+ − 1

k
δt− =

1− et−
k

δt◦ =
et+ − et−

2k
(40)

and averaging operators µt+ and µt− and an approximation δtt to
a second derivative may be written as

µt+ =
et+ + 1

2
µt− =

1 + et−
2

δtt = δt+δt− (41)

Similarly, spatial shifts ex+ and ex− may be defined as

ex+u
n
l = unl+1 ex−u

n
l = unl−1 (42)

and approximations to the first and second spatial deriavtaives as

δx+ =
ex+ − 1

h
δx− =

1− ex−
h

δxx = δx+δx− (43)
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3.2. Basic Scheme

A basic explicit finite difference scheme for an uncoupled linear
stiff string, as in (1) may be written, for u = unl , l ∈ d as(
ρAδtt − Tδxx + EIδ2

xx + 2ρAσ0δt◦ − 2ρAσ1δt−δxx
)︸ ︷︷ ︸

`

u = 0

(44)
Numerical boundary conditions corresponding to (4) are

unl = δxxu
n
l = 0 l = 0, N (45)

and allow (44) to be well-defined even when applied at or adjacent
to the domain end points.

The scheme (44) satisfies an energy balance of the form

δt+h
n−1/2
s + qns = 0 (46)

where hn−1/2
s and qns are the discrete-time energy storage function

and power loss, respectively, defined as

h
n− 1

2
s =

ρA

2
‖δt−un‖2d +

T

2
〈δx+u

n, et−δx+u
n〉d̄ (47a)

+
EI

2
〈δxxun, et−δxxun〉d̄ − ρAσ1k‖δt−δx+u‖2d̄

qns = 2ρAσ0‖δt◦u‖2d + 2ρAσ1‖δt◦δx+u‖2d̄ (47b)

The power loss qns is non-negative, but the stored energy hs is only
non-negative under the condition

h2 ≥ 1

2

Tk2

ρA
+ 4σ1k +

√(
Tk2

ρA
+ 4σ1k

)2

+ 16
EIk2

ρA


(48)

which is a numerical stability condition for scheme (44) in isola-
tion. Under this condition, the state size may be bounded in terms
of supplied energy.

In implementation, scheme (44) is explicit—if the state unl is
written as a column vector un = [un0 , . . . , u

n
N ]T , (44) becomes

un+1 = Bun + Cun−1 (49)

where B and C are sparse (N + 1) × (N + 1) matrices. See
[11] for the construction of these matrices in terms of the various
spatial difference operators.

3.3. String with Nonlinear Connection and Excitation

Consider now the simple case of a stiff string under an excitation
force and a nonlinear connection, as per (12). A discrete form is

`u = −fc
1

h
I (xc) + fe

1

h
I (xe) Mδttw = fc (50)

Here, fc = fnc is a time series representing an approximation to
fc (t), of a nature to be described shortly, and fe = fne is an
approximation to the externally-supplied function fe (t), perhaps
obtained through sampling. The grid functions Il (x0), selects a
given location x0. Many choices are possible, but the simplest,
and that which will be employed subsequently here, is certainly

Il (x0) =

{
1, l = l0 = round (x0/h)
0, otherwise

(51)

When multiplied by 1/h, as in (50) above, approximations to the
Dirac delta functions from (12) result, where x0 = xc, xe.

The force fnc will be dependent on the relative displacement η
of the string and lumped mass at the connection grid index l = lc:

ηn = unlc − w
n (52)

Consider now the inner product of the first of (50) with δt◦u over
d—this leads to the energy balance

δt+h
n−1/2
s + qns + fnc δt◦u

n
lc = fne δt◦u

n
le︸ ︷︷ ︸

pn

(53)

where h
n−1/2
s and qns are as defined in (47), and where pn is the

discrete input power due to the excitation.
Similarly, multiplying the second of (50) by δt◦wn leads to

δt+

(
M

2
(δt−w

n)2

)
− fcδt◦wn = 0 (54)

Adding (53) and (54), and using (52) leads to the balance

δt+

(
hn−1/2
s +

M

2
(δt−w

n)2

)
+ qns + fnc δt◦η

n = pn (55)

What is lacking is a definition of fnc . Here are two:

fnc =
δt+φ

n−1/2

δt◦η
fnc = µt+ψ

n−1/2 δt+ψ
n−1/2

δt◦ηn
(56)

Here, φn−1/2 is an approximation to φ at time t = (n − 1/2)k,
such as φn−1/2 = µt−φ (ηn) ≥ 0, and ψn−1/2 is an approxima-
tion to ψ at time t = (n − 1/2)k. When inserted in (55) above,
either form in (56) leads to the energy balance

δt+h
n−1/2 + qns = pn hn−1/2 = hn−1/2

s + hn−1/2
c (57)

where, for the two choices of the force fnc from (56),

hn−1/2
c =

M

2
(δt−w

n)2 +

{
φn−1/2

1
2

(
ψn−1/2

)2 ≥ 0 (58)

Under the further condition (48), then hs ≥ 0 implying that h ≥ 0,
and as before, the system as a whole will be numerically stable.

3.4. Implementation: Iterative vs. Non-iterative Methods

When written in vector/matrix form, the scheme (50) has the form

un+1 = Bun + Cun+1 − θjcfnc + θjef
n
c (59a)

wn+1 = 2wn − wn−1 +
k2

M
fnc (59b)

where θ = k2/(ρAh (1 + σ0k)), and where je and jc are N + 1
element column vectors, all zero except for a 1 in locations le and
lc respectively.

Now, using the fact that

δt◦η
n =

1

2k

(
jTc
(
un+1 − un−1)− wn+1 + wn−1

)
(60)

and the updates (59) leads to the affine relationship between δt◦ηn

and fnc :
δt◦η

n + ζfnc + Ξn = 0 (61)
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where Ξn consists of previously computed (known) values of u
and samples of the excitation fne , and ζ is a constant.

Consider now the first energy-conserving definition of fnc , from
(56). In combination with (61), this leads to the nonlinear equa-
tion:

r + 2kζ
φ
(
r + ηn−1

)
− φ

(
ηn−1

)
r

+ 2kΞn︸ ︷︷ ︸
F (r)

= 0 (62)

where r = ηn+1−ηn−1 is the unknown. Such a form has appeared
in earlier works regarding energy-conserving collision simulation
[12, 13], and requires, in general, an iterative solution through,
e.g., Newton-Raphson; the number of iterations depends strongly
on the particular parameters defining the nonlinearity.

The second form of fc given in (56) leads to a distinct update.
Define

gn =
δt+ψ

n−1/2

δt◦ηn
,
dψ

dη
|t=nk (63)

The time series gn can be computed directly from known values
of ηn and the functional form of ψ. Given gn, the following pair
of updates results from (61) and (63):

δt◦η
n + ζgnµt+ψ

n−1/2 + Ξn = 0 δt+ψ
n−1/2 = gnδt◦η

n

(64)
These can be consolidated into a single update yielding ηn+1 from
previously computed values of η and ψ:

ηn+1 = Θ
(
ηn, ηn−1, ψn−1/2

)
(65)

and, given ηn+1, the second of (64) may be updated to yieldψn+1/2,
at which point the simulation advances to the next time step. For
more details, see [18].

3.5. A Complete Discrete-time Modular Network

Returning to the complete modular system presented in Section
2.3, the numerical scheme corresponding to (29) is

`(q)u(q) = −
∑
ν∈I(q)c

f (ν)
c

1

h(q)
I
(
x(ν)
c

)
+
∑
ξ∈I(q)e

f (ξ)
e

1

h(q)
I
(
x(ξ)
e

)
δttw

(j) =
1

M (j)

∑
ν∈I(j)c

f (ν)
c (66)

Here, u(q) = u
(q),n
l is the grid function corresponding to the qth

string, with grid spacing h(q), and defined over l ∈ {0, . . . , N (q)}
and `(q) is the difference operator derived from L(q). w(j) =
w(j),n is the time series corresponding to the displacement of the
jth lumped object, j = 1, . . . , Nm and f (ν)

c , ν = 1, . . . , Nc to
the associated connection forces. In (3.5) above, the time step n
accompanying all dependent variables is suppressed for brevity.

Each of theNc connection forces f (ν)
c = f

(ν),n
c , ν = 1. . . . , Nc

is assumed dependent on a displacement

η(ν),n = u
(qν),n

l
(ν)
c

− w(jν),n (67)

There is assumed an underlying discrete potential φ(ν),n−1/2 (and
accompanying functionψ(ν),n−1/2), such that, for the non-iterative
algorithm,

f (ν),n
c = µt+ψ

(ν),n−1/2 δt+ψ
(ν),n−1/2

δt◦η(ν),n
(68)

Full details of the implementation and energy analysis will not
be presented here, because of space limitations, but follow in al-
most all respects from the analysis of the single string/connection
described in the previous section. A demonstration of energy con-
servation appears in Section 4.1, and of the benefit of a non-iterative
algorithm, in terms of computation time, in Section 5.

4. SIMULATION RESULTS

In this section, we present some numerical results illustrating nu-
merical and musical aspects of the modular system described here.
All simulations are run at 44.1 kHz.

4.1. Energy Conservation

Consider first the energy conservation property, for a full network
of 25 strings (ranging in pitch from C2 to C4), and using 24 two-
sided connections, where the non-iterative scheme is employed.
A worst case is assumed here, where the strings are lossless, and
the initial conditions of the strings and lumped elements are ran-
domised. In Figure 5, the energy partition as a function of time be-
tween strings and connections is shown, alongside the normalised
energy variation, illustrating energy conservation to machine ac-
curacy. The availability of such a measure allows for an excellent
approach to debugging modular synthesis codes.

Figure 5: Left: energy partition, showing energy in strings, con-
nections, and the total. Middle: normalised sample to sample en-
ergy variation, and right: a detail showing energy conservation to
machine accuracy.

4.2. Single String/Lumped Object

An illustration of the interaction between a single string and a
lumped object in intermittent contact is shown in Figure 6. Even
in this extremely simple case, a wide variety of timbres is possible.
In Figure 7, spectrograms of sound output are shown where string
parameters are chosen according to a high E string on a guitar.

4.3. Large network

Consider now a network of 25 strings with 24 double-sided con-
nections, representing approximately the largest possible in real
time at 44.1 kHz. Snapshots of the time evolution of this network
are shown in Figure 8.

5. COMPUTATIONAL ANALYSIS

This section details the computational costs of the element types
(stiff string and connection) from which the system is built. We
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Figure 6: Interaction of a single stiff string with a lumped colliding
object, at times as indicated.

Figure 7: Spectrograms of sound output for a high E guitar string
connected to a single lumped element. Top left: free vibration. Top
right, under a single connection, illustrating abrupt changes in tim-
bre over a long time scale. Bottom left: illustrating low-frequency
“warbling" effects. Bottom right: for a high mass lumped object,
leading to distinct bounces or temporal events.

start with a set of strings, and then compare an individual non-
linear connection solver in both iterative and non-iterative form.
Finally we assess a full system of strings and connecting elements,
as could be used in a real-time audio plug-in. All simulations are
written in C++, and timings are produced by running at a sam-
ple rate of 44.1 kHz (in double precision) over 441,000 time steps
and then dividing by 10 to give an average performance for 44,100
steps. The test CPU is a 6-core Intel Xeon E5-1650 v2, and the
LLVM compiler was used. Whilst we will not consider multi-
threading here (as this presents problems for real-time usage) we
do make use of vectorization, namely with Intel’s SSE and AVX
intrinsics [25].

The stiff string is simulated using the scheme (44), which is
explicit, and amenable to spatial parallelization. The state size and
computational cost can become large, but not unmanageably so:
for the case of 25 low-pitched strings tuned from C2 at 65Hz to
middle C4, the total state size required is 2,550 values. Table 1
shows results using various compiler optimisation levels, and also
using manually written vector intrinsics which lead ultimately to a
speedup by a factor of four. Performance is faster than real time.

Consider now a single nonlinear connection. Two forms of
code were tested: first a form which uses an iterative Newton-

Figure 8: Large modular network, at rest (top), under initial exci-
tations (middle) and later (bottom).

Table 1: Computation times for 25 strings, tuned from C2 to C4,
for 1 s output. Total state size: 2,550 grid points.

Optimisation Level Time (s)

-O0 0.59
-O3 SSE only enabled 0.18
Manual AVX 0.13

Raphson solver, and then a form which uses the new non-iterative
solver. For the purposes of this testing the Newton-Raphson solver
was run for 10 iterations at each time step, starting from a cached
solution. This is a usable “average" figure for the simulation, al-
though in practice could be larger, and also possibly reduced by
testing for a residual.

The algorithm for solving for each connection force consists of
some initial arithmetic operations and two calls to the power()
function with non-integer exponents (using std::pow() from
the cmath library). Then the Newton-Raphson solver is launched.
This requires a further two calls of the power() function at each
iteration. Finally there are some further arithmetic calculations
to compute the forces at each end of the connection. The non-
iterative form is considerably simpler, requiring just two power()
functions in total. Table 2 shows the resulting computation times.
The benefit of the non-iterative form is clear, giving a 11× speed
up over the iterative form. This is mostly due to the reduction in
the number of calls to the power() function, from 22 in the it-
erative form to just two in the latter. Further optimisation may be
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Table 2: Compute times for an individual connection for 1 s.

Optimisation Iterative (ms) Non-Iterative (ms) Speedup

-O0 79.2 7.1 11.2×
-O3 SSE 73.5 6.3 11.6×

achieved by implementing a manually vectorized power function
across groups of connection calculations.

The final test simulation involved two octaves of strings with
24 two-sided rattle connections, such that each string was con-
nected to another through a lumped element—a single strike to
any string will excite the entire network, as in Figure 8. At each
time step the strings are updated first, followed by a loop over the
connections which then adds back the calculated forces into the
strings at the connection points. Table 3 shows the results for the
full system.

Table 3: Computation times: 25 strings/24 connections for 1 s.

Optimisation Iterative (s) Non-Iterative (s) Speedup

-O0 2.53 0.81 3.1×
-O3 SSE 1.93 0.35 5.5×
Manual AVX 1.84 0.28 6.6×

The version computed using an iterative solver results in a best
time of 1.84 s for 1 s sound output, which is clearly well short
of the real time threshold. The non-iterative solver results in a
6.6× speedup, and the resulting time of 0.28 seconds is just within
the scope of usability for a real-time application. Note that per-
formance levels may vary according to other factors such as the
CPU-specific cache, and other compiler details.

6. CONCLUDING REMARKS

A form of this system available as a real-time plug-in is under de-
velopment through Physical Audio [26], called net2. It is rewritten
from a previous version (called net1), which ran offline in multi-
core using an iterative solver. The ability to sidestep such iterative
methods, and maintain a numerically-stable synthesis algorithm
has allowed this move to real time through the approximately 10×
speedup for the nonlinear part of the simulation. Though only stiff
strings have been shown here, the extension to systems includ-
ing multiple vibrating plates is immediate—see, e.g., [5]. Also,
only one type of nonlinearity has been presented here, but the non-
iterative algorithm presented here is fully general.

A major consideration, at the level of the user experience, is
in the UI design, particularly when there are potentially many stiff
string/connection elements to manage—this has been partly dealt
with during the design of the simpler Derailer system, also from
Physical Audio. A deeper issue is that of exploring the design
parameter space—for the system illustrated here with 25 strings
and 24 connections, for example, there are 319 parameters to set.
Some heuristics can be employed to make this more manageable
(by, say, restricting string tunings), but clearly some more general
strategy for finding interesting regions of the parameter space (per-
haps invoking methods from machine learning) is necessary.
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ABSTRACT

Contact between rigid-body objects produces a diversity of
impact and friction sounds. These sounds can be synthesized with
detailed simulations of the motion, vibration and sound radiation
of the objects, but such synthesis is computationally expensive and
prohibitively slow for many applications. Moreover, detailed phys-
ical simulations may not be necessary for perceptually compelling
synthesis; humans infer ecologically relevant causes of sound, such
as material categories, but not with arbitrary precision. We present
a generative model of impact sounds which summarizes the effect
of physical variables on acoustic features via statistical distribu-
tions fit to empirical measurements of object acoustics. Perceptual
experiments show that sampling from these distributions allows ef-
ficient synthesis of realistic impact and scraping sounds that con-
vey material, mass, and motion.

1. INTRODUCTION

The sounds that enter the ear are collectively determined by the
physical processes that generate the acoustic waveform. Sound
generation by rigid bodies is a classic physics problem and the
processes by which material parameters (e.g. material, mass, mo-
tion) affect acoustic waveforms have been well characterized [11,
15, 27, 31]. Typically, physical sound synthesis is done by mod-
elling in detail the relevant processes which lead to the generation
of a sound. For example, rigid bodies are modelled as a mesh-
grid of masses on springs [4, 5, 6, 28, 38, 41], or decomposed
into small segments over which wave equations can be solved by
Finite-Element or Boundary-Element-Methods (FEM/BEM) [3, 16,
23]. These models yield a set of resonant modes from which
contact sounds can be synthesized. In practice such models re-
quire computing physical interactions at very small spatiotemporal
scales, and are thus computationally expensive.

Humans perceive sounds in terms of physical variables [12,
34], and these perceptual abilities might inform sound synthesis
approaches. When we hear the sound of a fork dropped upon a
wooden table, we can make judgments about the size [7, 14, 37],
material [2, 13, 17] and motion of the fork [19]. However, our
discrimination abilities are limited. It is not clear that humans can
tell a fork from a knife in such a case, for instance, let alone the
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The MIT-IBM Watson AI Lab
Copyright: c© 2019 James Traer et al. This is an open-access article distributed
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detailed geometry of the fork. Indeed, perceptual experiments in-
dicate that humans can infer broad material differences (e.g. metal
vs wood) from contact sounds, but are less accurate for more pre-
cise judgments (e.g. distinguishing metal from glass) [13].

The coarse-grained nature of human material judgments sug-
gest material perception is insensitive to mode properties within
some tolerance. Exactly what tolerance remains an open question,
but it suggests that synthetic modes need not have a detailed corre-
spondence to those of an actual object to yield compelling sounds.
We hypothesize that the auditory system infers coarse-grained ma-
terial parameters from statistical properties of modes, rather than
their precise details. For example, consider again the sound of a
fork dropped upon a table. Although fine-grained features (e.g. the
thickness of the handle, the length of the tines, the narrowing of the
neck, etc.) may affect individual modes, we see little evidence that
humans infer such subtle features. However, coarse-grained phys-
ical features, which are crucial to inferring scene properties like
material and size, will affect all the modes and thus are likely to be
reflected in the modal statistics.

Rather than attempt to simulate the physical process in fine-
grained detail, we measure statistics of modes from real-world im-
pact sounds and use these distributions as the building blocks for
sound synthesis via a source-filter model (in which a time-varying
force is convolved with the object impulse response). We syn-
thesize sounds from both impacts and sustained frictional forces
(Fig. 1). As with our statistical model of modes, the impact forces
are parametrized only by coarse-grained properties: mass, stiff-
ness, and velocity. For scraping sounds, the force is generated
through a texture quilting algorithm [10], reflecting listeners’ per-
ception of summary statistics as opposed to fine-grained temporal
detail in sound textures [25].

Our approach yields compelling renditions of sounds via a fast
and efficient process. As with other similar approaches [1, 29], it
is thus ideal for use in physics engines used in modern computer
games and simulations. Such engines store a set of attributes for
rigid-bodies to compute how they will move (e.g. mass, elasticity,
frictional coefficients, a grid-model of the geometry, etc.) and to
compute their appearance under lighting (e.g. diffuse and specular
reflectance profiles, visual surface statistics, etc.). As conventional
sound synthesis is slow, current engines rely on memory intensive
sample banks of pre-recorded or pre-computed sounds to be played
on contact. However, our synthesis model only requires a simple
texture model and low-dimensional representations of coarse phys-
ical features, such as are already encoded for motion and visual
appearance. From these crude features and a sample bank of mode
distributions (e.g. wood, metal, plastic, ceramic, etc.), our synthe-
sis algorithm can rapidly generate a range of realistic and unique
contact sounds. Here we show that impact sounds generated in this
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way convey mass and material to listeners as well as recordings of
real sounds. Scraping sounds derived from these mode distribu-
tions are also realistic and convey motion trajectories.
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Figure 1: We synthesize sounds by (top) a generative model of im-
pact and sustained contacts. (Upper-middle) Object Impulse Re-
sponses are synthesized by sampling modes from empirical distri-
butions. (Lower-middle) Impact forces are modelled via a spring
model. (Bottom) Sustained contacts are modelled via measured
surface textures and location-dependent IRs.

2. SOURCE-FILTER MODEL OF IMPACTS

Our model is inspired by the well-known source-filter model [8]

s(t) = f(t) ∗ [h1(t) + h2(t)] , (1)

where s(t) is the sound entering a listener’s ear, f(t) is the contact-
force between two objects and hj(t) is the impulse response (IR)
of the jthe object. Past sound synthesis techniques have computed
high-resolution IRs with large grid models such as finite-element
or boundary-element techniques [16, 24, 30], solved analytically
for the resonant modes of an object of known material and shape
[17, 21, 22, 38], or fit parameteric models of mode parameters to
measured impacts[1]. The grid solutions are flexible but require
significant computational power. The analytical modal solutions
allow fast synthesis but only apply to a small subset of rigid bodies.

We approximate, as have others before [33], object IRs via the
summation of a broadband transient “click" and a set of exponen-
tially decaying sinusoids corresponding to the resonant modes of

the object

h(t) = hT (t) +
M∑
m

10(am−bmt)/20 cos(ωmt) , (2)

where hT is the transient, and (am, bm, ωm) are the onset power,
decay rate and angular frequency of the mth mode. The transient
can be described via a set of decaying noise-bands:

hT (t) =
N∑
n

10(αn−βnt)/20νn(t) , (3)

where νn is a time-series of random noise filtered by the nth Equiv-
alent-Rectangular-Bandwidth (ERB) filter of a cochleagram de-
composition, and (αn, βn) are the onset power and decay rates
of this channel. Under our model, an object IR can be completely
described by 2N + 3M parameters, to precisely determine the
shape of the transient and the modes. Throughout this work we
use N=30 and M=15, which we found to be sufficient for com-
pelling resynthesis.

Our preliminary experiments suggest several broad perceptual
trends: (1) perception of material properties is dominated by a
small number of powerful modes; (2) changes to the properties of
weaker modes are barely noticeable; (3) slight changes to the most
powerful modes are detectable, but the resulting sound is perceived
as a different exemplar of a similar object or the the same object
struck in a different location; (4) altering the transient but not the
modes, has a minimal effect on perceived material. All of these
perceptual trends suggest that human perception of object proper-
ties (i.e. material, size, shape) are primarily predicated upon the
statistics of the most powerful object resonant modes.

2.1. Modal synthesis of object Impulse Responses (IRs)

To test our hypothesis that human judgments of object properties
are based on mode statistics, we seek to synthesize impact sounds
which match the modal statistics of real-world impacts, but are
otherwise unconstrained (such that the exact mode parameters are
different). We began by measuring the mode statistics from real-
world objects.

To measure resonant modes, we recorded the sounds of a large
number of materials being struck by small pellets. We estimated
the resonant modes of each impact via an iterative procedure of
spectrogram matching: (1) we obtained the frequency channel of
the spectrogram of the impact sound with the maximum power; (2)
we synthesized an initial synthetic impact with an exponentially
decaying sinusoid at that frequency; (3) we adjusted the mode
properties (frequency, onset power and decay rate) to minimize the
mean-squared error between the spectrograms of the recording and
the synthetic; (4) we subtracted the synthetic spectrogram from the
original (removing the mode we just measured). We then repeated
the procedure 14 times, yielding parameters for the 15 most pow-
erful modes. After fitting the modes we repeat this procedure using
exponentially decaying noise-bands instead of sinusoidal modes to
fit the properties of the transient.

For each material, we recorded multiple impacts at different
locations on multiple objects. We pooled together modes from
multiple objects and characterized the mode statistics by fitting a
multivariate Gaussian distribution to the resulting collection. We
similarly fit distributions to the transient decay parameters.
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To generate a synthetic IR, we sample both mode and and tran-
sient properties from our empirically measured distributions:

(~a,~b, ~ω) = N (µM,ΣM)

(~α, ~β) = N (µT,ΣT) , (4)

where (µM ,ΣM ) are the mean and covariance of the mode proper-
ties, conditioned upon the required object or material, and (µT ,ΣT )
are the analogous mean and covariance of the transient subband
properties. We used rejection sampling to ensure that the aver-
age frequency spacing between sampled modes was within 10% of
that measured from recordings of the material. Because the mode
statistics are computed offline prior to synthesis, all that needs to
be encoded at time of sound synthesis are material labels which
index distributions of IR properties.

To simulate multiple contacts of the same object we sample
from the distributions once, and then randomly perturb mode onset
powers (standard deviation=20% mean mode power) for each later
impact. This emulates the fact that impacts in different locations
differentially excite the same modes. We found empirically that
either sampling from the distribution twice or repeating the exact
same set of mode parameters produced unrealistic sounds [20].

2.2. Effect of impact physics

To synthesize an impact sound, we also need to compute the con-
tact force, to be convolved with the object IR [Eq. (1)]. We ap-
proximate the contact force using a simple spring-model, in which
the force acting on either object is proportional to the displacement
of the surface at the point of contact. This yields the force between
two objects as a half-wavelength of a sinusoid

f(t) =

sin

(√
k
m
t

)
∀ 0 < t < πm

k

0 otherwise
, (5)

where v is the velocity at impact, m the mass of the pellet and k a
spring constant determined by the materials of the board and ball.
Note that as the mass tends to zero, the time of contact between
the two materials tends to zero and the contact force tends towards
a Dirac-delta function. This observation partly justifies the use of
small pellet impact recordings to approximate the object impulse
response.

To synthesize impact sounds, we convolve a synthesized IR
from Eq. (4) with the contact force described in Eq. (5). All that
needs to be encoded at the time of impact are labels of object mass,
velocity, and material labels, which determine both the spring con-
stants and the distributions from which modes are sampled. Except
for parameters of the mode distributions, these features are already
included in physics engines.

3. PERCEPTION OF SYNTHETIC IMPACTS

To assess our impact synthesis model we played both recorded and
synthesized sounds to listeners and asked them to judge: (1) real-
ism; (2) material; and (3) mass of the colliding objects. All per-
ceptual experiments were conducted over Amazon’s Mechanical
Turk platform. A standardized test was used to ensure participants
were wearing headphones [40].

3.1. Experiment 1. Realism of synthetic impact sounds

We first sought to test whether our synthetic sounds were com-
pelling renditions of real-world impacts. If our synthesis method
neglected sound features to which the brain is sensitive, the syn-
thetic sounds should be recognizable as fake.

Participants were presented with a pair of impact sounds and
identified which was the real recording. In all trials, one sound
was a real-world recording of a ball dropped on a resonant object,
and one a synthetic impact generated via our model or a model that
was ‘lesioned’ in some way, by omitting the transient component
of the IR, or by omitting the modes from the IR. The conditions
of the experiment were (1) full synthetic model; (2) Modes only,
without transient; (3) Transient only, without modes; (4) Time-
reversed synthetics. The sound in the final condition were clearly
synthetic, which serves to ensure task comprehension.

The results (Fig. 2) show that listeners could not distinguish
sounds from either the full or lesioned models from real-world
recordings, demonstrating that our method of impact sound syn-
thesis yields plausible sounds. The chance performance for the le-
sioned models presumably reflects the fact that the resulting sounds
remained realistic even though the lesion altered the quality of
the sounds. As participants were good at identifying the Time-
Reversed sounds it is clear they understood the task. Poor per-
formance in the other conditions thus reflects the success of the
synthesis.

Realism: N=25
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Figure 2: Discrimination of real vs. synthetic impact sounds (Exp
1). Dashed line denotes chance performance.

3.2. Experiment 2. Perception of material

Having demonstrated that our synthetic impact sounds are real-
istic, we sought to test whether they convey appropriate physical
parameters to listeners. We first tested whether listeners can rec-
ognize the material of a struck resonant object.

Participants heard a single impact sound and were asked to
identify the material of the struck object from one of four possible
categories: metal, ceramic, wood or cardboard. Participants were
told that the striking mallet was effectively noiseless and that many
different objects of each material class were used, of a range of
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different sizes, shapes and sub-material (i.e. metal contained steel,
tin, aluminium etc.; wood contained poplar, pine, oak etc.)

With real-world recordings, participants were excellent at dis-
tinguishing hard materials (metal or ceramic) from soft materials
(wood or cardboard) but made errors within the hard or soft cat-
egories (Fig. 3). This result is consistent with prior studies [13].
Sounds from our synthesis model - both with and without the tran-
sient - yielded a similar pattern of success and failures. Without
modes, or with shortened modes, human judgments were strongly
biased towards to softer materials. With lengthened modes, judg-
ments were biased towards harder materials, particularly metal.
This demonstrates that our model - particularly the mode statistics
- have captured the acoustical features that humans use to judge
material classes from impact sounds. The correlation of the con-
fusion matrices for the full model and recorded sounds was 0.72.
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Figure 3: Material discrimination from synthetic impact sounds
(Exp 2). Left: Confusion matrices of the presented material and
participant responses. Right: Correlation of the confusion matri-
ces of various synthetic sounds with that of the recorded impacts.

3.3. Experiment 3. Perception of mass

We next sought to test whether our synthetic sounds convey the
mass of the striking mallet to listeners. Participants heard two im-
pact sounds, one of a small wooden pellet (0.7 g) dropped onto an
object, and one of a larger wooden ball (7.6 g) dropped onto the
same object. Participants were asked to identify which of the two
balls was heavier. To generate synthetic sounds the synthetic IRs
were convolved with two different contact forces to emulate dif-
ferent ball masses, as shown in Eq. (5). The impact levels were
not normalized but retained the relative variation in power level
induced by the difference in impact force (i.e. the coefficient in
Eq. (5) and the amplitude of the IR). All recordings and simula-
tions were made with balls dropped from the same height (8 cm),
but participants were not explicitly told this.

Since we do not know k, the spring constant, we cannot com-
pute the contact force [Eq. (5)]. Instead we estimate k from the

recorded impact sounds. Since both balls are the same material,
we assume klarge = ksmall, which means the ratio between the con-
tact times for the two balls is mlarge/msmall. We set the contact
time of the larger ball to be 10.9 times that of the smaller ball. We
then iteratively adjusted the contact time of the smaller ball, until
it produced a match between the average spectral centroid of the
synthetic sounds and of the corresponding impact recordings.

The results (Fig. 4) show that humans perform very well at this
task, both with real-world recordings and with synthetic sounds.
This demonstrates that humans are sensitive to the filtering ef-
fect described by the contact force and can use this acoustic in-
formation to estimate the mass of the striking mallet. Participants
showed a small performance decrement in the conditions where
modes were shortened or excluded altogether, suggesting that hu-
mans are using modes, in addition to the sound level and spectral
centroid, to estimate mass. The results suggest that our synthetic
sounds convey mass as well as real-world recordings.
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Figure 4: Mass discrimination with real and synthetic impact
sounds (Exp 3).

4. SUSTAINED CONTACTS

To test the generalizability of our impulse response distributions,
we next consider sustained contacts such as made by two objects
scraping across each other. Similar to [32], we again use the source-
filter model of Eq. (1) but both the force and object IRs are more
complicated than for impact sounds. The contact force f(t) is gen-
erated by a series of small collisions as the scraper moves across
the surface of the scraped object, and is thus a function of the
downward force applied to the scraper, the surface texture depth,
and the scraper speed (Fig. 1, bottom). The object IR changes with
scraper position x(t), and thus, as the scraper moves across the
surface, the IR becomes a time-varying function hsurface(x(t)). We
describe these models of force and IR in more detail below. De-
spite the simplicity of this model, our results suggest that it yields
plausible scraping sounds which convey motion of the scraper.

4.1. Contact force for sustained contacts

To model the force between scraper and surface we start with sev-
eral simplifying assumptions: that the external force applied to the
scraper Fp is constant and applied vertically downwards, and that
the probe follows the surface exactly without any slip or bounce,
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such that the probe height z(t) at time t, is given by the surface el-
evation S(x) at the probe location x. For now we consider a tran-
sect across the surface so x is a one-dimensional variable, though
the following analysis applies easily to a 2D treatment.

4002000
Height (µm)

600

Figure 5: Everyday textures measured with the confocal micro-
scope. Surface area is 7.3 mm by 10 mm. From-left: 100 grit
sandpaper; 60 grit sandpaper; wood; vinyl tile.

We first consider the vertical component of the force. Under
our assumptions, the change in vertical force applied to the surface
can be derived from the vertical acceleration of the probe, which,
as the probe follows the surface, is given by

fv(t) = mpz̈

= mp
∂2S

∂x2
|v(t)|2 , (6)

where mp is the mass of the probe and v(t) is the horizontal ve-
locity of the probe.
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Figure 6: Scraping motions. Left: Measured position traces of
scraper over surface, for three different types of motion. Right:
Absolute velocity measurements.

We next consider the frictional force tangential to the surface.
We model this as proportional to the probe speed raised to the
power of an exponential factor γ, giving

fh(t) ∝
(∣∣∣∣v(t)

∂S

∂x

∣∣∣∣)γ , (7)

where the partial derivative with respect to x accounts for the dif-
ference between the speed of scraping across the surface, which
is the important factor, and the horizontal speed |v(t)|. The total
force imparted onto the object is then given by

f(t) = fv + fh

= mp
∂2S

∂x2
v(t)2 +A

(∣∣∣∣v(t)
∂S

∂x

∣∣∣∣)γ , (8)

whereA and γ are unknown constants which titrate the importance
of shear friction versus vertical forcing. We explore the role of
these factors by listening to synthetic scrape sounds from a range
of values. We have neglected the constant downward force term
Fp which, though present, does not create any sound.

To obtain S, we measured the surface texture of several real
objects using a scanning confocal microscope (Keyence VK-X260K).
In these experiments, we used a micro-scale depth map of a small
section of a wood block (Fig. 5). These are relatively small ma-
trices (1600 pixels by 2300 pixels), which render the surface with
horizontal resolution of 5.6µm and vertical resolution of 0.1 nm.
Based on perceptual results concerning auditory texture percep-
tion, we expect that the perceptually important properties of such
textures are statistical [26]. Therefore, to define S, we use one-
dimensional quilting to generate a texture from a measured depth
map [10], sampling a series of single rows and concatenating them.
In future work, we plan to synthesize these surfaces statistically
from coarse-level variables, in the same spirit as our distribution
over impulse responses.

In addition to a depth map, the synthetic scraping force re-
quires ecologically plausible velocity profiles of scraping motions.
To probe the mechanics of typical human scraping movements,
we measured the velocity and position profiles of several scraping
movements using an optical tracking system (OptiTrack V120:Trio;
Fig. 6). We use these recorded trajectories in the reported synthe-
sis. However, in informal experiments, we found that the quality
of sound synthesis was not heavily dependent on a precise match
to the recorded data. Future work will include simple statistical
models of these trajectories.

4.2. Variation of IRs over contact location

Object IRs depend upon the location being struck, and thus to sim-
ulate scraping we model this variation of modal properties with
probe location. To informally assess the variability of mode prop-
erties as a function of impact location, we compared impact record-
ings we had made with different strike locations and found the
variation in mode properties to be moderate. To emulate such
changes with synthetic IRs, we synthesized a single canonical IR
from our model [Eq. (4)], with properties (ao, b, ω), and simu-
lated a number of location specific IRs by adding some noise to
the mode powers

(~a,~b, ~ω) = (~ao + ~ε,~b, ~ω) , (9)

where ~ao is the original vector of mode powers sampled from our
model and ~ε is a Gaussian noise vector sampled with zero-mean
and a standard-deviation set to 20% the mean mode onset power.
This gives a set of IRs with similar but varying modes, which
crudely emulate an object of arbitrary shape struck in various lo-
cations.

We assign these sampled IRs to points along a motion trajec-
tory, and interpolated between them in waveform space to give
a smoothly varying surface IR, hsurface(x(t)). When the scraper
was at a position between the defined centerpoints, the impulse
response was a linear combination of the impulse responses with
weights proportional to the relative distances from the scraper to
the centerpoints. We ignore the contribution of the scraper to the
impulse response, assuming that it is damped by the hand in which
it is held.
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5. PERCEPTION OF SYNTHETIC SCRAPING

To assess the efficacy of our scraping synthesis model, we played
both recorded and synthesized sounds to listeners and asked them
to judge: (1) realism; and (2) the shape of the scraper’s position
trajectory. As in section 3, all experiments were conducted online
using Amazon’s Mechanical Turk platform, and a standardized test
was used to ensure participants were wearing headphones [40]. In
each experiment, in addition to testing lesioned forms of our own
synthesis model, we compare our model to the one other scraping
synthesis method that we are aware has been tested psychophys-
ically [35]. Thoret et al. generated low-pass filtered white noise
whose amplitude and filter cutoff increased with increasing veloc-
ity, and showed that several motion trajectories could be accurately
judged from the resulting sounds.

5.1. Experiment 5. Realism of synthetic scraping sounds

Participants were played a pair of scraping sounds and asked to
identify which was the real recording. In all trials, one sound was
a real-word recording of chopstick scraping a board, and one a syn-
thetic scrape generated via our model or a lesioned version thereof.
The synthetic conditions of the experiment were generated via (1)
the full model, using measurement-based surface textures and var-
ied IRs; (2) measured depth map and just a single IR; (3) pink
noise depth map and varied IRs; (4) white noise with varied fil-
ter cutoff from [35]; and (5) velocity-gated white noise, which is
silent when the chopstick moves more slowly than a threshold, but
otherwise constant. Condition (5) is clearly synthetic and serves to
ensure the participants understand the task.

The results (Fig. 7) show that the full synthesis model, though
not perfectly realistic, frequently fools listeners. However, using a
time-varying impulse response does not improve realism over fil-
tering with a single synthetic impulse response. A synthetic noise
depth map also produced comparably realistic sounds. Our sounds
were less obviously synthetic than those of [35], but one caveat is
that the comparison recordings were produced by a narrow scrap-
ing probe. We suspect that condition (4), with its flat broadband
spectrum, may be more appropriate for modeling scrapes produced
by heavier objects with large contact surface area (e.g. pushing a
heavy box over tile). The gated white-noise is easily recognized as
synthetic by the participants, demonstrating that they understood
the task.

5.2. Experiment 6. Perception of motion

Participants were presented with a single scraping sound and asked
to choose the scraping trajectory from four choices: "circular",
"back-and-forth", "scribble", or "straight". Participants heard both
real-world recordings and synthetic sounds derived from a real-
world motion. The motion trajectories used to generate synthetic
scrapes were matched in speed to the scrapers used to make the
real-world recordings.

As shown in Fig. 8, motion judgments for synthetic scrapes
were similar to those for real-world scrape recordings. In both
cases participants were correct most of the time, but misjudged
"straight" motions to be "circular", both of which have velocity
profiles without zero points. When judging either "back-and-forth"
or "scribble" sounds, the full model and its lesioned variants led
to more "scribble" judgments. This result could reflect the greater
scattering of contact position around the surface in scribbling com-
pared to other motions. Although we attempted to simulate this po-
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Figure 7: Discrimination of real vs. synthetic impact sounds scrap-
ing sounds (Exp 5). Dashed line indicates chance performance.

sitional change with changing IRs, the full model and the constant
IR model were comparable for both realism and motion, suggest-
ing that we did not successfully capture this informative spatial
variation.

6. DISCUSSION

Our synthesis model is fast because it only models the effects of a
small number of physical variables (material, mass, velocity etc.).
It is evident from daily life that humans can infer more than just the
variables we have described from contact sounds. Impact sounds
contain cues to shape, size, and hollowness, as well as to the envi-
ronmental reverberation [36]. Some physical variables explored in
our impact model can also be conveyed by frictional sounds (e.g.
material) but this remains to be explored in future work. Further-
more, friction sounds are not limited to scraping, but rather include
other interactions such as rubbing, brushing and sliding. Future
investigations into how these interactions produce sound, and into
human sensitivity to their properties, will hopefully suggest exten-
sions to a better and more nuanced synthesis algorithm.

The current version of our synthesis model requires some phys-
ical measurements of real-world objects: statistical distributions
of object IRs conditioned upon material parameters; and surface
structures. In future we hope to be able to synthesize these inter-
mediate representations from physical variables. Our impact ex-
periments with altered IRs demonstrated that lengthening or short-
ening the resonant modes caused listeners to rate the synthetic ma-
terials as“harder" or “softer" materials, consistent with physical
models [13, 17, 21], but did not diminish their realism. This sug-
gests that we should be able to synthesize IRs for novel objects
without having to measure them first, permitting sound synthesis
for a much larger range of objects. Similar generalizations should
be possible for the forcing functions used to generate scraping
sounds. As with perception of acoustic textures [25], it is likely
that humans are insensitive to the fine-grained temporal details of
the contact force we use to synthesize scrapes. Presumably we can
synthesize such a contact force directly from a texture model [26],
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Figure 8: Motion discrimination from synthetic scrape sounds
(Exp 6). (Left) Confusion matrices of presented motion pattern and
the human responses. (Right) Correlations of the confusion ma-
trices of synthetic sounds with the correlation matrix of recorded
sounds.

enabling sound synthesis for a wider and more diverse range of
objects without costly and time-consuming measurements.

Our impulse response model, while derived from statistics of
impact sounds, can successfully contribute to the synthesis of rel-
atively realistic scraping sounds. However, it appears that this
model does not accurately capture the spatial covariance between
impulse responses over a surface. Our full model and lesioned
model with a single IR perform equally well, and neither are yet
on par with real recordings, both in terms of realism and in the
conveyed motion (Fig. 7, Fig. 8). Future investigations will in-
clude measurements and modelling of this variation in impulse
responses based on position, as well as comparing modes mea-
sured from scraping sounds with those from impacts. The other
component of the scraping synthesis is an excitation force based
on quilted textures of measured depth maps. Several authors have
treated scraping as a noisy source paired with a modal filter. Some
model the friction force as 1/fβ noise [9, 32, 39], while others
use a statistical model of densely-packed impact events [18]. In
the experiments explored here, the utilization of real-world mea-
surements did not improve realism or motion inference. However,
it remains possible that constraining a more sophisticated model of
surface texture with these measurements could be useful, particu-
larly in judgments of material and surface roughness.

The model we have presented is similar in some respects to
that of Conan et al. [8], who used statistics of contact forces to
synthesize rolling sounds. We also utilize a statistical approach,
but model the sounds of impacts and scraping, using statistics of
the resonant modes of objects. We also found that we could use a
linear model for contact forces. By contrast, Conan et al. found
that a non-linearity in impact force (namely that the duration of im-
pact should change with impact force) was required to induce re-

alistic rolling sounds. In the future, we plan to investigate whether
there are perceptual benefits to sound synthesis with more realistic
impact forces.

7. CONCLUSION

We have presented a fast and efficient method for synthesis of
contact sounds - inspired by both physics and perception. The
method generates object IRs by sampling resonant modes from
distributions fitted to empirical measurements from example im-
pact sounds. The method then convolves the IRs with contact
force simulated with a simple physics model of either impacts or
sustained scrapes. Despite the simplicity of the model, percep-
tual listening tasks demonstrate that the synthetic sounds are re-
alistic and convey basic physical information as well as recorded
sounds. These results suggest that our model has captured many
of the acoustic features that matter for perception of physical con-
tact sounds, despite neglecting a great deal of physical information
about the sound sources.
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ABSTRACT

There is an increasing number of consumers of broadcast audio
who suffer from a degree of hearing impairment. One of the meth-
ods developed for tackling this issue consists of creating customiz-
able object-based audio mixes where users can attenuate parts of
the mix using a simple complexity parameter. The method relies
on the mixing engineer classifying audio objects in the mix ac-
cording to their narrative importance.

This paper focuses on automating this process. Individual
tracks are classified based on their music, speech, or sound effect
content. Then the decisions for assigning narrative importance to
each segment of a radio drama mix are modelled using mixture
distributions. Finally, the learned decisions and resultant mixes are
evaluated using the Short Term Objective Intelligibility, with ref-
erence to the narrative importance selections made by the original
producer. This approach has applications for providing customiz-
able mixes for legacy content, or automatically generated media
content where the engineer is not able to intervene.

1. INTRODUCTION

Hearing loss is estimated to affect one in six people in the United
Kingdom (UK) and North America [1, 2]. This figure is likely to
rise given an aging demographic and the prevalence of age-related
hearing loss [3]. Further to this, 2017 audience statistics indicate
that those over 50 years old in the United States of America and
those over 55 in the UK watch more television on average than any
other age demographic [4, 5]. Therefore listeners with some de-
gree of hearing loss make up an increasing proportion of television
audiences.

Object-based audio offers the potential for personalizable con-
tent, and may significantly improve the broadcast experience for
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this segment of television audiences. Complex auditory scenes,
such as those found in television, radio dramas and other genres,
contain some objects that are essential to narrative comprehension
(e.g., dialogue and certain sound effects), and others that facilitate
increased immersion (e.g., background sounds and reverberation).
For people with some hearing loss, the latter sounds can impair
their comprehension of the narrative [6].

In order to mitigate the issue, an approach to accesible audio
has been developed which allows users to control the complexity
of those scenes based on their listening needs, using a single dial
control [7, 8, 9]. This is achieved by the mix engineer assigning
each audio object a rank based on its narrative importance (NI) so
that each track can then be amplified or attenuated according to
those assignments, as well as the user’s desired complexity. This
method is currently limited to newly-authored object-based con-
tent or old content remixed into an object-based format. For legacy
content, this manual process is arduous and prohibitively costly.

This paper investigates an approach to alleviate the issue. It
first models the decision processes of mixing engineers when as-
signing narrative importances to a track in a radio programme mix,
then recreates those decisions in unseen tracks and mixes. To do
this, features that inform decisions are identified, methods for ex-
tracting those features are developed and mixture models for as-
signing narrative importances are used together with the audio ef-
fect developed in [7, 8, 9]. The efficacy of this model is then eval-
uated using an automatic speech intelligibility metric, the Short
Term Objective Intelligibility (STOI) criterion [10]. This provides
a first indication of the method’s merit. The main contributions
of this paper are twofold: we provide a model for discriminating
between music/speech and sound effects, and we demonstrate a
method for learning to automatically assign narrative importances
to older mixes without such metadata. The latter may underpin fu-
ture tools which enable hard of hearing users greater access to the
large amount of legacy content.

2. PREVIOUS WORK

Personalising the balance of audio elements at the user end util-
ising object-based audio methods has been explored for both nor-
mal hearing listeners in noise [11, 12] and hard of hearing listeners
[13, 14]. At its most simple, this personalisation provides the end-
user with the ability to control the balance between background
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and foreground elements [11, 12]. A more nuanced approach ex-
plored for hard of hearing listeners gives end-users the ability to
control four categories of sound: dialogue, foreground sound ef-
fects, background sound effects, and music [13]. Whilst feedback
for such an approach was overwhelmingly positive, it lacked the
ease of use required for large scale adoption.

A single dial control based on narrative importance metadata
has been developed to combine powerful user personalisation with
ease of access [7, 8, 9]. NI metadata categorises the audio objects
within a soundtrack hierarchially, based on the role each sound
plays in conveying the narrative. Each object is assigned an NI
value in metadata between 0 (essential) and 3 (least important).
Metadata is currently generated and auditioned by the producer in
an audio effect plugin [9], in order to ensure that the producer’s
intent for the content is maintained. Gain adjustments are then
applied to each sound category based on the level selected by the
user on a single dial control. The control transitions smoothly be-
tween a fully immersive mix and a mix containing only the narra-
tively important elements. This effectively allows users to adjust
the complexity of the reproduced audio mix based on their needs,
whilst ensuring comprehension of the narrative is always main-
tained. Full details of this implementation can be found in [7].
Early work on this has shown qualitative improvements in intelli-
gibility for hard of hearing listeners whilst maintaining the creative
integrity of the producer’s work.

Ranking an object according to its NI can be seen as a type
of automatic mixing based on gain adjustment, where a gain func-
tion of the user’s preferences is chosen for each track based on its
NI. Automatic gain adjustment works have existed since 1975, ini-
tially just for speech [15], and more recently in the generic context
of music production [16, 17]. Here the authors optimized gains
for ratios of loudness between different tracks in a multitrack live
music mix. Our work differs in that we consider that individual
track gains have been chosen, e.g. by one of the cited methods
or a mixing engineer, and then we apply an additional post-fader
gain which is a function of an individual user’s preference. A simi-
lar approach, which takes individual preference into consideration
can be seen in [18] where the proposed method allowed users to
adapt the behaviour of a dynamic range compressor to their listen-
ing conditions.

Our method learns and models the choices of mixing engi-
neers when ranking an audio object based on importance, as well
as important features that can characterize such decisions. The lat-
ter is similar to work in [19] where the authors included important
musical features as well as domain expert rules for guiding music
production decisions using a probabilistic expert system. Finally,
we evaluate using the Short Term Objective Intelligibility crite-
rion [10].This metric only indicates objective intelligibility of the
resulting mix, rather than the subjective comprehension of the con-
tent. However it yields an initial indication of the efficacy of the
approach and whether subsequent subjective testing is warranted.
A relevant work which used the same criterion to control a dy-
namic range compressor can be found in [20].

3. METHODOLOGY

Our goal is to assign a narrative importance d to an object based on
various features extracted from the object and its role in the mix.
We approached the issue as a classification task where the train-
ing data comes from a web audio listening experiment where mix-
ing experts assigned NI values to audio objects in a radio drama.

Object

Figure 1: The outline of the process. An object from a radio mix is
split into segments and each segment is classified as music/speech
or sound effects. The duration of the object and its loudness char-
acteristics are also extracted. Data coming from experiments is
used to train a mixture model classifier to assign importances to
similar objects. Finally, an audio plugin assigns this importance’s
gain level based on narrative complexity chosen by the user.

Given similar content, the goal is to make similar decisions. Be-
low we describe each session in developing of the effect an outline
of which can be seen in Figure 1.

3.1. Data Acquisition

The data used in this experiment was collected from 34 individuals
who identified as audio production or mixing professionals. The
majority of participants worked in television production (44%) fol-
lowed by radio (35%) and film (27%). Most participants work
freelance (53%) or for a national broadcaster (35%). Documen-
tary, drama and music were the most common genres they worked
in and most identified as a dubbing mixer or sound mixer (58%).
41% of respondents had worked on an object-based production be-
fore, and a further 32% were familiar with the concept of object-
based audio. On average they had 22.7 years experience (median
21.5 years).

They completed the online task over their own headphones.
First they were asked to listen to the radio drama The Turning For-
est in its entirety [21]. Then they were given a segment of the
drama (100s in duration) for which they were asked to assign nar-
rative importance for its constituent 23 audio objects. The web au-
dio interface allowed them to audition their choices at the extremes
of the complexity control (fully immersive and narrative only) as
well as at the 50% point to ensure their decisions produced mixes
they were happy with.

In addition to this, a workshop was undertaken with the origi-
nal sound designer using an early iteration of the narrative impor-
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Layer Type Layer Shape Activation function
Convolutional 64× 96× 64 relu
Max pooling 64× 48× 32 –

Convolutional 128× 48× 32 relu
Max pooling 128× 24× 16 –

Convolutional 256× 24× 16 relu
Convolutional 256× 24× 16 relu
Max pooling 256× 12× 8 –

Convolutional 512× 12× 8 relu
Convolutional 512× 12× 8 relu
Max pooling 512× 6× 4 –

Fully-connected 256 relu
Fully-connected 3 softmax

Table 1: Shapes of the layers of the network. The network is rep-
resented with the top layer being the input layers and the bottom
giving the output. The first dimension of the convolutional layers
refers to the number of extracted features from that layer, and the
next two to the shape of those filters. With softmax we denote
the softmax function which converts the output of the layer to a
discrete probability distribution and with relu the rectified linear
unit which allows the network to model non-linearities. Since we
do transfer learning, we only train the last two layers.

tance metadata acquisition tool. The sound designer was encour-
aged to develop her own workflow for authoring the metadata for
the entirety of the The Turning Forest. Metadata changes could be
auditioned by the sound designer in real-time using the full range
of the NI control interface. Whilst an objective ground truth for
the narrative importance assignments is not possible as it is inher-
ently subjective, the assignments by the original producer provide
the point of reference for this investigation.

3.2. Features informing decisions

Observing the decisions made by the mixing engineers, an initial
hypothesis could be formed based on the type of content of the in-
dividual objects. We mainly deal with 3 classes of content; speech,
music, and sound effects [22]. We developed a Convolutional Neu-
ral Network (CNN) for classification to the above three classes.
CNNs have been successfully used for fast classification of im-
ages, video, or spectral representations of audio since they have
many fewer parameters than fully connected neural networks and
can thus be trained much faster [23]. For the task of classification,
they are usually constructed using building blocks called “Convo-
lutional Layers” which extract useful features from an image-like
input, “pooling” layers which select part of the resulting features,
“fully-connected” layers which combine those features, and a fi-
nal classification layer [23, 24]. Such networks have previously
been used to successfully distinguish between speech and music
[25]. To develop our network, we used VGGish [26] as a starting
point and we applied transfer learning to make it classify between
speech, music, and sound effects. Transfer learning is a technique
where a network trained for a task can be trained for a different task
with minimal computational effort [24]. VGGish is a CNN origi-
nally trained to distinguish between 632 classes found in AudioSet
[27] which is a dataset consisting of the soundtracks of 8 million
Youtube videos. Since speech, music, and sound effects are among
those tracks, we can achieve good performance in discriminating
between those three “superclasses” by retraining the model to only

discriminate between those. We therefore train the model by keep-
ing its convolutional layers with their AudioSet-trained weights
intact, since this is the part of the network that does feature ex-
traction, and replacing the fully connected layers with a layer of
size 256. Finally, we add a classification fully connected layer of
3 classes with the softmax activation function which converts the
output of that layer to probabilities of the input being in one of
the three classes. The shapes of the individual layers are listed in
Table 1.

Inputs to the CNN are fed into the top convolutional layer in
Table 1. Each audio object’s track is split into non-overlapping
segments of 960ms where each segment consists of the magni-
tudes of 64 bands of the mel cepstrum computed using a frame
size of 25ms and a hop size of 10ms. Training was done by freez-
ing the weights of the convolutional layers and only training the
last two feed-forward layers. We used the GTZAN music/speech
discrimination dataset1 which contains 120 tracks with 30 minutes
of speech, and 30 minutes of music as 22kHz 16bit audio files to
adapt the new model to our task. In addition, we added 30 min-
utes of randomly sampled sound effects from the recently released
online BBC SFx library2 reformatted to match the examples in the
other two classes. To make sure a specific class of sound effects
is not over-represented, we used stratified sampling to select the
sound effects by sampling first the class of sound effects, and then
the sound effect audio file. After training using the augmented
dataset we have a model that can classify the content of the object
into music, speech, or sound effects and use this classification as a
feature which informs the NI assignment.

Track loudness and duration is also measured. We expect that
important sound effects which require the attention of the listener
to have a high peak-to-integrated loudness ratio [22] as well as
short duration. For example the clinking sound of two glasses
toasting will signify a more important effect than the sound of
frogs croaking repeatedly in the background. For this reason we
use both peak-to-integrated-loudness ratio and total duration as
features.

3.3. Decision Modeling

Our goal was to create a model based on the decisions from Sec-
tion 3.1. An inherent challenge in the data described in Section 3.1
is that the practitioners would disagree quite a lot when ranking
objects according to their importances. To quantify this disagree-
ment, we can use Fleiss’ kappa [28]:

κ =
P̂ − P̂c
1− P̂c

(1)

P̂ is the degree of agreement between raters and P̂c the degree of
agreement attributed to chance. It is defined in the interval [0, 1]
where κ = 1 signifies total agreement. We found κ = 0.008
which denotes a low degree of agreement. Despite the low level of
agreement, from Figure 3 we observe that for most objects, impor-
tance assignments are concentrated around 2 neighbouring values.
This can be particularly observed for non-narration objects con-
taining speech (Girl Voice, Boy Voice)). We decided to use a mix-
ture model to treat this uncertainty as stochasticity in the model’s
decisions. In order to use such a model, we need to determine ap-
propriate features that can give correct decisions and define their

1http://marsyas.info/downloads/datasets.html
2http://bbcsfx.acropolis.org.uk/
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Figure 2: Estimated densities for four different narrative importance levels. In parentheses are the 95% lowest and highest respectively
confidence intervals.

probability densities. From the features selected in Section 3.2,
we found that ratio of speech (p� 0.05) and music (p < 0.05) in
an object, true-peak-to-integrated-loudness ratio (p � 0.05) and
total duration (p � 0.05) are good features. If we represent the
values of the features above as xsr , xmr , xtpti, and xdur , the goal
of decision modelling is to decide an importance d given those val-
ues. If we furthermore assume that each feature is a sample from
a respective independent feature distribution, this decision can be
given as:

d = arg max
i

Pr (I = i|xsr,i, ..., xdur,i,θsr,i, ...,θdur,i)

= arg max
i

Pr (I = i)
∏

µ∈{sr,mr,tpti,dur}

Pr (xµ,i,θµ,i|I = i)

= arg max
i

Pr (I = i)
∏

µ∈{sr,mr,tpti,dur}

Pr (xµ,i|I = i,θµ,i)

·Pr (θµ,i|I = i)

(2)

Where θµ is the parameter vector for the distribution that corre-
sponds to xµ,i and i is a level of narrative importance (essential,
high, medium, low). Music xmr , speech xsr , and true-peak-
to-loudness xtpti ratios are defined in the interval [0, 1] and thus
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Figure 3: Heatmap of importance assignment decisions made by the experts for The Turning Forest radio drama. Horizontal axis shows
the object names and vertical axis the assigned importances. The numbers inside individual cells correspond to the frequency of each
importance value assigned to each object where darker cells correspond to higher frequencies. We observe that for most objects, there are
1 or 2 “most preferred” importance assignments.

make Beta distributions suitable for modelling their values. On
the other hand the Gamma distribution is suitable for modelling
total duration xdur since it is defined in positive numbers. Both
Beta and Gamma distributions are defined by two parameters α
and β. Finally, the prior distribution of importances Pr (I = i)
can be modelled as a categorical distribution, since it can take one
of 4 distinct values:

xν,i ∼ Beta (αν,i, βν,i) , ν ∈ {sr,mr, tpti} (3)
xdur,i ∼ Gamma (αdur,i, βdur,i) (4)

i ∼ Categorical(4) (5)

Figure 4: The mixture model used. In the diagram above, circles
represent random variables, squares parameters of those variables.
Shaded shapes represent observed variables. K = 4 represents the
number of mixtures which is the same as the assigned importances,
and N is the number of samples in the training data. The goal of
the estimation process is to estimate the parameters represented
in the non-shaded boxes (parameters of feature densities) given
the observations represented in the shaded boxes and given from a
training dataset (importance assignment and feature values).

The model for each feature can be seen as a diagram in Figure
4 and its distributions in Figure 2. Finally, the Beta and Gamma
distributions in Eq. 3 are defined according to:

Gamma (α, β) = βα

Γ(α)
xα−1e−βx, x > 0 (6)

Beta (α, β) = xα−1(1−x)β−1Γ(α+β)
Γ(α)·Γ(β)

, 0 ≤ x ≤ 1 (7)

Γ(t) =
∫ +∞

0
dx · xt−1e−x (8)

What the above essentially mean is that when we know the impor-
tance of an object (differently stylized lines in Figure 2) we expect
the values of the features given in Section3.2 to be samples from
the distributions given in Eqs. 6, and 7. What is left is to decide
on the exact shapes of those distributions, which are defined by
parameters α and β above. We estimate those by using a training
set of observations of importances and corresponding features and
using Stochastic Variational Inference [29]. After having defined
the model that model the values of the object features, the decision
can be taken as in Eq. 2 where in this case:

θµ,i =

[
αµ,i
βµ,i

]
(9)

In this case, Eq. 2 gives a decision on an importance level d that
maximizes the probability that an object belongs to that impor-
tance level given the values of its features.

3.4. Applying gains

The importance assignment process in the previous sections con-
trols the audio effect described in [7]. This is a mixing effect with
4 stereo inputs and 2 stereo outputs:

yn =

[
1 . . . 0
0 . . . 1

]
︸ ︷︷ ︸

Downmixes to 2 channels


I3(c) . . . 0

... 1
...

I−12(c)
0 . . . I−48(c)

xn
(10)

where xn is the 8 channel input at time n corresponding to the
inputs at the 4 importance levels, yn the corresponding output, I3,
1, I−12, and I−48 are the mixing coefficients corresponding to
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Figure 5: Results using the Short Term Objective Intelligibility
measure. With lighter colors a complexity of 0 has been selected
and with darker colors a complexity of 50. STOI values of the mix-
ing sessions of the practitioners (Section 3.1) are shown as cyan
colored bars. STOI of automatic assignment of narrative impor-
tances is labeled as ‘auto’, and STOI of the mix done by the author
of the radio drama as ‘original’. STOI values for decisions made
using K-Nearest Neighbour classifiers for K = 3 and 5 are also
included as ‘3nn’ and ‘5nn’.

essential, high, medium, and low respectively (the subscripts are
the gain values for each importance level in dB):

IM =

[
10M( −c

2000
+20)

10M( −c
2000

+20)

]
(11)

where c is a complexity number between 0 and 100 chosen by the
user during playback.

4. RESULTS

For the discriminator model, 70% of the data was used as train-
ing/validation and 30% was kept aside for testing. The split was
performed with a predefined random seed to guarantee reproducibil-
ity. For evaluating the model, we calculated precision p, Recall r,
and f1 on the test set:

p = tp
tp+fp

(12)

r = tp
tp+fn

(13)

f1 = 2 p·r
p+r

(14)

where tp is the number of true positives, fp the number of false
positives and fn the number of false negatives. The calculated
metrics can be seen in Table 2.

We tested how the importance assignment model works com-
pared to the data acquired from practitioners (Section 3.1) as well

class precision recall f1

music 1.00 0.97 0.99
speech 0.98 0.98 0.98
sfx 0.96 0.99 0.98

Table 2: Results on the test set for the music/speech/sfx discrimi-
nator model

as the original radio drama author. We also included a K-Nearest
neighbour classifier with K ∈ {3, 5}. We evaluated according to
the Short Term Intelligibility criterion [10] and more specifically
the PYSTOI implementation3. In Figure 5 we can see that when
fully attenuating non-essential narrative elements our model out-
performed all but one of the mixings done using the online plat-
form (0.959 vs 0.962) and scored close to the mix by the origi-
nal author (0.964). A more interesting result is when choosing a
complexity value of 50, which keeps some less-important narra-
tive elements as well, the STOI is equal to the original author’s
mix (0.937), even if the latter was not included in the training set.
This suggests that our classifier managed to model “good” deci-
sions from the practitioners despite the high level of disagreement.
In comparison, the K-NN classifiers which do not account for un-
certainty performed worse, although the classifier using the 5 near-
est neighbours was still ranked above the third quartile regarding
STOI.

5. DISCUSSION

This paper presented a method for modelling decisions made by
mixing engineers with the goal of allowing the listener to alter the
complexity of a radio drama while retaining speech intelligibility.
The method relies on modelling the mixing engineers’ behaviour
using mixture models even when those have a large degree of dis-
agreement. The model was tested against decisions made by the
original mixing engineer of a radio drama mix and it was found
that it could perform comparatively well when evaluated with an
objective intelligibility metric. In the process we developed a sim-
ple music/speech/sound effects discriminator that works well for
this application and is provided freely to those interested 4 and a
plugin based on the VISR [30] environment is planned in order to
automate the process. The current work is limited however to a
single radio drama and also to a single intelligibility metric. More
metrics should be considered that also measure quality and immer-
sion. We also assume that each object is assigned a single impor-
tance value that does not change for the duration of the drama. This
is an assumption that does not necessarily hold. For example we
expect the footsteps of a monster approaching the main character
to have higher narrative importance than the footsteps of a monster
when it is further away doing something irrelevant to the story.
Using our method however those two different scenarios would
be ranked the same. A simple solution to this issue employed in
the current work is to manually assigns the footsteps in the two
senarios in distinct objects. Further work could also consider char-
acteristics of an object that change throughout the duration of the
drama when ranking them based on importance. In this paper we
also consider gains after the fader stage in the mix. Gain effects

3https://github.com/mpariente/pystoi.git
4The models and other supplementary material can be found at:

https://github.com/bbc/audio-dafx2019-automatic/
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that synergize with our current work in applying appropriate gains
pre-fader can also be examined as well as other automated mixing
techniques such as in EQ [16, 31], Compression [18], or Reverber-
ation [32]. Finally, subjective listening tests should be undertaken
such that the overall quality and comprehension of the automati-
cally assigned mixes can be evaluated by human subjects.
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ABSTRACT

Advances in deep learning have led to novel, state-of-the-art tech-
niques for blind source separation, particularly for the applica-
tion of non-stationary noise removal from speech. In this paper,
we show how a simple reformulation allows us to adapt blind
source separation techniques to the problem of speech dereverber-
ation and, accordingly, train a bidirectional recurrent neural net-
work (BRNN) for this task. We compare the performance of the
proposed neural network approach with that of a baseline dere-
verberation algorithm based on spectral subtraction. We find that
our trained neural network quantitatively and qualitatively outper-
forms the baseline approach.

1. INTRODUCTION

Reverberation is an effect that can be created naturally when a
source sound is reflected off various surfaces before reaching an
observer (e.g. a microphone). The characteristics of this reverber-
ation are defined by its acoustic environment (the dimensions and
objects in a space, their material properties, etc.), as well as the po-
sitions of the source and observer in this environment. Though de-
sirable in some creative and musical contexts, reverberation has the
overall effect of reducing intelligibility, which may be particularly
undesirable for speech applications, such as telecommunications,
automated voice systems, and dialogue editing in post-production.
Dereverberation is the process of automatically removing rever-
beration from audio signals. It is an extremely difficult problem,
as neither the source signal nor the characteristics of the acous-
tic environment are known a priori. Moreover, moving sources
or microphones can induce time-varying reverberation effects and
further complicate its removal.

Standard algorithms for speech dereverberation either exploit
properties of speech, or attempt to blindly estimate the reverberant
channel [1]. In the former case, algorithms explicitly track har-
monic content or leverage linear predictive coding (LPC) of speech
to estimate components of the underlying direct-path speech sig-
nal [2]. In contrast, blind channel estimation methods generally
involve an explicitly parameterized model of the reverberation pro-
cess, techniques for estimating its parameters, and finally, a reverb
removal step based on this parameter estimation through some
form of inverse filtering. Moreover, when multiple microphones
are available, these algorithms leverage beamforming techniques
to further improve reverb cancellation [3], though this is not ex-
pected to be the case for most practical applications. The perfor-
mance of existing dereverberation algorithms is limited by the flex-
ibility of their model assumptions and the ability to accurately es-
Copyright: c© 2019 Shahan Nercessian et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

timate parameters over a wide range of applicable scenarios. They
are also laborious to develop and may require a fair amount of in-
tensive hand-tuning.

Source separation techniques using deep learning have become
increasingly popular, particularly for the application of separating
speech from non-stationary noise [4]. Arguably the most com-
mon source separation approaches involve time-frequency mask-
ing, wherein models are trained to estimate the amount of speech
and noise present in each spectrogram bin, and accordingly cre-
ate a time-varying masking filter to separate speech from noise
through Wiener filtering [5]. To this end, recurrent neural network
(RNN) architectures have been shown to be extremely effective,
as they are a natural choice for modeling sequential data [6]. Bidi-
rectional RNNs (BRNNs) can further improve separation quality
by performing a forward and backward pass over the data, thus
incorporating future temporal context at the cost of offline (non-
realtime) operation [7].

In this paper, we propose the adaptation of blind source sepa-
ration techniques using deep learning for single-channel derever-
beration. One of the main advantages of this method, in addition
to its performance, is that we no longer require learning an explicit
reverberation profile, but instead simply learn to distinguish dry
and reverberant signal components through several synthesized ex-
amples observed during network training. With a targeted interest
in dialogue editing for post-production, we deliberately limit our-
selves to speech signals.

The rest of this paper is structured as follows: We review
a baseline dereverberation algorithm based on spectral subtrac-
tion [8], and outline our proposed neural network approach in
Section 2. We compare the performance of our neural network
solution against the baseline algorithm in terms of reverberation
reduction and speech intelligibility in Section 3. Finally, we draw
conclusions and allude to future work in Section 4.

2. DEREVERBERATION ALGORITHMS

We consider monaural speech signals and model their reverber-
ation by the convolution y(t) = h(t) ∗ s(t), where y(t) is the
observed reverberated signal, h(t) is the impulse response of the
acoustic environment, factoring the position of the source and ob-
server in said environment, and s(t) is the direct-path speech sig-
nal. The dereverberation process is a blind deconvolution in which
we attempt to find an estimate ŝ(t) from y(t). Rather than op-
erating on the time-domain waveform, both the baseline and pro-
posed neural network solutions operate primarily on the short-time
Fourier transform (STFT) magnitude spectrogram of y(t), denoted
as Y = [y1,y2, ...,yT ] ∈ Rd×T , where d is the number of fre-
quency bins and T is the number of STFT time frames.
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Figure 1: Speech dereverberation neural network architecture.

2.1. Baseline Algorithm

The baseline dereverberation algorithm uses short-time spectral at-
tenuation with directly calculated spectral masks. In this case, the
multi-path signal is modeled as a first-order recursive filter that
“smears” the spectrogram in time, defined as

rt = αst + (1− α)rt−1, (1)

where t is the STFT frame index, st is the magnitude spectrum of
the direct path signal, rt is the magnitude spectrum of the multi-
path signal, and α is a coefficient related to the reverberation time
(RT60). This implies an exponential model for the reverberation
process, which is considered to be an adequate assumption for a
large number of reverberation types. The observed reverberant
signal yt at time t is a mixture of the direct and multi-path sig-
nals defined as

yt = st + βrt, (2)

where β is the wet-to-dry ratio coefficient controlling the relative
amount of reverberation. Assuming that the reverberation param-
eters α and β are known, we can easily invert (1) and (2) to com-
pute an estimate of the dry signal spectral magnitude ŝt from yt.
The obtained signal-to-noise ratio ŝt/yt can be used in a spectral
attenuation algorithm with extra time-frequency smoothing for re-
duction of “musical noise” artifacts [8]. In our implementation, α
is frequency-independent, while β is independently estimated in 4
frequency bands. Parameter estimation is an offline process which
analyzes an entire audio waveform. The parameter α is estimated
from a histogram of spectral decay rates, while β is estimated in
each frequency band such that the resulting spectral subtraction
maximally reduces the energy of yt while remaining non-negative.

2.2. Neural Network Algorithm

For any practical application, we can consider impulse responses
h(t) normalized such that h(0) = 1. This allows us to reformulate
the reverberation process as

y(t) = s(t) + h0(t) ∗ s(t) = s(t) + n(t), (3)

where

h0(t) =

{
0, t = 0,

h(t), otherwise
(4)

and n(t) is the multi-path signal. As such, we have converted
the problem of dereverberation into one of blind source separa-
tion, and can leverage advances in deep learning which we have
successfully used to this end [7, 9]. Note that, in contrast to (2),
the frequency-dependent wet-to-dry ratio β is simply embedded in
n(t) and its respective magnitude spectrum nt (e.g. nt = βrt).

In general, one of the attractive features of a deep learning-based
approach is that we can forego the need to define an explicit param-
eterization of the reverberation process, easing design and giving
flexibility to perform well over a wider range of possible reverber-
ation types.

Given a training set with examples of isolated direct-path and
multi-path speech signals, we create mixtures with known ground
truth to learn a mapping that estimates the direct-path signal ŝ(t)
from the reverberated mixture y(t). We use the magnitude ratio
mask as a time-varying filter for separating dry and reverberated
speech, which is defined as

mt =
st

st + nt
, (5)

where the division operation in (5) is performed element-wise. Be-
cause magnitude spectra st and nt are nonnegative, the mask ele-
ments mt are in the interval [0, 1]. The output of our neural net-
work is m̂t, which we use to obtain estimated magnitude spectra
for separated direct-path and multi-path speech, i.e.,

ŝt = m̂t � yt, (6)
n̂t = (1− m̂t)� yt, (7)

where � represents an element-wise product. For inference, we
use (6) to obtain the estimated time-domain waveform ŝ(t) through
the inverse STFT. This usually involves using phase information
taken from the noisy mixture y(t), which can introduce some no-
ticeable artifacts. To improve upon this, we use the mixture phase
as our initial estimate of the direct-path phase, and apply a few
iterations of the Griffin-Lim algorithm [10]. Though not strictly
necessary for inference (unless we, for some reason, want to retain
a portion of the multi-path signal in the processed output), we still
make use of (7) for network training.

We estimate m̂t using a bidirectional recurrent neural network
architecture as depicted in Figure 1. At 48 kHz, spectrograms are
computed with Hann-windowed FFTs of size 2048 and a stride of
512. A stack of bidirectional gated recurrent units (BGRU) [11]
take the reverberated mixture spectrogram as input, and produce
outputs which incorporate temporal context from both past and
future spectrogram frames. We opt for a non-causal architecture
because their lookahead capabilties allow them to perform better
than their causal counterparts, and because the baseline approach
already required an initial offline learning pass. The output of the
BGRU stack is projected to the appropriate number of frequency
bins by means of a dense layer, whose sigmoid activation ensures
that spectral masks are in the desired [0, 1] range. Several studies
on neural network-based speech separation have shown the util-
ity of using the error in the estimated spectrum ŝt (as opposed to
the error in the estimated mask m̂t) as the network training ob-
jective [4, 5, 12]. To this end, a common objective function for
source separation compares ŝt and st in a mean-squared sense. As
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Table 1: (SDR/SI-SNR) metrics as a function of SNR.

Method −5dB 0dB 5dB 10dB 15dB
Mixture −4.2/− 5.3 0.4/− 0.2 5.4/4.9 10.3/ 9.9 15.3/15.0
Baseline −2.3/− 3.6 2.6/ 1.7 7.0/6.2 11.1/10.4 15.7/15.1
Proposed 1.3/− 0.4 5.6/ 4.5 9.6/8.7 13.7/13.1 17.6/17.1

Oracle 4.8/ 3.1 8.1/6.9 11.6/10.7 15.3/14.5 19.1/18.5

Table 2: ∆STOI metric as a function of SNR.

Method −5dB 0dB 5dB 10dB 15dB
Baseline 4.5 2.9 0.6 0.4 0.3
Proposed 16.2 9.3 3.8 1.5 0.5

Oracle 38.6 17.9 7.3 2.8 1.1

in [4, 7], we use the modified mean-squared error function

J =
1

T

T∑
t=1

(
||ŝt − st||22 + ||n̂t − nt||22−

γ||st − n̂t||22 − γ||nt − ŝt||22
)
, (8)

where the parameter γ provides a trade-off between interference
and artifacts caused by the source separation process. We found
that the addition of cross-term penalties helped to improve dere-
verberation performance at lower wet-to-dry ratios.

3. EXPERIMENTAL RESULTS

3.1. Dataset description

While there are several speech datasets available for machine learn-
ing research, most of them are band-limited (usually sampled at
16 kHz), and are insufficient for the full audio rate processing
needs of post-production. With a target sampling rate of 48 kHz in
mind, we have opted to use speech from the pitch tracking corpus
in [13], the processed speech from the DAPS experiments [14],
and the TSP speech dataset [15]. We have also supplemented
our clean speech training with several hours of audio from iZo-
tope tutorial videos. While these are not truly anechoic speech
recordings, they were found to be representative enough to serve
as “ideal” dereverberated outputs of our system. In addition to the
speech dataset, we have gathered reverb impulse responses (RIRs)
from many open sources. We have also developed a RIR generator
factoring different reverb characteristics (RT60, wet-to-dry ratio,
etc.), and added hundreds of simulated RIRs to our dataset. We
considered reverberation types and parameter ranges that resemble
the naturally occurring environments that the system was targeted
for.

3.2. Performance assessment

We quantitatively compared the performance of the baseline and
our proposed neural network dereverberation algorithms on a test
dataset consisting of audio from held-out speakers and RIRs not
seen during training. Algorithm performance was evaluated at a
number of different SNRs (i.e. dry-to-wet ratios), ranging from
−5 to +20 dB. To evaluate performance in terms of reverberation
reduction, we used the signal-to-distortion ratio (SDR) and signal-
invariant signal-to-noise ratio (SI-SNR) [16]. For completeness,

we computed metrics on the original mixture signals, as well as
the results of speech separation using oracle (ground truth) mag-
nitude ratio masks, essentially specifying the expected lower and
upper performance bounds for our methods. Additionally, we used
the difference of the short-time objective intelligibility measure
(STOI) [17] between the processed output and the original rever-
berant mixtures converted to a percentage ∆STOI. This measures
the overall percent improvement in speech quality and intelligibil-
ity relatively to the original reverberant mixtures. Our choice of
metrics attempt to quantify algorithm performance through both
"standard" and perceptually-driven means.

Table 1 and 2 illustrates our quantitative performance evalua-
tion in terms of reverb reduction and speech quality improvement,
respectively. We can observe that the baseline approach clearly im-
proves upon the original reverberant mixture. Our proposed neural
network solution consistently outperforms the baseline approach,
and as to be expected, performs a few dB worse than the oracle
mask solution. The ∆STOI confirms that speech intelligibility is
not as degraded at higher SNRs. These results suggest that our
proposed neural network solution can recover about half of the
possible of improvement in speech intelligibility relative to the or-
acle solution, and it outperforms the baseline approach by a large
margin in this regard.

We performed informal listening tests, both on our synthesized
evaluation set and on real-world speech signals that are naturally
reverberated. We observe that our neural network solution can re-
duce more reverberation than the baseline approach, while remain-
ing rather transparent in its processing and reducing “pumping”
artifacts often heard in the baseline approach. The spectrograms
in Figure 2 provide a visual comparison between the baseline and
proposed approaches on a speech sample with synthetically ap-
plied reverberation. We can see that while the baseline approach
improves upon the reverberated speech, the proposed approach
yields an output that more closely resembles the underlying dry
speech. For audio examples and additional spectrograms, please
visit http://www.izotope.com/tech/dafx_dereverb .

3.3. Generalization to non-speech signals

Though we have explicitly trained our dereverberation network on
speech signals, we have informally noticed that the system can
generalize to some classes of non-speech signals. This is partic-
ularly fortuitous for our post-production application, where there
may be other sound effects, laughter, etc. that may be desirable to
salvage in a given performance.
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(a) Dry speech (b) Reverberated speech

(c) Dereverberation of (b) using the baseline approach (d) Dereverberation of (b) using the proposed approach

Figure 2: Speech dereverberation comparison.

4. CONCLUSIONS

In this paper, we proposed a novel application of source separation
to the problem of speech dereverberation, and trained a BRNN to
this end. Our proposed solution outperformed a baseline approach
based on spectral subtraction through both qualitative and quanti-
tative means. In addition to its improved performance, a benefit of
our deep learning approach is that we no longer need to formulate
an explicit model for reverberation, and can avoid hand-tuned es-
timation of reverb parameters altogether. In the future, we would
like to research effective low-latency solutions, and additionally
consider time-domain architectures which may be able to more
accurately observe and remedy early reflections.
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ABSTRACT

Variational autoencoders (VAEs) are powerful (deep) generative
artificial neural networks. They have been recently used in several
papers for speech and audio processing, in particular for the mod-
eling of speech/audio spectrograms. In these papers, very poor the-
oretical support is given to justify the chosen data representation
and decoder likelihood function or the corresponding cost function
used for training the VAE. Yet, a nice theoretical statistical frame-
work exists and has been extensively presented and discussed in
papers dealing with nonnegative matrix factorization (NMF) of au-
dio spectrograms and its application to audio source separation. In
the present paper, we show how this statistical framework applies
to VAE-based speech/audio spectrogram modeling. This provides
the latter insights on the choice and interpretability of data repre-
sentation and model parameterization.

1. INTRODUCTION

Autoencoders (AEs) are a specific type of deep neural networks
(DNNs) that can learn from data a non-linear projection of the
signal space into a low-dimensional latent space (encoding step),
followed by inverse non-linear transformation of the latent coeffi-
cients into the original signal space (decoding step) [1]. AEs have
been essentially used as an unsupervised technique for data dimen-
sion reduction. More recently, variational autoencoders (VAEs)
were proposed as a probabilistic/generative extension of AEs [2]:
Instead of deterministically mapping the input vector x into a unique
vector of latent coefficients z, as done in AEs, the VAE encoder
network maps x into the parameters of a conditional distribution
qφ(z|x) of z. Similarly, the decoder network maps a vector of la-
tent coefficient z into the parameters of a conditional distribution
pθ(x|z) of x. A VAE decoder is thus intrinsically a (non-linear and
deep) generative model of x, conditioned on the latent variable z
(which is itself conditioned on the input when decoding follows
encoding). VAEs thus combine the modeling power of DNNs with
the flexibility of generative models.

VAEs have recently received a strong interest for speech and
audio processing, more specifically for modeling, transformation
and synthesis of speech signals [3, 4, 5, 6], for music sound synthe-
sis [7, 8], and for single-channel [9, 10, 11, 12] and multi-channel

∗ This work is supported by a CIFRE PhD Grant funded by ANRT
Copyright: c© 2019 Laurent Girin, Thomas Hueber et al. This is an open-access arti-

cle distributed under the terms of the Creative Commons Attribution 3.0 Unported Li-

cense, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

[13, 14, 15] speech enhancement and separation. In all those pa-
pers, VAEs are used to process a sequence of vectors encoding the
short-time Fourier transform (STFT) spectrogram extracted from
speech or music signals. For synthesis/transformation applica-
tions, the output audio signal is reconstructed using the decoded
magnitude spectrogram, after possible modification of the latent
coefficients, and either the phase of the original signal or some
reconstructed phase more coherent with the decoded magnitude
spectrogram. For speech enhancement application, the decoder of
the VAE is used as a supervised generative model of the speech
signal in the STFT domain, which is exploited in a probabilistic
enhancement/separation method.

A keypoint is that in most of these papers, very few justifi-
cation is given about the precise choice of the encoder and de-
coder conditional distributions, or the corresponding cost function
used for VAE training. These distributions are generally chosen
as Gaussian for convenience, but the choice for their parameters
is not clearly justified. The same about the related issue of data
representation: It is chosen a bit arbitrarily, without clear theoreti-
cal support, possibly more considering DNN training issues rather
than fundamental signal processing ones.

Yet, this theoretical framework exists. In fact, it has been ex-
tensively presented and discussed in the seminal papers [16] and
[17]. Those papers describe the statistical framework underlying
the decomposition of audio magnitude/power spectrograms using
Nonnegative Matrix Factorization (NMF) [18]. These develop-
ments have then been extensively used for audio source separa-
tion, see e.g. among many others [19, 20, 21, 22, 23, 24, 25]. In
the present paper, we show how this theoretical statistical frame-
work applies to the VAE model. Based on [16, 17], we describe
the three main cases encountered in practice, with three model-
ing cost functions corresponding to three signal statistical mod-
els. We show how this provides interesting insights on the choice
and interpretability of data representation and loss function for
speech/audio spectrogram modeling with VAEs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the VAE framework. In Section 3, we discuss the
way VAEs are currently used to model speech/audio signals in the
literature, and raise a set of related questions. In Section 4 we
present the nonnegative representation and underlying signal sta-
tistical models as a general framework, of which NMF is a partic-
ular case, and we show how this framework also applies to VAE-
based spectrogram modeling. Section 5 illustrates this discussion
with some experiments on speech/audio analysis-synthesis with
VAEs. Section 6 draws a series of conclusions and perspectives.
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2. VARIATIONAL AUTOENCODERS

As mentioned in the introduction, a VAE can be seen as a prob-
abilistic autoencoder. In the original formulation of the seminal
paper [2], a VAE delivers a parametric model of data distribution:

pθ(x, z) = pθ(x|z)pθ(z), (1)

where x ∈ RF is a vector of observed data, z ∈ RL is a corre-
sponding vector of latent data, with L � F , and θ denotes the
set of distribution parameters. The likelihood function pθ(x|z)
plays the role of a probabilistic decoder which models how the
generation of observed data x is conditioned on the latent data z.
The prior distribution pθ(z) is used to structure (or regularize) the
latent space. Typically a standard Gaussian distribution is used:
pθ(z) = N (z;0, IL), where IL is the identity matrix of size L.
This encourages the latent coefficients to be orthogonal and with
similar range. Note that this prior actually lacks parameters. The
likelihood pθ(x|z) is usually defined as Gaussian:

pθ(x|z) = N (x;µθ(z),σ2
θ(z)), (2)

where N (x;µ,σ2) denotes the probability density function (pdf)
of the multivariate Gaussian distribution which is defined in the
Appendix, and µθ(z) ∈ RF and σ2

θ(z) ∈ RF+ are the outputs
of the decoder network. The parameter set θ is composed of the
weights of this decoder network. Note that the entries of x are
assumed independent as common in VAEs, so the vector σ2

θ(z)
contains the diagonal coefficients of a diagonal covariance matrix.

The exact posterior distribution pθ(z|x) corresponding to the
above model is intractable. It is approximated with a tractable
parametric model qφ(z|x) that plays the role of the corresponding
probabilistic encoder. This model generally has a form similar to
the decoder:

qφ(z|x) = N (z; µ̃φ(x), σ̃2
φ(x)), (3)

where µ̃φ(x) ∈ RL and σ̃2
φ(x) ∈ RL+ are the outputs of the en-

coder network. The parameter set φ is composed of the weights of
this encoder network. As before, σ̃2

φ(x) is a vector containing the
diagonal entries of a diagonal covariance matrix.

Training of the VAE model, i.e. estimation of θ and φ, is
made by optimizing a lower-bound of the marginal log-likelihood
log pθ(x) computed from a large training dataset of vectors x. It
is shown in [2] that the marginal log-likelihood for an individual
vector x writes:

log pθ(x) = dKL(qφ(z|x)|pθ(z|x)) + L(φ, θ,x), (4)

where dKL ≥ 0 denotes the Kullback-Leibler (KL) divergence and
L(φ, θ,x) is the variational lower bound (VLB) given by:

L(φ, θ,x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction accuracy

−dKL(qφ(z|x)|pθ(z))︸ ︷︷ ︸
regularization

. (5)

We can see that the VLB is the sum of two terms. The first term
represents the average reconstruction accuracy. The second term
acts as a regularizer encouraging the approximate posterior qφ(z|x)
to be close to the prior pθ(z). Since the expectation taken with
respect to qφ(z|x) in the reconstruction accuracy term is analyti-
cally intractable, it is approximated using a Monte Carlo estimate

with R samples z(r) independently and identically drawn from
qφ(z|x):

Eqφ(z|x)[log pθ(x|z)] ≈ 1

R

R∑
r=1

log pθ(x|z(r)). (6)

In practice a training dataset X = {xn}Ntrn=1 is used for the training
of the VAE. Under the hypothesis of independent and identically
distributed (i.i.d.) training vectors, the VAE training is done by
maximizing the total VLB, which is the sum of individual VLBs
over the training vectors. If we consider only one Monte Carlo
sample per training vector (which is common practice provided
that the batch size is sufficiently large [2]), or if we consider several
Monte Carlo samples as additional training data, we can write the
total VLB as:

L(φ, θ,X) =

Ntr∑
n=1

log pθ(xn|zn)

−
Ntr∑
n=1

dKL(qφ(zn|xn)|pθ(zn)). (7)

For the present case of Gaussian likelihood (2) and Gaussian en-
coding distribution (3), the VLB in (7) becomes:

L(φ, θ,X) = −
Ntr∑
n=1

F−1∑
f=0

(
log σ2

θ,f (zn) +
(xfn − µθ,f (zn))2

2σ2
θ,f (zn)

)

+
1

2

Ntr∑
n=1

L∑
l=1

(
log σ̃2

φ,l(xn)− µ̃φ,l(xn)2 − σ̃2
φ,l(xn)

)
(8)

where the subscript f or l denotes the f -th or l-th entry of a vector.
Maximization of the total VLB is done by using the usual back-
propagation technique and gradient-based optimization, which are
not detailed in this paper. For more technical details that are not
relevant here, the reader is referred to [2].

3. VAES FOR SPECTROGRAM MODELING:
FACTS AND QUESTIONS

In this section, we analyze how VAEs are generally used for speech
and audio spectrogram modeling in the recent literature. Although
some of the points discussed below may seem trivial, they rise a
series of fundamental questions that are poorly discussed in these
papers and that we will address in the following.

3.1. Audio signal representation in the STFT domain

As shortly stated in the introduction, the processing is generally
carried out in the STFT domain. Let S = [sfn]F−1,N

f=0,n=1 ∈ CF×N
denote the STFT of a speech/audio signal, where f is the frequency
bin index and n is the time frame index. Let X = [xfn]F−1,N

f=0,n=1 ∈
RF×N+ denote the corresponding real-valued and nonnegative mag-
nitude or power spectrogram, i.e. X = |S| or X = |S|2, where
|.| and .2 are to be understood as entry-wise operators. Note that
we use the same notation as in the previous section on purpose,
since the VAE modeling will precisely be applied on speech/audio
spectrograms. Note also that X = |S|2 is a sampled power spec-
trogram, aka a periodogram, i.e. an estimate of the power spectral
density (PSD) E[|S|2] built from a single observation of the data
in each time-frequency bin (and the same for the magnitude spec-
trogram).
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3.2. Data representation, pre-processing and normalization

A VAE considers vectors as input and output. Hence an STFT
spectrogram is processed as a sequence of successive spectral vec-
tors xn = [xfn]F−1

f=0 ∈ RF+, each vector representing an STFT
frame. Note that all xfn are assumed independent across fre-
quency bins and time frames, which is not to be confused with
possible time-frequency structuration of the distribution parame-
ters. An important practical question in VAEs is the choice of the
audio STFT data representation. We did not observe any consen-
sus in the literature.

For synthesis and transformation applications, e.g. [6], the
observed/generated vector at time frame n generally corresponds
to the short-term magnitude or power spectrum. There may be
two explanations for that: (i) the original VAE formulation of [2]
(i.e. the Gaussian models in (2) and (3)) considers real-valued and
not complex-valued vectors, but in that case what about the non-
negativity? and (ii) the magnitude or power spectrogram is the
primary information used in the synthesis/transformation applica-
tions considered in the referenced papers (the phase spectrogram
being processed separately).

For speech enhancement applications, the VAE speech model
is generally plugged in a more general statistical framework in-
cluding a noise model and a speech + noise mixture model, e.g.
[9, 10]. In this framework, the original (real-valued) formulation
of the VAE has been extended to model the complex-valued STFT
vector sn = [sfn]F−1

f=0 ∈ CF . This has been done by replacing
the Gaussian distribution over real-valued vectors in (2) with the
circularly symmetric complex Gaussian distribution that is widely
used in speech enhancement and source separation probabilisitic
methods [26, 27]. This important point is poorly commented in the
referenced papers. Moreover, although sn is here modeled by the
VAE decoder, xn as a short-term magnitude or power spectrum
is still considered at the input of the encoder during VAE train-
ing.1 The possible consequences (or absence of consequences) of
this input/output mismatch are not discussed either. Note that here
also, all sfn are assumed independent across frequency bins and
time frames, as is usually done in the speech enhancement and
source separation literature.

It is important to note that in practice, the encoder input vector
can contain magnitudes or squared magnitudes as discussed above,
but also log-magnitudes as in [4], or actually any vector encoding
a magnitude spectrum, possibly pre-processed and normalized in
different manners. Normalization is a typical example of DNN-
driven process, it has no theoretical justification from the signal
processing point-of-view but it is known as helping a DNN train-
ing in general. So it is applied very frequently, and actually on
purpose in VAEs. Also, the encoder input vector can be of differ-
ent nature than the VAE decoder output vector, which is composed
of probability distribution parameters; not to be confused with the
output of the VAE as a generative model. Some of the output pa-
rameters may be homogeneous to the input data, e.g. mean vectors,
and some others may not be, e.g. variance parameters. Moreover,
data normalization can also be applied to output data, and the nor-
malization/denormalization can be conducted in different manners
at the input and at the output. Then, does data representation, pre-
processing and normalization have any consequence on the theo-
retical foundations of the model?

1For speech enhancement applications, the encoder is only used for
VAE training. During the speech signal inference process, only the decoder
is used.

3.3. Statistical modeling and implications for VAE training

The choice of the reconstruction term of the loss function for the
VAE training is often poorly discussed in papers dealing with VAE-
based spectrogram modeling. A typical yet poorly justified ap-
proach could be: Let us choose a data representation that is ap-
propriate for the considered application, for example a magnitude
spectrum vector xn, and let us apply some normalization that is
appropriate for DNNs. Then systematic application of the Gaus-
sian model (2) is the easy way, leading to the weighted squared
error form in the reconstruction term of (8). If we further set the
variance parameters σ2

θ,f (zn) to an arbitrarily fixed value σ2 (i.e.
we consider only the mean parameters µθ,f (zn) as the free VAE
outputs), then (8) becomes (up to an additive constant factor):

L(φ, θ,X) = − 1

σ2

Ntr∑
n=1

F−1∑
f=0

1

2

(
xfn − µθ,f (zn)

)2
+

1

2

Ntr∑
n=1

L∑
l=1

(
log σ̃2

φ,l(xn)− µ̃φ,l(xn)2 − σ̃2
φ,l(xn)

)
(9)

This means that using the basic mean squared error (MSE) as the
reconstruction term of the VAE loss function amounts to max-
imize the likelihood function under the present “fixed-variance
free-mean” Gaussian model, hence providing some nice theoret-
ical interpretation of the process. Yet this interpretation is poorly
discussed in the papers. Does this approach have limitations? Does
it make sense to model normalized magnitude vectors with a Gaus-
sian distribution? Do other strategies exist? And what is the link
with the problem of data representation?

As briefly mentioned in the introduction, a consistent theoret-
ical framework exists that enables one to justify and interpret the
choice of data representation, likelihood function and reconstruc-
tion term of the loss function, and how those points are related.
This is what we present in the next section.

4. LINKING NMF AND VAE

In this section, we build on the existing statistical framework re-
lated to nonnegative representations, in particular Nonnegative Ma-
trix Factorization (NMF), and its application to the modeling of
speech/audio spectrograms. Most of the technical material pre-
sented here is extracted from [16] and [17]. We first shortly present
the principle of NMF decomposition, then we go to the major
point of this section which is to show that the underlying statisti-
cal framework directly applies to the VAE model, and can thus be
used to give a solid theoretical interpretation of VAE-based mod-
eling of speech/audio spectrograms. We finally report the three
major NMF-based generative models considered in [16] and [17]
and give their VAE counterparts.

4.1. The NMF model

NMF consists in modeling a matrix V = [vfn]f,n ∈ RF×N+ of
nonnegative entries as the product of two nonnegative matrices
W = [wfk]f,k ∈ RF×K+ and H = [hkn]k,n ∈ RK×N+ . In
other words we have V ≈ V̂ = WH, or equivalently v̂fn =

(WH)fn =
∑K
k=1 wfkhkn. A low-rank approximation of V,

represented with a reduced number of parameters, is obtained by
setting K such that K(F +N)� FN . In the speech/audio pro-
cessing literature, V̂ is typically used to model the signal (“true” or
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“theoretical”) PSD E[|S|2] based on the observed power spectro-
gram X = |S|2 (or the same for the “true” magnitude spectrogram
based on the observed magnitude spectrogram X = |S|). The in-
terest of this approach is thus to provide a model of the signal PSD
in each time-frequency bin with a very reasonable number of pa-
rameters (if K is chosen properly).

Calculating V̂ from a given observed nonnegative matrix X
is done by minimizing over W and H the following error under a
non-negativity constraint:

D(X|V̂) =
N∑
n=1

F−1∑
f=0

d(xfn|v̂fn), (10)

where d(·|·) is a scalar divergence. The three most popular cost
functions are the squared Euclidian distance dEUC(x|y) = 0.5(x−
y)2, the generalized Kullback-Leibler (KL) divergence dKL(x|y) =
x log(x/y)−x+y, and the Itakura-Saito (IS) divergence dIS(x|y) =
x/y − log(x/y) − 1. For each of them, a set of algorithms have
been proposed to solve the above minimization problem. Their
presentation is out of the scope of this paper, where we focus on
the link with the VAE and the underlying statistical models. For
the same reason, we do not deal with the interpretation of NMF as
a model of composite signals [16, 17], which is of primary impor-
tance in the source separation literature.

4.2. Linking NMF- and VAE-based spectrogram modeling

Now the major point of the present paper is the following: The
minimization of the global cost function (10), the choice of the
scalar cost function in (10), the choice of data representation, and
the interpretation in terms of underlying statistical model are prob-
lems that are all common to NMF and VAE. In other words, a
common framework exists where V̂ may as well be an NMF model
V̂ = WH or the concatenation of successive (nonnegative) out-
put vectors of a VAE, e.g. V̂ = [σ2

θ(z1),σ2
θ(z2), · · · ,σ2

θ(zN )],
which is the case for VAE-based spectrogram modeling. Indeed,
as will be detailed below, for both NMF and VAE models, (10) is
nothing but a reformulation of the negative log-likelihood function
of the underlying generative model. More specifically, if V̂ is the
output of a VAE, the reconstruction accuracy in (7) and the cost
function (10) are identical up to a constant multiplicative positive
factor α, sign, and a constant additive factor. In short, (7) can be
rewritten as:

L(φ, θ,X) = −α
Ntr∑
n=1

F−1∑
f=0

d(xfn|v̂fn)

−
Ntr∑
n=1

dKL(qφ(zn|xn)|pθ(zn)). (11)

In the VAE model framework, minimization of (10) thus amounts
to optimal estimation of the VAE parameters in the maximum-
likelihood (ML) sense. Let us temper a bit: (10) only concerns
the VAE decoder, and the complete VAE is actually optimized by
maximizing (7) (or (11)), i.e. the combination of (10) with the
VLB regularization term. This latter is important to differentiate a
VAE from a deterministic AE. Let us note that in the VAE frame-
work, ML estimation of V̂ is to be understood as a shortcut for ML
estimation of θ, the decoder parameters, which requires the joint
estimation of the encoder parameters φ during the VAE training.
Finally, let us also note that α plays the role of balancing factor

between reconstruction and regularization, and quite interestingly,
it is very similar to the β factor of the β-VAE model proposed in
[28] in an ad-hoc manner, for the same aim (though β is applied to
the regularization term instead of the reconstruction term).

Although all these points may sound trivial to readers familiar
with the statistical interpretation of NMF spectrogram modeling,
to our knowledge they have never been pointed out in the litera-
ture on VAE-based speech/audio processing. One reasonable ex-
planation for this may be that NMF studies often start with the
cost function formulated as (10), and the interpretation in terms
of underlying generative model comes in second (when it comes),
whereas VAE studies start with a generative model then go to the
cost function formulated as (7).

4.3. Practical cases

We now apply the above considerations to the three major cases
considered in [16] and [17], which correspond to different diver-
gences d(·|·) in (10) and (11).

Euclidian distance case In the NMF context, it has been shown
in [16, 17] that choosing and minimizing the squared Euclidian
distance between X and V̂ = WH corresponds to ML estimation
of W and H under the assumption of the Gaussian model

xfn ∼ N (xfn; v̂fn, σ
2), (12)

with v̂fn = (WH)fn =
∑K
k=1 wfkhkn. Similarly, in the VAE

case, choosing and minimizing the squared Euclidian distance be-
tween xfn and v̂fn in (11), with v̂fn = µθ,f (zn), corresponds to
ML estimation of v̂fn under the assumption of the Gaussian model
(2), with a fixed variance σ2

θ,f (zn) = σ2, ∀(f, n). Actually this
is what we have already done at the end of Section 3, and formal-
ized in (9). In both NMF and VAE cases, we have the following
underlying model:

xfn = v̂fn + efn, (13)

where efn is an i.i.d. additive white Gaussian noise, i.e. efn
i.i.d.∼

N (0, σ2). Moreover, identifying (11) and (9) leads to α = 1/σ2,
hence σ2 plays the role of balancing factor between reconstruction
and regularization.

A Gaussian model is often favored because of its generality
and its nice features in mathematical derivations. For instance,
it has been used for VAE-based speech spectrogram modeling in
[4, 6, 11, 29]. However, although this approach could work quite
well in many settings, it suffers from what is referred to as an inter-
pretation ambiguity in [16]: Although xfn represents a magnitude
or power spectrum, N (xfn;µθ,f (zn), σ2) may produce negative
data (even if we somehow enforce µθ,f (zn) ≥ 0). This problem
may be partly fixed by appropriate data normalization (e.g. min-
max rescaling within [−1, 1]) and/or with log-scaling. However, it
is subject to discussion if the distribution of log-magnitude spectra
of real-world speech and audio signals has a Gaussian shape or not.

Itakura-Saito divergence case Alternately, it was shown and
largely discussed in [17] that using the IS divergence in (10) cor-
responds to maximizing the log-likelihood function under the as-
sumption of a Gamma distribution for xfn. More precisely, the
statistical model is:

xfn ∼ G(xfn;α, α/v̂fn), (14)
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where G(.; a, b) is the Gamma distribution with shape parameter
a > 0 and rate parameter b > 0, and whose pdf is defined in the
Appendix. In the NMF framework we have v̂fn = (WH)fn =∑K
k=1 wfkhkn, but this result is still valid in the VAE framework

where we now have v̂fn = σ2
θ,f (zn). In both NMF and VAE

cases, we have the following underlying model:

xfn = v̂fnefn, (15)

where efn is an i.i.d. multiplicative Gamma noise, i.e. efn
i.i.d.∼

G(efn;α, α).
Importantly, it was also shown in [17] that if xfn corresponds

to a linear-scale squared magnitude, minimizing the IS divergence
corresponds to ML estimation of v̂fn under a circularly symmet-
ric complex Gaussian model for the STFT coefficients sfn ∈ C
corresponding to xfn = |sfn|2 ∈ R+, with a variance E[|sfn|2]
equal to v̂fn. In short, sfn ∼ Nc(sfn; 0, v̂fn), where the pdf
of the complex Gaussian distribution Nc is defined in the Ap-
pendix. This interpretation is quite important since this model
and associated ML fitting procedure have been used extensively in
speech enhancement and speech/audio source separation, in com-
bination with NMF, e.g. [19, 21, 23], or not, e.g. [26, 20, 30].
Indeed, in such applications, we are interested in inferring the
complex-valued source STFT coefficients sfn from corrupted ob-
servations. Again, this result is valid for both NMF and VAE
frameworks: In IS-based NMF, we have E[|sfn|2] = E[xfn] =

v̂fn =
∑K
k=1 wfkhkn. In IS-based VAE, we have E[|sfn|2] =

E[xfn] = v̂fn = σ2
θ,f (zn) and the mean parameters µθ,f (zn) are

simply disregarded since (2) is implicitly replaced with the above
Gamma model of xfn. Note that IS-VAE was shown to outper-
form IS-NMF for speech enhancement in [10].

Generalized Kullback-Leibler divergence case Finally, mini-
mizing the KL divergence between xfn and v̂fn corresponds to
ML estimation of v̂fn under the assumption of a Poisson distribu-
tion for xfn:

xfn ∼ P(xfn; v̂fn), (16)

where P(.;λ) is the Poisson distribution with scale parameter λ >
0 and whose pdf is defined in the Appendix. Note that there is
here no equivalent model in terms of additive or multiplicative
noise. In theory, the Poisson distribution is defined for nonnega-
tive integer-valued random variables, but this issue can be fixed by
considering high-resolution fixed-point quantization of the spec-
trograms. As above, this result is valid for both NMF and VAE
models. Here, v̂fn plays the role of a scale parameter, hence in
principle the output of a KL-based VAE is a vector of scale param-
eters v̂fn = σθ,f (zn) for f = 0, ..., F − 1. Although, as stated
above, arbitrary normalization and corresponding denormalization
can be applied. Historically, KL-based NMF has been applied on
(linear-scale) magnitude spectra instead of power spectra, see the
seminal papers [31, 32], but in fact there is no underlying model
on the complex-valued STFT coefficients sfn to support this prin-
ciple. In other words, in most papers on KL-based NMF, v̂fn is
a scale parameter over magnitude spectra, because xfn is a mag-
nitude spectra, but it could as well be a scale parameter over a
different representation. Of course, the same remark applies to a
KL-based VAE.

In summary, in the speech/audio spectrogram NMF modeling
framework, we had:

• EUC-NMF: pθ(X|Z) =
∏
f,nN (xfn; (WH)fn, σ

2);

• IS-NMF: pθ(X|Z) =
∏
f,n G(xfn;α, α/(WH)fn)

and pθ(S|Z) =
∏
f,nNc(sfn; 0, (WH)fn) with xfn = |sfn|2;

• KL-NMF: pθ(X|Z) =
∏
f,n P(xfn; (WH)fn).

In the VAE framework we have:

• EUC-VAE: pθ(X|Z) =
∏
f,nN (xfn;µθ,f (zn), σ2);

• IS-VAE: pθ(X|Z) =
∏
f,n G(xfn;α, α/σ2

θ,f (zn))

and pθ(S|Z) =
∏
f,nNc(sfn; 0, σ2

θ,f (zn)) with xfn = |sfn|2;

• KL-VAE: pθ(X|Z) =
∏
f,n P(xfn;σθ,f (zn)).

4.4. A practical note on the implementation of the VAE loss
function

The above considerations have a practical consequence in the cod-
ing of the loss function when implementing a VAE with a deep
learning library. Indeed, in practice, as stated above, input/output
data are often pre-processed (e.g. log-scaled) and/or normalized to
facilitate the VAE training. For the statistical interpretation con-
sidered in this paper to hold, the reconstruction term of the VAE
loss function, as implemented in a deep learning toolkit, must have
the form of the log-likelihood function log pθ(x|z), and the data
used in this loss function must be consistent with the model, i.e.
if they have been previously normalized, then they must be denor-
malized. Using the normalized data would break the consistency
of the underlying statistical model.

Let us give an example, by considering the Gamma model in
(14) for the squared STFT magnitudes xfn = |sfn|2. This model
implies that we have to use the IS divergence in the reconstruction
term of the loss function in (11). At training time, the VAE is fed
with pre-processed/normalized data xnorm

fn = g(xfn) and it pro-
vides pre-processed/normalized scale parameters v̂ norm

fn = g̃(v̂fn).
Note that the pre-processing/normalization of data and parameters
may be different, as denoted by the different g(·) and g̃(·) func-
tions. Then the implementation of the reconstruction term of the
loss function based on the IS divergence and “applied to” xnorm

fn and
v̂ norm
fn should be of the form:

g−1(xnorm
fn )

g̃−1(v̂ norm
fn )

− log
g−1(xnorm

fn )

g̃−1(v̂ norm
fn )

− 1 = dIS(xfn|v̂fn). (17)

The denormalized outputs v̂fn = g̃−1(v̂norm
fn ) are then “automat-

ically” homogeneous to scale parameters. In contrast, using di-
rectly the normalized values in the above reconstruction term (i.e.
calculating dIS(xnorm

fn |v̂ norm
fn )) or using another distance (e.g. the

MSE) on either the normalized or denormalized data would not be
consistent with the Gamma model considered in this example.

5. EXPERIMENTS

In this section, we briefly present the results of experiments that
were conducted to illustrate our discussion. We processed VAE-
based analysis-synthesis of sound spectrograms for the three cases
described in Section 4. Waveform resynthesis was done by com-
bining the output magnitude spectrogram with the phase spectro-
gram of the original signal. We applied this on speech signals
(TIMIT dataset [33], 10 utterances × 462 speakers in the training
set, for a total of about 4h, and 10 different utterances × 168 dif-
ferent speakers in the test set, for a total of about 1.5h) and music
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Figure 1: Audio quality as a function of the regularization term of
(5).

signals (a subset of the large NSynth dataset [34], 88 notes with 4
different velocities from 17 instruments for the training set and 3
instruments for the test set all from the acoustic keyboards family,
for a total of 9h of signals) at a 16 kHz sampling rate. The STFT
was computed using a 64-ms sine window (F = 513) and a 75%
overlap.

The VAE decoder network contains three layers of size [64,
128, 513] and the encoder network is the symmetric. Both net-
works use tanh and identity activation functions for the hidden
and output layers respectively. The output of the encoder and de-
coder networks are thus real-valued, and as proposed in the origi-
nal paper on VAEs [2], we output the logarithm of variance/scale
parameters for the IS-VAE and KL-VAE cases. At the input of the
encoder, we provide either magnitude spectrograms (KL-VAE and
EUC-VAE) or power spectrograms (IS-VAE).

The results are plotted in Fig. 1. In order to measure the quality
of the reconstructed signal independently of the nature of the cost
function, PESQ scores [35] (for speech) and PEMO-Q scores [36]
(for music) were calculated on the resynthesized signals in the test
set. These scores are plotted in Fig. 1 as a function of the regular-
ization term of (5). Each point represents either a utterance (left)
or a music note (right) from the dataset. We set α = 0.1 in (7)
for the IS-VAE, and α = 1 for both EUC-VAE and KL-VAE. This
was to ensure (i) to keep a sufficiently small regularization term
in the loss function so that VAEs are not turning into a determinis-
tic autoencoders, and (ii) to obtain the same range of regularization
term values for the 3 cost functions, so that the performance can be
fairly compared in terms of reconstruction quality. We can see in
Fig. 1 that for music signals (PEMO-Q scores) KL-VAE globally
performs the best, followed by IS-VAE (with an overlapping zone
of equal performance). For speech signals (PESQ scores), KL-
VAE and IS-VAE are providing similar results. EUC-VAE gener-
ally provides lower scores.

6. CONCLUSION

We can now draw the following conclusions:

• The three presented cost functions usable for NMF or VAE mod-
eling all correspond to an underlying statistical model of pro-
cessed spectrogram X = [xn]Nn=1. For all three cases, training
the VAE with data X corresponds to ML estimation of VAE de-

coder parameters under the corresponding statistical model of
X.

• Among these three cases, only one (IS-case) has an underly-
ing statistical model of the speech/audio signal STFT coeffi-
cient sfn (circularly symmetric complex Gaussian), which has
proven to be of great interest for speech enhancement and source
separation applications.

• The reconstruction accuracy and regularization of the VAE can
be weighted using the α factor in (11). For EUC-VAE and IS-
VAE this factor is naturally emerging as a parameter of the un-
derlying statistical model, which provides a nice alternative (or
interpretation) to the ad-hoc definition of the similar β factor
introduced in [28]. This is not the case for KL-VAE, where
α = 1. For the interpretation of IS-VAE in terms of complex
Gaussian model on sfn to hold, we must also have α = 1.

• In our experiments, KL-VAE and IS-VAE perform better than
EUC-VAE according to perceptually-motivated objective mea-
sures.

• Although we necessarily presented this extension in the context
of nonnegative representations, VAEs are not limited to nonneg-
ative data. They can be applied to any real-valued data. This is
what is done when processing log-scale spectrograms such as
in [4]. The IS and KL divergences and associated Gamma and
Poisson models are limited to nonnegative data, but the Euclid-
ian distance and associated Gaussian model are not.

• In practice, input/output data are often pre-processed and/or nor-
malized. If the pre-processed/normalized data are used in the
VAE practical implementation, then the loss function should in-
clude denormalization and inverse pre-processing.

• All the points considered in this paper are valid for recurrent
VAEs [37], which are likely to become popular in speech/audio
processing as well. Also, generalization of NMF to more gen-
eral divergences and corresponding statistical interpretation ex-
ist, e.g. [38, 39]. It is likely to be relevant for VAEs.

We spent time and effort to understand the correct form that
a VAE loss function should have in a deep learning library to be
consistent with a sounded signal statistical model. We believe that
sharing the content of this paper (and code if the paper is accepted)
with the speech/audio processing community can help colleagues
to take VAEs into hand faster and in a principled manner. Also,
we believe that the bridge we built in this paper can benefit to both
the speech enhancement / source separation community and the
musical sound processing community.

A. PROBABILITY DISTRIBUTIONS

A.1. Gaussian distributions

Let N (x;µ, σ2) denote the Gaussian distribution for a random
variable x ∈ R with mean µ ∈ R and variance σ2 ∈ R+. Its
probability density function (pdf) is defined by:

N (x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (18)

Note that for simplicity we use the same notation to denote a prob-
ability distribution and its pdf.

LetN (x;µ,σ2) denote the multivariate Gaussian distribution
for a real-valued random vector x ∈ RF of mean vector µ ∈ RF ,
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and with statistically independent entries such that σ2 ∈ RF+ is the
vector of variances (covariance terms are zero and thus omitted in
the parametrization for simplicity). Its pdf is therefore equal to the
product of univariate Gaussian pdfs:

N (x;µ,σ2) =

F−1∏
f=0

N (xf ;µf , σ
2
f ), (19)

where vf denotes the f -th entry of a vector v.
Let Nc(x;µ, σ2) denote the proper complex Gaussian distri-

bution for a random variable x ∈ C with mean µ ∈ C and variance
σ2 ∈ R+. Its pdf is defined by:

Nc(x;µ, σ2) =
1

πσ2
exp

(
−|x− µ|

2

σ2

)
. (20)

This distribution is circularly symmetric (i.e. invariant to a phase
shift for x) if µ = 0

A.2. Gamma distribution

Let G(x; a, b) denote the Gamma distribution for a random vari-
able x ∈ R+ with shape and rate parameters a > 0 and b > 0
respectively. Its pdf is defined by:

G(x; a, b) =
ba

Γ(a)
xa−1 exp(−bx), (21)

where Γ(·) is the Gamma function.

A.3. Poisson distribution

Let P(x;λ) denote the Poisson distribution for a random variable
x ∈ N with rate parameter λ > 0. Its pdf is defined by:

P(x;λ) = exp(−λ)
λx

x!
. (22)
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ABSTRACT

In this paper we present a new method for the pseudo black-box
modelling of general continuous-time state-space systems using
a discrete-time state-space system with an embedded deep neural
network. Examples are given of how this method can be applied
to a number of common nonlinear electronic circuits used in mu-
sic technology, namely two kinds of diode-based guitar distortion
circuits and the lowpass filter of the Korg MS-20 synthesizer.

1. INTRODUCTION

Virtual analog (VA) modelling is a well-established and active field
of research within musical signal processing that focuses on the
digital emulation of electrical or electro-mechanical systems used
in music production. Previous VA research has studied a wide
variety of music systems, such as analog filters and oscillators like
those used in subtractive synthesis [1–5], guitar effects pedals [6–
8], and guitar amplifiers [9], to name but a few examples. VA
modelling can generally be separated into two broad categories,
’white-box’ modelling and ’black-box’ modelling.

White-box modelling, so called because it requires full knowl-
edge of the structure of the device under study (e.g. via circuit
schematics), focuses on deriving the underlying differential equa-
tions governing a system and then discretizing them to generate
a numerical solution. For simple circuits this process can be per-
formed manually, which typically allows for a tailored solution to
the problem [10–12]. However, for more complicated systems this
approach can quickly become unwieldy and the use of an auto-
mated general-purpose framework is generally preferred. Exam-
ples of these frameworks include state-space models [13, 14], the
wave digital filter (WDF) formalism [15,16], and port-Hamiltonian
systems [17].

Black-box techniques, on the other hand, focus on measuring
the system which is being modelled, and then using these mea-
surements to provide parameters or coefficients to a standard mod-
elling structure. Prominent forms of black-box modelling include
Volterra series [18], dynamic convolution [19, 20] and Wiener-
Hammerstein models [21, 22]. Some work has focused on auto-
matically tuning a hand-designed model system for a specific class
of systems, e.g. a guitar amplifier, using measurements from a spe-
cific example of such a system [23, 24]. This kind of approach is
commonly named ’grey-box’ as it requires some insight into the
construction of the system.

Recent applications of Machine Learning (ML), specifically
Convolutional Neural Networks (CNNs), to the topic of VA mod-
Copyright: c© 2019 Julian D. Parker et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

elling [25] are promising but computationally expensive and lim-
ited to systems with no autonomous or higher-order nonlinear be-
haviour. Other recent work has examined the modelling of nonlin-
ear time-series data by using a compound neural network structure
including an autoencoder to estimate the internal state of the pro-
cess and then model the evolution within this inferred space [26].
Both of these approaches do not consider measurements inside the
system, and work with only input/output data. They are broadly
therefore in the black-box category.

In this paper we present a new structure consisting of a deep
neural network, embedded within a discrete-time state-space sys-
tem. We call this structure a State Trajectory Network (STN). We
show how this structure can be trained to approximate a number of
the common circuits of music electronics using not just input and
output measurements, but also measurements of signals within the
circuits.

This paper is structured as follows. In Sec. 2 we describe the
principles behind the method. In Sec. 3 we describe the proposed
Artificial Neural Network (ANN) structure, and discuss both how
it can be trained to fit a system, and how it can be applied to process
signals. In Sec. 4 we apply the technique to a number of circuits
and discuss the results. Sec.5 gives concluding remarks.

2. METHOD

The state-space (also known as phase-space) approach is a pow-
erful mathematical formalism that can describe any system which
can be characterised by a system of ODEs [27]. In continuous-
time, it can be written as:

ẋ(t) = f(u(t),x(t)) (1)
y(t) = g(u(t),x(t)) (2)

where u is the vector of inputs to the system, y is the vector of
outputs and x are the ’states’ of the system. This can also be writ-
ten in a single equation form, by concatenating the states with the
input or output:

ẋ(t)
y(t)

= fa

(
u(t)
x(t)

)
. (3)

The function fa therefore completely describes the behaviour of
the system. Note that in cases where the state of a system is di-
rectly taken as the output, there is no need for any y variables.
This is quite common in the types of systems we will be consider-
ing. The discrete-time analogue (given constant time-steps, where
n = τt with τ being the sampling interval) is given by:

xn+1

yn
= fd

(
un
xn

)
(4)
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which allows the behaviour of the system to be calculated itera-
tively based on its inputs and previous states.

Much of the literature on VA modelling is concerned with de-
riving a set of equations in the form described by (3) which define
the continuous time system of a particular circuit, and then using
various methods to discretize it into the corresponding discrete-
time state-space system to allow replication of its behaviour in a
digital device like a computer. The discretization problem there-
fore becomes essentially the problem of transforming the function
f into the function fa.

2.1. Approximating fd

If we have access to the system being modelled, we generally can
also access the input and output signals u(t) and y(t). In many
practical situations, e.g. when modelling an electrical circuit, we
will also have access to the signals x(t) corresponding to the states
of the system. If we feed the system with test signals u(t), and
sample the state and output signals x(t) and y(t), respectively,
we now have a large set of data-points describing the input and
output relationship of the function fd. If we want to replicate the
behaviour of the system for arbitrary input, we can use this data to
produce a new function f̂d that approximates fd to an appropriate
degree of accuracy.

This is essentially a regression task, and could be tackled via
any number of standard techniques. However, it is well suited to
the application of an artificial neural network (ANN) which are
known to be universal approximators, i.e. they are capable of ap-
proximating any continuous function of N real variables arbitrar-
ily well [28, 29]. The system can then be simulated iteratively as
usual, but using the approximated function f̂d instead of an fd de-
rived analytically through discretization. The system can then be
written as

xn+1

yn
= f̂d

(
un
xn

)
. (5)

The choice of what quantities to take as the states of the sys-
tem is not as strict as it might first appear. Whilst the real states of
the system are the quantities that store energy, and hence informa-
tion (e.g. capacitors), other quantities in the system will be related
to those states by a mapping (linear in the best case, but likely
nonlinear). This means that as long as we have sufficient mea-
sured quantities compared to the number of states of the system,
we should be able to learn its dynamics. The formal upper bound
on the number of independent measurements needed is given by
the Whitney embedding theorem as 2m+ 1, where m is the num-
ber of states [30]. Additionally Taken’s theorem [31] allows us
to replace some (or all) of these measurements with time-delayed
versions of another measurement. In practice, the dynamics in this
transformed state-space may be more complicated, and hence it
is preferable to use measurements as close as possible to the real
states of the system.

3. NEURAL NETWORK ARCHITECTURE

The formulation of the problem in state-space terms is advanta-
geous, as it means that the function fd we need to approximate
is purely a static, i.e. memoryless, mapping. Consequently, net-
work structures with embedded memory, such as recurrent neu-
ral networks (RNNs) [32], in particular LSTM networks [33] or

xn

un

. . .l1 lk

Training data

xn+1

yn

ŷn

x̂n+1

loss

Figure 1: Proposed network structure, as it appears during training

echo state networks [34], which are standard candidates for se-
quence modelling, are unnecessary. The proposed method is also
distinct from autoregressive modelling which predicts the next (of-
ten scalar) output based on a sequence of past observations [35],
e.g. the celebrated WaveNet architecture [36]. Instead of consider-
ing only the input-output behavior of the system, we map from the
state space into itself. Speaking in terms of dynamical systems,
this means we are learning the piece-wise flow along the trajectory
of the system [37]. The input u can be considered as a parameter
that influences this flow.

The core of the network is a Multilayer Perceptron (MLP),
i.e. series of k densely connected layers with an activation func-
tion. The number of layers and the layer width is tuned to suit
the particular system being modelled, with small systems poten-
tially needing only small networks. The activation function can be
changed to fit the system, but generally saturating nonlinearities
such as tanh produce good results. This intuitively makes sense,
as the type of systems we are examining - electronic circuits, gen-
erally contain nonlinearities of the saturating type. Simpler activa-
tions such as Rectified Linear Units (ReLU) can be used, with the
caveat that the size of the network will then generally need to be
larger.

The states xn and their values at the new time step xn+1 are
likely to be closely related. We therefore structure this part of
the network in a residual fashion using a skip-layer connection.
Skip-layer connections have been successfully applied in different
domains [36, 38]. The implication of this is that the network is
learning a residual of the state signals compared to their previous
value, rather than the new values directly. This consistently im-
proved training speed and accuracy in the case of the considered
systems.

The proposed network structure is shown in Fig. 1. As the
network is able to iteratively move along the trajectories of the
learned state-space, we call this structure a State Trajectory Net-
work (STN).

3.1. Training

In initial experiments with the structure, a Mean Squared Error
(MSE) loss function was used for training:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2, (6)
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where Y and Ŷ are respectively the desired output and the actual
output of the neural network 1, and n is the size of the training
batch.

Using this loss function, the network structure showed some
difficulty with training accurately. Investigation showed that the
cause of this difficulty was large variance in the state residuals
needed to fit the training data. This meant that MSE was priori-
tising the accuracy of the large residuals, and often leaving the
smaller residuals completely incorrect. To combat this, a normal-
ized version of MSE was used for the initial 10 epochs of the train-
ing:

MSEnorm =
1

n

n∑
i=1

(Yi − Ŷi)
2

Y 2
i

. (7)

This seemed to provide a better foundation for further training us-
ing MSE, resulting in better overall accuracy. The Nesterov Adam
(Nadam) optimizer was used, with learning rate and other meta-
parameters set as recommended by Dozat [39]. Training and ver-
ification of the models was conducted using Keras [40] with Ten-
sorFlow [41] as a backend.

3.2. Application to sound synthesis and processing

Fig. 2 shows the structure of the network when used for process-
ing or generating audio signals. The feedback connection repre-
senting the iterative calculation of the modelled system behaviour
is shown. Also shown is an additional gain element hτ used to
scale the state residual calculated by the network. This element
highlights another advantage of skip-level structure. Having di-
rect access to the residuals is useful, as the residuals are entirely
responsible for the time-evolution of the modelled system. Mul-
tiplying the residuals by an arbitrary gain allows us to effectively
alter the time-scale of the simulated system. With some caveats,
this allows the model to be run at sampling periods other than the
one used to train the model. This gain can be defined as:

hτ =
τp
τt

=
Ft
Fp
, i (8)

where τp, τt are the time-steps used for processing and for training
respectively, and equivalently Fp and Fs are the sampling frequen-
cies used for processing and for training.

Care must be taken when using this facility to run the system
at a different sampling frequency than the one which it was trained
for. Whilst the time-scale will be correctly altered, this does not
make the system equivalent to one trained at the new sampling fre-
quency. Running the system at a lower sampling frequency than
used for the training raises the possibility of aliasing being intro-
duced by elements of the learned behaviour that exceed the new
Nyquist limit. Running the system at a higher sampling rate than
it was trained at poses less risks, although the modelled system
will potentially lack high-frequency behaviours that might have
been present if the system had been trained at a higher sampling
frequency. Oversampling compared to audio-rate is recommended
in most situations, as the system does not utilize any specific anti-
aliasing and hence will produce aliasing in the same situations as
a normal nonlinear state-space system.

1Note that the neural network output Y should not to be confused with
y, the output of the system being modelled.

xn+1xn

un yn

. . .l1 lk

h⌧

Figure 2: Proposed network structure in form used for processing
signals.

4. MODELLING MEASURED SYSTEMS

In order to test the performance of the proposed method, a number
of test circuits were built. A measurement signal was applied to the
circuit, and the state and output signals recorded using an analog-
to-digital converter (ADC). Unity gain op-amp buffers were used
to isolate the measurement points from the load of the ADC. In
some situations, node voltages were recorded instead of differen-
tial voltages across capacitors (i.e. the required states). In these
cases, the differential voltage was recovered in post-processing by
linear combination with other recorded node voltages.

For each circuit several models were trained, and then two se-
lected for presentation here - one smaller and one larger network.
All of the data referenced below is available on the accompanying
website2, including verification signals and model outputs.

4.1. Measurement Signal Design

Theoretically, any signal can be used to generate the measurements
used to train the network. In practice, some important considera-
tions have to be made. In contrast to other black-box modelling
techniques, measurements with varying frequency input, e.g. a
sine-sweep, are not strictly necessary to capture the behaviour of
the system under consideration. This is because behaviour at all
time-scales is captured in the learnt state trajectories. However,
the chosen measurement signal does have a number of important
impacts on the process.

The measurement signal defines the subset of the state space
which will be sampled. In complicated systems, particular inputs
could potentially be needed in order to access particular parts of
the state space. A simple example of this could be a resonant fil-
ter circuit. In this case, an input signal at the resonant frequency
would excite the circuit much more strongly than signals at other
frequencies, potentially revealing nonlinear behaviours that only
apply at high state magnitudes.

Care must also be taken to restrict the upper frequency of the
measurement signal to significantly below the Nyquist frequency
at the sampling rate used for the measurements. This is because the
process of sampling the state signals and outputs is bandlimited.
Components that exceed the Nyquist will be removed during the
sampling process. Hence, harmonics produced in the real system
may be lost. This means that state signals recorded in response
to too high of a frequency will no longer accurately reflect the true
state-space trajectory. This leads to measurements which appear to
violate the constraint that each point in space space can correspond

2https://github.com/julian-parker/DAFX-NLML
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to only one trajectory (effectively there are now further states in
the bandlimiting filter of the sampling apparatus, which are not
reflected in our system model).

In practice, the selection of a measurement signal is a balance
between these two constraints, and can be tailored to the system
under consideration. Typical input signals for the system can work
well (e.g. guitar playing if modelling a distortion pedal), as can
carefully specified sweeps. In this paper we used 10-second loga-
rithmic sine-sweeps combined with low-level (-20dB) white noise.
The noise was bandlimited to 22 kHz. This combined signal was
then increased in amplitude linearly from zero to unity over half
of the length of the measurement signal, in order to ensure the
capture of sufficient data-points near the origin of the state-space.
The minimum frequency of the sweep was taken as 20Hz, and the
maximum frequency was chosen to be 10 kHz in order to cover
a sufficient amount of the state-space without corrupting the data
with fictional trajectories. A spectrogram of the measurement sig-
nal is shown in Fig. 3. A sampling rate of 192 kHz was used for
measurement and training.

In all the examples presented here, training was done over 300
epochs, with a batch size of 256. Due to the small size of the
networks under consideration, a GPU is not needed for the training
process (and is in-fact slower than training on a CPU with SIMD
functionality).
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Figure 3: Spectrogram of sine-sweep and noise signal used to gen-
erate training data from the systems.

For time-domain verification of the results, two signals were
chosen - a 500Hz sawtooth wave, and a short passage of elec-
tric guitar. Short extracts from the sawtooth and guitar signals are
shown in Fig. 4. The guitar signal contains a variety of signal lev-
els, and the sawtooth was chosen to have a peak voltage of 2V,
so as to stress the nonlinear behaviours in the circuits. Verification
was primarily conducted in the time-domain, but a 1 kHz sinusoid
with a a peak voltage of 2V was also used to check frequency-
domain behaviour of the models.
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Figure 4: Extracts of the signals used for verification of the mod-
elled circuits
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Figure 5: Schematic for the first-order diode clipper.

4.2. First-order diode clipper

The single-capacitor diode clipper, shown in Fig. 5, is a common
object of examination in the VA literature, starting from the work
of Yeh [10]. For small input signals, (i.e. peak voltages below ap-
proximately 0.6V) the current flowing through the diodes is close
to zero and the circuit reduces to a simple RC lowpass filter. For
larger signal values the diodes will cause the output to saturate and
the circuit becomes a nonlinear lowpass filter, with its instanta-
neous cutoff frequency rising as the circuit is driven harder.

The circuit looks simple, but has proven somewhat challeng-
ing for white-box techniques due to its inherent stiffness. A con-
ventional discretization of this circuit will generally need to em-
ploy an implicit numerical scheme, with iterations necessary at
each time-step in order to find the correct state value [42]. In this
circuit, the output y and the single state x1 are the same quantity,
i.e. the voltage across the single capacitor.

4.2.1. Training

Selecting training data is simple in this case. There is only one
capacitor and hence state, and the value of this state is the output
of the system. Fig. 6 shows a visualization of the training data.
We can clearly see the saturating behaviour of the system as the
prominent dark s-shape. Whilst the shape of the space may seem
relatively simple, smaller networks had trouble fitting the curve
shape exactly - even when using saturating activation functions.

Figure 6: Visualization of a subset of the state-space data used to
train diode clipper model.

4.2.2. Results

The MSE for the chosen models, calculated over the entirety of the
verification signals is:
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Model struct. Sawtooth Guitar
2x128 ReLU 0.237mV 0.276mV

2x8 tanh 0.079mV 0.135mV

Fig. 7 shows extracts from the verifications signals, processed with
the chosen models and with the real circuit. The match appears to
be good on both the sawtooth and guitar signal. Surprisingly, the
larger ReLU based model shows lower accuracy. The frequency
domain verification also shows a very close match to the real out-
put, with odd and even harmonic levels matched very closely apart
from a small amount of error in high-frequency even harmonics.
The model output is indistinguishable from the output of the real
circuit in casual listening.
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Figure 7: Results of processing the verification signals with two
different trained diode-clipper models, compared to the output
measured from the real circuit.

4.3. Second-order diode clipper (Boss DS-1)
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Figure 8: Schematic for the second-order diode clipper. Figure
adapted from [43].

The next circuit considered in this study is the second-order
diode clipper shown in Fig. 8. This circuit adds a capacitor be-
tween the input and the diodes, and is a simplified version of the
core distortion section in the well-known Boss DS-1 pedal [43]. In
this study we have omitted the preceding op-amp gain stage and

the subsequent tone control. The behaviour of this circuit is simi-
lar to that of the first-order clipper, but more complex. The series
capacitor introduces additional highpass filtering which in turn can
cause asymmetry in the overall clipping behaviour [44].

This circuit exhibits stiffness properties similar to those of the
first-order clipper when discretized using standard numerical tech-
niques. The voltages across both capacitors were chosen as the
states of the circuits. The first state, x1, was retrieved by measur-
ing the node between the input resistor and series capacitor, and
computing its difference with x2, which was measured directly at
the output node y.

4.3.1. Training

Again, it is valuable to visualize the measured training data to gain
insight into the system. This can be seen in Fig. 9, where we see
a projection of the data onto the input u vs x2 plane. We can still
see the characteristic s-shape of the single diode-clipper. If we
view the data in 3d, with x1 providing the third dimension, we see
that the s-shape is actually a manifold rotated around the x2 axis.
Training proceeded as in the single-capacitor case.

Figure 9: Visualization of state-space data used to train DS-1
model.

4.3.2. Results

The MSE for the models, calculated over the entirety of the verifi-
cation signals is:

Model struct. Sawtooth Guitar
2x128 ReLU 0.082mV 0.191mV

3x4 tanh 0.232mV 2.67mV

Again, we can see extracts from the verification signals in
Fig. 10. The match is again very good, with a small advantage
in accuracy from the larger ReLU based model. The frequency
domain results show a very close match for odd harmonics, with
even harmonics being a worse fit. The ReLU model in particu-
lar seems to produce stronger even harmonics than needed. The
model output is again indistinguishable from the output of the real
circuit in casual listening.

4.4. Sallen-Key Filter (Korg MS-20 REV2)

The last system examined is an adapted version of the lowpass
filter circuit from the Korg MS-20, a classic monophonic analog
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Figure 10: Results of processing the verification signals with two
different trained DS-1 models, compared to the output measured
from the real circuit.

synthesiser released by Korg in 1978. The particular version exam-
ined in this study corresponds to the second revision of the circuit,
commonly known as ‘REV2‘. This filter is a Sallen-Key topol-
ogy, and utilizes operational transconductance amplifiers (OTAs)
as current-controlled gain elements used to set the cutoff of the fil-
ter. An op-amp-based non-inverting amplifier with clipping diodes
is used in the feedback path as a resonance control [45]. These
diodes are responsible for the characteristic distorted sound of the
filter. The schematic for this circuit is shown in Fig. 13. For clar-
ity, the cutoff control section has been omitted and ideal buffers
have been used to represent the transistor buffers contained within
the LM13700 OTAs [46].

This circuit was chosen for modelling as it exhibits strongly
nonlinear self-oscillatory behaviour. This behaviour would not be
possible to model using existing black-box techniques. For the
purpose of this work, the parametric elements were set to fixed val-
ues. This meant feeding a constant control current Ictl to the OTAs
to fix the cutoff, and fixing the resonance potentiometer at a partic-
ular gain. As in the DS-1 circuit, x1 was computed by measuring
the voltages at the outputs of the first OTA (IC 1) and the feedback
amplifier, and computing their difference in post-processing. The
second state of the circuit x2 is simply the voltage difference be-
tween the output of the second OTA (IC 2) and ground. Since this
node is connected to y by a unit-gain buffer, it can be measured
directly at the output filter. For this circuit, the peak amplitude of
the input sweep as seen by the circuit was adjusted to be 1.1V.

4.4.1. Training

The MS-20 filter exhibits much more complex behaviour than the
simpler clipper circuits. A plot of the training data is shown in
Fig. 11, which again shows a projection of the data onto the u

vs x2 plane. The 3-dimensional structure of the state space is
already quite visible in this plot. Two main components can be
seen, a saturating s-shaped manifold similar to that seen in the
clipper circuits, along with a closed orbit corresponding to the self-
oscillating behaviour.

Despite the more complex seeming behaviour of the circuit,
training of the model networks proceeded more quickly than with
the clipper circuits.

Figure 11: Visualization of state-space data used to train MS-20
filter model.

4.4.2. Results

The MSE for the chosen models, calculated over the entirety of the
verification signals is given by:

Model struct. Sawtooth Guitar
2x32 ReLU 2.01mV 684mV

3x4 tanh 1.29mV 794mV

The error values are somewhat higher than seen in the case of the
clipper circuits, especially in the case of the guitar verification sig-
nal. As can be seen in Fig. 12, the behaviour of the circuit seems
to be replicated rather well by the models with self-oscillation oc-
curring at the correct frequency and being damped with increased
input level as expected. The major difference between the mea-
sured and modelled results in the case of the guitar signal appears
to be the phase of the self-oscillation. This can be explained by the
fact that even very small errors in the learned state-space trajectory
will accumulate to produce a phase difference when the dynamics
are dominated by free self-oscillation. The phase of the oscillation
isn’t important perceptually in this case, so we conclude that the
poor MSE numbers do not imply a poor model. Listening to the
verification signals processed through the models confirms this,
as they appear indistinguishable from the verification signals pro-
cessed by the real circuit. The frequency-domain results also show
a very close correspondence between the models and the real cir-
cuit, with small differences seen only in some higher harmonics.

4.5. Computational Complexity

We computed the number of floating point operations by counting
all multiplications, additions, and nonlinear function evaluations
in the network. For the activations functions we assume three op-
erations for ReLUs (abs, add, mul) and an average of 30 operations
for tanh. Assuming that the models are run at the same sampling
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Figure 12: Results of processing the verification signals with two
different MS20 filter models, compared to the output measured
from the real circuit for the same input.

frequency used for training, 192 kHz, we can then extrapolate this
into a value in floating point operations per second (FLOPS):

Model ops/sample GFLOPS
DS-1 2x128 ReLU 34822 6.7

Clipper 2x128 ReLU 34307 6.6
MS-20 2x32 ReLU 2620 0.50

Clipper 2x8 tanh 686 0.13
MS-20 3x4 tanh 524 0.10

DS-1 3x4 tanh 524 0.10

The values lie well within the bounds of real-time operation on a
modern computer. However, the values should only be taken as a
rough guideline for performance. The actual performance of the
algorithm will depend strongly on the processor architecture used.

5. CONCLUSIONS

In this work we introduced a new technique for modelling the
behaviour of nonlinear state-space systems, using a discrete-time
state-space system with an embedded neural network. The net-
work learns trajectories in state-space from measurements in a
residual manner, and can be used to reproduce these trajectories
in response to arbitrary input. We call the network structure a
State Trajectory Network (STN). We showed how this structure
can be used to accurately model the behaviour of a number of non-
linear circuits, using measurements from within the circuit to train
the model. We also showed that the produced models are of suffi-
ciently low computational complexity to be run for real-time audio
usage.

Future work will concentrate on extending the STN to work
with larger systems, and those with parametric control. We be-
lieve the STN may be an interesting structure for application to the

modelling of stateful systems outside of the virtual-analog domain,
and also intend to investigate this avenue.
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<latexit sha1_base64="rml3S1o3M+tCBLznqPSHHBSfULA=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFqPgQcKuF/VkQBCPEYwJZNcwO5kkQ2Znl5leNSz5D3MQfODBix/jzb9x8jhoYkFDUdVNd1cQC67Rcb6tzNz8wuJSdjm3srq2vpHf3LrRUaIoq9BIRKoWEM0El6yCHAWrxYqRMBCsGnTPh371jinNI3mNvZj5IWlL3uKUoJFuXe/QQ/aASZzKi34jX3CKzgj2LHEnpHD2MRg8A0C5kf/ymhFNQiaRCqJ13XVi9FOikFPB+jkv0SwmtEvarG6oJCHTfjq6um/vG6VptyJlSqI9Un9PpCTUuhcGpjMk2NHT3lD8z6sn2DrxUy7jBJmk40WtRNgY2cMI7CZXjKLoGUKo4uZWm3aIIhRNUDkTgjv98iypHBVPi86VWyjtwRhZ2IFdOAAXjqEEl1CGClBQ8Agv8GrdW0/Wm/U+bs1Yk5lt+APr8wdyr5Td</latexit>

1 nF
<latexit sha1_base64="rml3S1o3M+tCBLznqPSHHBSfULA=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFqPgQcKuF/VkQBCPEYwJZNcwO5kkQ2Znl5leNSz5D3MQfODBix/jzb9x8jhoYkFDUdVNd1cQC67Rcb6tzNz8wuJSdjm3srq2vpHf3LrRUaIoq9BIRKoWEM0El6yCHAWrxYqRMBCsGnTPh371jinNI3mNvZj5IWlL3uKUoJFuXe/QQ/aASZzKi34jX3CKzgj2LHEnpHD2MRg8A0C5kf/ymhFNQiaRCqJ13XVi9FOikFPB+jkv0SwmtEvarG6oJCHTfjq6um/vG6VptyJlSqI9Un9PpCTUuhcGpjMk2NHT3lD8z6sn2DrxUy7jBJmk40WtRNgY2cMI7CZXjKLoGUKo4uZWm3aIIhRNUDkTgjv98iypHBVPi86VWyjtwRhZ2IFdOAAXjqEEl1CGClBQ8Agv8GrdW0/Wm/U+bs1Yk5lt+APr8wdyr5Td</latexit>

1 nF
<latexit sha1_base64="rml3S1o3M+tCBLznqPSHHBSfULA=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFqPgQcKuF/VkQBCPEYwJZNcwO5kkQ2Znl5leNSz5D3MQfODBix/jzb9x8jhoYkFDUdVNd1cQC67Rcb6tzNz8wuJSdjm3srq2vpHf3LrRUaIoq9BIRKoWEM0El6yCHAWrxYqRMBCsGnTPh371jinNI3mNvZj5IWlL3uKUoJFuXe/QQ/aASZzKi34jX3CKzgj2LHEnpHD2MRg8A0C5kf/ymhFNQiaRCqJ13XVi9FOikFPB+jkv0SwmtEvarG6oJCHTfjq6um/vG6VptyJlSqI9Un9PpCTUuhcGpjMk2NHT3lD8z6sn2DrxUy7jBJmk40WtRNgY2cMI7CZXjKLoGUKo4uZWm3aIIhRNUDkTgjv98iypHBVPi86VWyjtwRhZ2IFdOAAXjqEEl1CGClBQ8Agv8GrdW0/Wm/U+bs1Yk5lt+APr8wdyr5Td</latexit>

1 nF
<latexit sha1_base64="rml3S1o3M+tCBLznqPSHHBSfULA=">AAAB9HicbVDLSgNBEOyNrxhfUY9eFqPgQcKuF/VkQBCPEYwJZNcwO5kkQ2Znl5leNSz5D3MQfODBix/jzb9x8jhoYkFDUdVNd1cQC67Rcb6tzNz8wuJSdjm3srq2vpHf3LrRUaIoq9BIRKoWEM0El6yCHAWrxYqRMBCsGnTPh371jinNI3mNvZj5IWlL3uKUoJFuXe/QQ/aASZzKi34jX3CKzgj2LHEnpHD2MRg8A0C5kf/ymhFNQiaRCqJ13XVi9FOikFPB+jkv0SwmtEvarG6oJCHTfjq6um/vG6VptyJlSqI9Un9PpCTUuhcGpjMk2NHT3lD8z6sn2DrxUy7jBJmk40WtRNgY2cMI7CZXjKLoGUKo4uZWm3aIIhRNUDkTgjv98iypHBVPi86VWyjtwRhZ2IFdOAAXjqEEl1CGClBQ8Agv8GrdW0/Wm/U+bs1Yk5lt+APr8wdyr5Td</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

220⌦
<latexit sha1_base64="STA+V3My/H85YmaSA4NLEEU93Tg=">AAAB8XicbZDLSsNAFIZP6q3WW9Wlm8EquJCSdKOuLLhxZwVjC0kok+mkHTrJhJmJUEIfw0VdaHEnvo0738bpZaGtPwx8/P85zDknTDlT2ra/rcLK6tr6RnGztLW9s7tX3j94VCKThLpEcCFbIVaUs4S6mmlOW6mkOA45bYb9m0nefKJSMZE86EFKgxh3ExYxgrWxvFrN9s/9u5h2cbtcsav2VGgZnDlUrj9GozEANNrlL78jSBbTRBOOlfIcO9VBjqVmhNNhyc8UTTHp4y71DCY4pirIpyMP0alxOigS0rxEo6n7uyPHsVKDODSVMdY9tZhNzP8yL9PRZZCzJM00TcjsoyjjSAs02R91mKRE84EBTCQzsyLSwxITba5UMkdwFldeBrdWvara906lfgIzFeEIjuEMHLiAOtxCA1wgIOAZXuHN0taLNbbeZ6UFa95zCH9kff4A3IuStQ==</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

2.2 k⌦
<latexit sha1_base64="3eySS5M0uxl5Pv4VLdUd3YGaeoA=">AAAB/XicbVDLSgNBEOz1bXytiicvi1HwIGE3F/Wk4MWbCq4K2SXMTjrJkNkHM71iWAL+hje9CD7w6n9482+cJB40WtBQVHXT3RVlUmhy3U9rbHxicmp6ZrY0N7+wuGQvr1zoNFccfZ7KVF1FTKMUCfokSOJVppDFkcTLqHPU9y+vUWmRJufUzTCMWSsRTcEZGalur1Ur1WAnILyhPCs6veAkxhar22W34g7g/CXeNykfPN3d3QPAad3+CBopz2NMiEumdc1zMwoLpkhwib1SkGvMGO+wFtYMTViMOiwG5/ecLaM0nGaqTCXkDNSfEwWLte7GkemMGbX1qNcX//NqOTX3wkIkWU6Y8OGiZi4dSp1+Fk5DKOQku4YwroS51eFtphgnk1jJhOCNvvyX+NXKfsU988qHmzDEDKzDBmyDB7twCMdwCj5wKOABnuHFurUerVfrbdg6Zn3PrMIvWO9fp7WXsQ==</latexit>

2.2 k⌦
<latexit sha1_base64="3eySS5M0uxl5Pv4VLdUd3YGaeoA=">AAAB/XicbVDLSgNBEOz1bXytiicvi1HwIGE3F/Wk4MWbCq4K2SXMTjrJkNkHM71iWAL+hje9CD7w6n9482+cJB40WtBQVHXT3RVlUmhy3U9rbHxicmp6ZrY0N7+wuGQvr1zoNFccfZ7KVF1FTKMUCfokSOJVppDFkcTLqHPU9y+vUWmRJufUzTCMWSsRTcEZGalur1Ur1WAnILyhPCs6veAkxhar22W34g7g/CXeNykfPN3d3QPAad3+CBopz2NMiEumdc1zMwoLpkhwib1SkGvMGO+wFtYMTViMOiwG5/ecLaM0nGaqTCXkDNSfEwWLte7GkemMGbX1qNcX//NqOTX3wkIkWU6Y8OGiZi4dSp1+Fk5DKOQku4YwroS51eFtphgnk1jJhOCNvvyX+NXKfsU988qHmzDEDKzDBmyDB7twCMdwCj5wKOABnuHFurUerVfrbdg6Zn3PrMIvWO9fp7WXsQ==</latexit>

2.2 k⌦
<latexit sha1_base64="3eySS5M0uxl5Pv4VLdUd3YGaeoA=">AAAB/XicbVDLSgNBEOz1bXytiicvi1HwIGE3F/Wk4MWbCq4K2SXMTjrJkNkHM71iWAL+hje9CD7w6n9482+cJB40WtBQVHXT3RVlUmhy3U9rbHxicmp6ZrY0N7+wuGQvr1zoNFccfZ7KVF1FTKMUCfokSOJVppDFkcTLqHPU9y+vUWmRJufUzTCMWSsRTcEZGalur1Ur1WAnILyhPCs6veAkxhar22W34g7g/CXeNykfPN3d3QPAad3+CBopz2NMiEumdc1zMwoLpkhwib1SkGvMGO+wFtYMTViMOiwG5/ecLaM0nGaqTCXkDNSfEwWLte7GkemMGbX1qNcX//NqOTX3wkIkWU6Y8OGiZi4dSp1+Fk5DKOQku4YwroS51eFtphgnk1jJhOCNvvyX+NXKfsU988qHmzDEDKzDBmyDB7twCMdwCj5wKOABnuHFurUerVfrbdg6Zn3PrMIvWO9fp7WXsQ==</latexit>

2.2 k⌦
<latexit sha1_base64="3eySS5M0uxl5Pv4VLdUd3YGaeoA=">AAAB/XicbVDLSgNBEOz1bXytiicvi1HwIGE3F/Wk4MWbCq4K2SXMTjrJkNkHM71iWAL+hje9CD7w6n9482+cJB40WtBQVHXT3RVlUmhy3U9rbHxicmp6ZrY0N7+wuGQvr1zoNFccfZ7KVF1FTKMUCfokSOJVppDFkcTLqHPU9y+vUWmRJufUzTCMWSsRTcEZGalur1Ur1WAnILyhPCs6veAkxhar22W34g7g/CXeNykfPN3d3QPAad3+CBopz2NMiEumdc1zMwoLpkhwib1SkGvMGO+wFtYMTViMOiwG5/ecLaM0nGaqTCXkDNSfEwWLte7GkemMGbX1qNcX//NqOTX3wkIkWU6Y8OGiZi4dSp1+Fk5DKOQku4YwroS51eFtphgnk1jJhOCNvvyX+NXKfsU988qHmzDEDKzDBmyDB7twCMdwCj5wKOABnuHFurUerVfrbdg6Zn3PrMIvWO9fp7WXsQ==</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

10 k⌦
<latexit sha1_base64="yVitftyaiYKQE1ZxZ8UgxVSxXsw=">AAAB/HicbVC7SgNREJ31GeNrfXQ2i1GwkLBro1YGbOxUcFXILuHuzSRecvfBvbNiXILfkS6NhYqtH2Ln33iTWPg6MHA4Z4aZOVEmhSbX/bAmJqemZ2ZLc+X5hcWlZXtl9VKnueLo81Sm6jpiGqVI0CdBEq8zhSyOJF5FneOhf3WLSos0uaBuhmHM2oloCc7ISA173XOD3YDwjvKs6PSC0xjbrGFX3Ko7gvOXeF+kcvTU7w8A4KxhvwfNlOcxJsQl07ruuRmFBVMkuMReOcg1Zox3WBvrhiYsRh0Wo+t7zrZRmk4rVaYSckbq94mCxVp348h0xoxu9G9vKP7n1XNqHYSFSLKcMOHjRa1cOpQ6wyicplDISXYNYVwJc6vDb5hinExgZROC9/vlv8Tfqx5W3XOvUtuCMUqwAZuwAx7sQw1O4Ax84HAPA3iCZ+vBerRerNdx64T1NbMGP2C9fQI0p5d2</latexit>

y(t)
<latexit sha1_base64="fFltpIHmMVnKnIAi8AgB4CMUf7o=">AAAB6nicbZC/TsMwEMYvpUAp/wqMLBYFqSxVwgJslVgYi0RopTYqjuu0Vm0nsh2kKOorsDAAYuWJ2HgbnLYDtHySpZ++706+uzDhTBvX/XZKa+X1jc3KVnV7Z3dvv3Zw+KDjVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTm6KvPNElWaxvDdZQgOBR5JFjGBTWFnDnA9qdbfpzoRWwVtAvVWOokcAaA9qX/1hTFJBpSEca93z3MQEOVaGEU6n1X6qaYLJBI9oz6LEguogn806RWfWGaIoVvZJg2bu744cC60zEdpKgc1YL2eF+V/WS010FeRMJqmhksw/ilKOTIyKxdGQKUoMzyxgopidFZExVpgYe56qPYK3vPIq+BfN66Z759VbpzBXBY7hBBrgwSW04Bba4AOBMTzDK7w5wnlx3p2PeWnJWfQcwR85nz/WAo8C</latexit>

y(t)
<latexit sha1_base64="fFltpIHmMVnKnIAi8AgB4CMUf7o=">AAAB6nicbZC/TsMwEMYvpUAp/wqMLBYFqSxVwgJslVgYi0RopTYqjuu0Vm0nsh2kKOorsDAAYuWJ2HgbnLYDtHySpZ++706+uzDhTBvX/XZKa+X1jc3KVnV7Z3dvv3Zw+KDjVBHqk5jHqhtiTTmT1DfMcNpNFMUi5LQTTm6KvPNElWaxvDdZQgOBR5JFjGBTWFnDnA9qdbfpzoRWwVtAvVWOokcAaA9qX/1hTFJBpSEca93z3MQEOVaGEU6n1X6qaYLJBI9oz6LEguogn806RWfWGaIoVvZJg2bu744cC60zEdpKgc1YL2eF+V/WS010FeRMJqmhksw/ilKOTIyKxdGQKUoMzyxgopidFZExVpgYe56qPYK3vPIq+BfN66Z759VbpzBXBY7hBBrgwSW04Bba4AOBMTzDK7w5wnlx3p2PeWnJWfQcwR85nz/WAo8C</latexit>

IC 1
<latexit sha1_base64="SCvU5ZTldXrYfOUho5iQGsltOS0=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5pYGHJHo3YkNNph4gkJXMjeMgcb9vYuu3smhPAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWOGjO/9YRK80Q+mHGKQUwHkkecUWMl/67RvfR65Ypbdecgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dknOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxE18GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXiV+r3lTd+1qlfpanUYQTOIUL8OAK6nALTfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDFxWNpA==</latexit>

IC 1
<latexit sha1_base64="SCvU5ZTldXrYfOUho5iQGsltOS0=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5pYGHJHo3YkNNph4gkJXMjeMgcb9vYuu3smhPAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMC1PBtXHdb6ewtr6xuVXcLu3s7u0flA+PHnWSKYY+S0Si2iHVKLhE33AjsJ0qpHEosBWOGjO/9YRK80Q+mHGKQUwHkkecUWMl/67RvfR65Ypbdecgq8TLSQVyNHvlr24/YVmM0jBBte54bmqCCVWGM4HTUjfTmFI2ogPsWCppjDqYzI+dknOr9EmUKFvSkLn6e2JCY63HcWg7Y2qGetmbif95ncxE18GEyzQzKNliUZQJYhIy+5z0uUJmxNgSyhS3txI2pIoyY/Mp2RC85ZdXiV+r3lTd+1qlfpanUYQTOIUL8OAK6nALTfCBAYdneIU3RzovzrvzsWgtOPnMMfyB8/kDFxWNpA==</latexit>

IC 2
<latexit sha1_base64="TCb9SC2mzWk5lgNdRGbmLxcTOG4=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5pYGHLQqB0JjXaYeEICF7K37MGGvb3L7pwJufAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMei2WsOwE1XArFPRQoeSfRnEaB5O1g3Jz57SeujYjVA04S7kd0qEQoGEUreXfN3mW9X664VXcOskpqOalAjla//NUbxCyNuEImqTHdmpugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAi15ZdXiVev3lTd+3qlcZanUYQTOIULqMEVNOAWWuABAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHGJiNpQ==</latexit>

IC 2
<latexit sha1_base64="TCb9SC2mzWk5lgNdRGbmLxcTOG4=">AAAB63icbVA9TwJBEJ3DL8Qv1NJmI5pYGHLQqB0JjXaYeEICF7K37MGGvb3L7pwJufAbbCzU2PqH7Pw3LnCFgi+Z5OW9mczMCxIpDLrut1NYW9/Y3Cpul3Z29/YPyodHjyZONeMei2WsOwE1XArFPRQoeSfRnEaB5O1g3Jz57SeujYjVA04S7kd0qEQoGEUreXfN3mW9X664VXcOskpqOalAjla//NUbxCyNuEImqTHdmpugn1GNgkk+LfVSwxPKxnTIu5YqGnHjZ/Njp+TcKgMSxtqWQjJXf09kNDJmEgW2M6I4MsveTPzP66YYXvuZUEmKXLHFojCVBGMy+5wMhOYM5cQSyrSwtxI2opoytPmUbAi15ZdXiVev3lTd+3qlcZanUYQTOIULqMEVNOAWWuABAwHP8ApvjnJenHfnY9FacPKZY/gD5/MHGJiNpQ==</latexit>

IC 3
<latexit sha1_base64="AfCBNe0QVKZmbOQxZqvoXQrdue8=">AAAB63icbVA9SwNBEJ3zM8avqKXNYhQsJFxioXaBNNpF8EwgOcLeZi9Zsrd37M4J4chvsLFQsfUP2flv3CRXaOKDgcd7M8zMCxIpDLrut7Oyura+sVnYKm7v7O7tlw4OH02casY9FstYtwNquBSKeyhQ8naiOY0CyVvBqDH1W09cGxGrBxwn3I/oQIlQMIpW8u4a3YvLXqnsVtwZyDKp5qQMOZq90le3H7M04gqZpMZ0qm6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn82OnZAzq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9HPSF5ozlGNLKNPC3krYkGrK0OZTtCFUF19eJl6tclNx72vl+mmeRgGO4QTOoQpXUIdbaIIHDAQ8wyu8Ocp5cd6dj3nripPPHMEfOJ8/GhuNpg==</latexit>

IC 3
<latexit sha1_base64="AfCBNe0QVKZmbOQxZqvoXQrdue8=">AAAB63icbVA9SwNBEJ3zM8avqKXNYhQsJFxioXaBNNpF8EwgOcLeZi9Zsrd37M4J4chvsLFQsfUP2flv3CRXaOKDgcd7M8zMCxIpDLrut7Oyura+sVnYKm7v7O7tlw4OH02casY9FstYtwNquBSKeyhQ8naiOY0CyVvBqDH1W09cGxGrBxwn3I/oQIlQMIpW8u4a3YvLXqnsVtwZyDKp5qQMOZq90le3H7M04gqZpMZ0qm6CfkY1Cib5pNhNDU8oG9EB71iqaMSNn82OnZAzq/RJGGtbCslM/T2R0ciYcRTYzoji0Cx6U/E/r5NieO1nQiUpcsXmi8JUEozJ9HPSF5ozlGNLKNPC3krYkGrK0OZTtCFUF19eJl6tclNx72vl+mmeRgGO4QTOoQpXUIdbaIIHDAQ8wyu8Ocp5cd6dj3nripPPHMEfOJ8/GhuNpg==</latexit>

8.2 k⌦
<latexit sha1_base64="zuaCP3BRexEcAOuRrpkCGZSspm4=">AAAB/XicbVDJSgNBEK1xjXGLiicvg1HwIGEmF+PJgBdvRjBGyITQ06nEJj0L3TViGAL+Rm56EVzw6n9482/sLAc1Pih4vFdFVT0/lkKT43xZM7Nz8wuLmaXs8srq2npuY/NKR4niWOWRjNS1zzRKEWKVBEm8jhWywJdY87unQ792i0qLKLykXoyNgHVC0RackZGaue1SoegdeoR3lMRpt++dB9hhzVzeKTgj2NPEnZD8yfNg8AAAlWbu02tFPAkwJC6Z1nXXiamRMkWCS+xnvURjzHiXdbBuaMgC1I10dH7f3jdKy25HylRI9kj9OZGyQOte4JvOgNGN/usNxf+8ekLtUiMVYZwQhny8qJ1ImyJ7mIXdEgo5yZ4hjCthbrX5DVOMk0ksa0Jw/748TarFwnHBuXDz5T0YIwM7sAsH4MIRlOEMKlAFDik8wgu8WvfWk/VmvY9bZ6zJzBb8gvXxDbE/l7c=</latexit>

8.2 k⌦
<latexit sha1_base64="zuaCP3BRexEcAOuRrpkCGZSspm4=">AAAB/XicbVDJSgNBEK1xjXGLiicvg1HwIGEmF+PJgBdvRjBGyITQ06nEJj0L3TViGAL+Rm56EVzw6n9482/sLAc1Pih4vFdFVT0/lkKT43xZM7Nz8wuLmaXs8srq2npuY/NKR4niWOWRjNS1zzRKEWKVBEm8jhWywJdY87unQ792i0qLKLykXoyNgHVC0RackZGaue1SoegdeoR3lMRpt++dB9hhzVzeKTgj2NPEnZD8yfNg8AAAlWbu02tFPAkwJC6Z1nXXiamRMkWCS+xnvURjzHiXdbBuaMgC1I10dH7f3jdKy25HylRI9kj9OZGyQOte4JvOgNGN/usNxf+8ekLtUiMVYZwQhny8qJ1ImyJ7mIXdEgo5yZ4hjCthbrX5DVOMk0ksa0Jw/748TarFwnHBuXDz5T0YIwM7sAsH4MIRlOEMKlAFDik8wgu8WvfWk/VmvY9bZ6zJzBb8gvXxDbE/l7c=</latexit>x1(t)

<latexit sha1_base64="k01kp5S/Hz5fpH6xzcZ03O/CpTI=">AAAB7HicbZA9T8MwEIYvUKCUrwIjS0RBKkuVsABbJRbGItEPqY2K4zqtqWNH9gVRRf0PLAyAWPlBbPwb3I8BWl7J0qP3vZPvLkwEN+h5387Kam5tfSO/Wdja3tndK+4fNIxKNWV1qoTSrZAYJrhkdeQoWCvRjMShYM1weD3Jm49MG67kHY4SFsSkL3nEKUFrNZ66fhnPusWSV/GmcpfBn0OpmouiewCodYtfnZ6iacwkUkGMaftegkFGNHIq2LjQSQ1LCB2SPmtblCRmJsim047dU+v03Ehp+yS6U/d3R0ZiY0ZxaCtjggOzmE3M/7J2itFlkHGZpMgknX0UpcJF5U5Wd3tcM4piZIFQze2sLh0QTSjaAxXsEfzFlZehfl65qni3fql6AjPl4QiOoQw+XEAVbqAGdaDwAM/wCm+Ocl6cd+djVrrizHsO4Y+czx/7Do+l</latexit>

x1(t)
<latexit sha1_base64="k01kp5S/Hz5fpH6xzcZ03O/CpTI=">AAAB7HicbZA9T8MwEIYvUKCUrwIjS0RBKkuVsABbJRbGItEPqY2K4zqtqWNH9gVRRf0PLAyAWPlBbPwb3I8BWl7J0qP3vZPvLkwEN+h5387Kam5tfSO/Wdja3tndK+4fNIxKNWV1qoTSrZAYJrhkdeQoWCvRjMShYM1weD3Jm49MG67kHY4SFsSkL3nEKUFrNZ66fhnPusWSV/GmcpfBn0OpmouiewCodYtfnZ6iacwkUkGMaftegkFGNHIq2LjQSQ1LCB2SPmtblCRmJsim047dU+v03Ehp+yS6U/d3R0ZiY0ZxaCtjggOzmE3M/7J2itFlkHGZpMgknX0UpcJF5U5Wd3tcM4piZIFQze2sLh0QTSjaAxXsEfzFlZehfl65qni3fql6AjPl4QiOoQw+XEAVbqAGdaDwAM/wCm+Ocl6cd+djVrrizHsO4Y+czx/7Do+l</latexit>

x2(t)
<latexit sha1_base64="Pz2+sdhtXp/fBVJeV6/pEW7ojvM=">AAAB7HicbZDNTgIxFIXvICriH+rSTSOa4IbMsFF3JG5cYuIACUywUzpQ6bSTtmMkE97BjQs1bn0gd76N5Weh4EmafDnn3vTeGyacaeO6305uLb++sVnYKm7v7O7tlw4Om1qmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4up7mrUeqNJPizowTGsR4IFjECDbWaj71ahVz3iuV3ao7E1oFbwHlej6K7gGg0St9dfuSpDEVhnCsdcdzExNkWBlGOJ0Uu6mmCSYjPKAdiwLHVAfZbNoJOrNOH0VS2ScMmrm/OzIcaz2OQ1sZYzPUy9nU/C/rpCa6DDImktRQQeYfRSlHRqLp6qjPFCWGjy1gopidFZEhVpgYe6CiPYK3vPIq+LXqVdW99cr1U5irAMdwAhXw4ALqcAMN8IHAAzzDK7w50nlx3p2PeWnOWfQcwR85nz/8lI+m</latexit>

x2(t)
<latexit sha1_base64="Pz2+sdhtXp/fBVJeV6/pEW7ojvM=">AAAB7HicbZDNTgIxFIXvICriH+rSTSOa4IbMsFF3JG5cYuIACUywUzpQ6bSTtmMkE97BjQs1bn0gd76N5Weh4EmafDnn3vTeGyacaeO6305uLb++sVnYKm7v7O7tlw4Om1qmilCfSC5VO8Saciaob5jhtJ0oiuOQ01Y4up7mrUeqNJPizowTGsR4IFjECDbWaj71ahVz3iuV3ao7E1oFbwHlej6K7gGg0St9dfuSpDEVhnCsdcdzExNkWBlGOJ0Uu6mmCSYjPKAdiwLHVAfZbNoJOrNOH0VS2ScMmrm/OzIcaz2OQ1sZYzPUy9nU/C/rpCa6DDImktRQQeYfRSlHRqLp6qjPFCWGjy1gopidFZEhVpgYe6CiPYK3vPIq+LXqVdW99cr1U5irAMdwAhXw4ALqcAMN8IHAAzzDK7w50nlx3p2PeWnOWfQcwR85nz/8lI+m</latexit>
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Figure 13: Simplified schematic of the Korg MS–20 filter, adapted from [46].
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ABSTRACT

This paper proposes to use a recurrent neural network for black-
box modelling of nonlinear audio systems, such as tube amplifiers
and distortion pedals. As a recurrent unit structure, we test both
Long Short-Term Memory and a Gated Recurrent Unit. We com-
pare the proposed neural network with a WaveNet-style deep neu-
ral network, which has been suggested previously for tube ampli-
fier modelling. The neural networks are trained with several min-
utes of guitar and bass recordings, which have been passed through
the devices to be modelled. A real-time audio plugin implement-
ing the proposed networks has been developed in the JUCE frame-
work. It is shown that the recurrent neural networks achieve sim-
ilar accuracy to the WaveNet model, while requiring significantly
less processing power to run. The Long Short-Term Memory re-
current unit is also found to outperform the Gated Recurrent Unit
overall. The proposed neural network is an important step forward
in computationally efficient yet accurate emulation of tube ampli-
fiers and distortion pedals.

1. INTRODUCTION

Virtual analog modelling is an active area of research, which seeks
to create software that can accurately emulate popular music hard-
ware, such as instruments, audio effects or amplifiers [1]. Nonlin-
ear systems with memory, such as guitar amplifiers and distortion
pedals are particularly challenging to emulate [2, 3]. Generally, the
approaches to virtual analog modelling fall into three categories,
“white-box” [2, 4, 5, 6], “grey-box” [7, 8], and “black-box” [9, 10]
modelling. This paper is concerned with black-box modelling of
tube amplifiers and distortion pedals using a recurrent neural net-
work (RNN).

This is a very timely topic, as the first attempts to model non-
linear audio circuits with a Long Short-Term Memory (LSTM)
neural network were published last year [11, 12]. Schmitz and Em-
brechts used a hybrid neural network consisting of a convolutional
layer in front of an RNN [12]. Zhang et al. tested tube amplifier
modelling using an LSTM neural network with many hidden lay-
ers but only a few units per layer. They reported that the sound
quality of the emulation was not good enough, as there were clear
audible differences with respect to the real amplifier [11].

In recent works [13, 14], we adapted the WaveNet convolu-
tional neural network to model nonlinear audio circuits such as

∗ This research belongs to the activities of the Nordic Sound and Music
Computing Network—NordicSMC (NordForsk project number 86892).
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tube amplifiers and distortion pedals. In [14] it was shown that
the WaveNet model of several distortion effects was capable of
running in real time. The resulting deep neural network model,
however, was still fairly computationally expensive to run.

In this paper, we propose an alternative black-box model based
on an RNN. We demonstrate that the trained RNN model is capa-
ble of achieving the accuracy of the WaveNet model, whilst re-
quiring considerably less processing power to run. The proposed
neural network, which consists of a single recurrent layer and a
fully connected layer, is suitable for real-time emulation of tube
amplifiers and distortion pedals.

The rest of this paper is organized as follows. Section 2 dis-
cusses the two nonlinear circuits, which are used as target devices
in this study, as well as the creation of the training data. Section
3 introduces the neural network architecture that we use for mod-
elling. Section 4 focuses on the training of the RNNs. The real-
time implementation of the RNN is presented in Section 5. Section
6 reports experiments and comparisons we have conducted to val-
idate this work. Section 7 concludes the paper.

2. MODELLED DEVICES

Two commonly used types of nonlinear audio circuits are distor-
tion pedals and guitar amplifiers. As such, for this study, we chose
to model the Electro-Harmonix Big Muff Pi distortion/fuzz pedal
and the Blackstar HT-1 combo guitar amplifier.

The Big Muff is a famous guitar pedal, whose first version was
released by Electro-Harmonix in 1969 [15]. Since then, numerous
versions of the pedal have appeared, each with slight differences
to the original circuit. The Big Muff is known for its heavily dis-
torted sound, which is produced by its two cascaded diode clipping
stages. The pedal has a “sustain” knob for controlling the pre-gain,
i.e. the gain applied to the signal before the clipping stages, a “vol-
ume” knob for controlling the post-gain, as well as a “tone” knob
for controlling the shape of the filter in the tone stage. Several
researchers have studied the digital modelling of the Big Muff dis-
tortion pedal prior to this work [16, 17, 14].

The Blackstar HT-1 is a small 1-Watt vacuum tube ampli-
fier [18]. It has two channels: a high-gain and a low-gain channel.
In this work, the high-gain channel was used, as it introduces more
distortion to the signal. The amplifier has an unconventional tone
stage. The “ISF” tone knob on the amplifier allows for continuous
shifting between two distinct tone settings, which the manufac-
turer describes as the “American” and “British” tones. The ampli-
fier also has a “gain” knob and a “volume” knob, which control the
pre-gain and the post-gain respectively.
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2.1. Training Data

One issue which is common to many neural network applications
is the collection of training data. Often this is a very labour in-
tensive process, as a large collection of training examples needs to
be gathered and labelled. For this application the process is rela-
tively straightforward, as training data can be generated simply by
inputting audio signals to each of the devices being modelled. The
resulting output can then be recorded from the devices and used as
the ground truth.

The input audio files were taken from the guitar and bass guitar
datasets1 2 described in [19, 20], respectively. The full dataset used
consists of 8 minutes and 10 seconds of audio. The dataset was
split into a training set of 5 min and 42 s, a validation set of 1 min
and 24 s and a test set of 1 min and 4 s. The audio was split so
that each data subset contained approximately equal proportions
of guitar and bass recordings. All of the training data audio used
during this study was recorded at a sampling rate of 44.1 kHz.

The recording was carried out using a MOTU UltraLite-mk3
USB audio interface. One output of the audio interface was con-
nected to the input of the device being measured. The output of
the device being measured was recorded by connecting it to one
of the inputs of the audio interface. The direct signal coming out
of the audio interface was also measured by connecting one of its
outputs to one of its inputs. The test audio was then output from
both interface output channels and recorded through both input
channels. The recorded direct signal from the audio interface and
the recorded output signal from the device being measured makes
up the input/output pairs which were used during network training
and testing.

This process was adapted slightly for the HT-1 amplifier. The
HT-1 amplifier has an emulated line out, which applies a speaker
cabinet simulation to the signal. For the purposes of this study
we are not interested in modelling this, so the speaker output of
the amplifier was used instead. To allow for connection from the
amplifier speaker output to the audio interface input, a Bugera PS1
power attenuator was used. The HT-1 amplifier speaker output was
connected to the power attenuator and the line-out of the power
attenuator was connected to the input of the audio interface. Addi-
tionally the speaker output of the power attenuator was also con-
nected to a speaker cabinet.

The authors acknowledge that the choice of load will affect
the output of the amplifier. Specifically whether the load is re-
sistive or reactive has been shown to influence the output of tri-
ode tubes [21]. Whilst the amplifier is connected, indirectly, to
a reactive load (the speaker cabinet), it is still thought that the
output will be influenced by the presence of the power attenua-
tor. Ideally the amplifier could be connected to a speaker cabinet,
and the amplifier output could be recorded directly. This is diffi-
cult to achieve in practice. One option is to record the output of
the speaker cabinet using a microphone, however this introduces a
number of additional effects to the amplifier output. Namely the
speaker cabinet nonlinearities and frequency response [22], as well
as the coloration of the signal introduced by the microphone and
its placement [23]. For these reasons, we chose to use the power
attenuator for the collection of the training data.

For each device, the entire dataset was processed five times.
Each time the user control being modelled was adjusted. For the
HT-1 the control being modelled was the “ISF” control, and for

1www.idmt.fraunhofer.de/en/business_units/m2d/smt/guitar.html
2www.idmt.fraunhofer.de/en/business_units/m2d/smt/bass_lines.html
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Figure 1: Proposed neural network architecture, where x[n] is the
input signal, s[n] and s[n−1] are recurrent unit states, h[n] is the
recurrent unit output and ŷ[n] is the neural network’s predicted
output sample.

the Big Muff it was the “Tone” control. For each measurement
the control was set to one of five equally spaced settings, from the
minimum (0) to the maximum (10) possible value.

For all recordings the HT-1 “gain” and “volume” knobs were
set to 5 and 10 respectively. For the Big Muff the “volume” and
“sustain” knobs were set to 10 and 5 respectively.

3. RECURRENT NEURAL NETWORK MODEL

The proposed model is a gated RNN based on either LSTM or
Gated Recurrent Units (GRUs). The precise behaviour of LSTM
units and GRUs is described in Sections 3.1 and 3.2, this section
describes the general behaviour of the model and applies whether
the recurrent unit selected is an LSTM or a GRU.

The proposed model consists of two hidden layers, a recur-
rent unit, followed by a fully connected layer. This architecture
is shown in Figure 1. Unlike feedforward neural network layers,
recurrent units have a state, which is used in the computation of
the output and then updated at each time step. The model can
be thought of as a function which is trained to predict the current
output sample value, based on the current input signal value, the
recurrent unit’s state and the model’s learned parameters:

ŷ[n] = f(x[n], s[n− 1], θ), (1)

where n is the discrete time index, θ are the model’s learned pa-
rameters and s(n − 1) is the recurrent unit’s state at the previous
time step. In this study, ŷ[n] represents the model’s prediction of
a single output sample and x[n] the unprocessed input signal.

At each time step an output is produced by the recurrent unit
and fed into the fully connected layer. The size of the recurrent
unit’s output is determined by its hidden size, which is a model
parameter defined by the user. Generally a greater hidden size
produces a model capable of emulating more complex behaviour,
but also requiring increased computational resources to train and
run. The fully connected layer therefore consists of a single neu-
ron, with a number of inputs equal to the recurrent unit hidden
size. The output of this layer represents the networks predicted
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Figure 2: Diagram of an LSTM unit, where c represents the cell
state, h the hidden state and x[n] is the input signal at time step n.

sample value for that time step. In addition to this, the recurrent
unit’s state is also updated at each time step, based on the previous
state, current input and the model’s learned parameters. As each
state update is a function of the previous state, this means that the
model has a potentially unlimited memory and in practice learns
through training the effective memory required for the system be-
ing modelled.

The neural network model can also include conditioning, which
allows for the emulation of the target device’s user controls. To add
conditioning, the input signal is extended to include an additional
value representing the user control’s setting, as suggested in [13].
At each time step the input signal will then be a vector containing
the input sample and one or more conditioning values, depending
on how many controls are included in the model.

It is possible to add additional recurrent layers before the final
fully connected layer, however, preliminary testing indicated that
this had little influence on the resulting model’s accuracy. As such,
the model was limited to just a single recurrent layer for this study.

3.1. Long Short-Term Memory

In an LSTM [24], the unit’s state consists of two vectors, the cell
state, c, and the hidden state, h. At each time step, the inputs are
the current time step input, x[n], the initial cell state, c[n− 1], and
the initial hidden state, h[n−1]. The LSTM produces two outputs,
the updated hidden state, h[n], and the updated cell state, c[n].
An LSTM unit is depicted in Figure 2. The outputs are produced
according to the following functions:

i[n] = σ(Wiix[n] + bii +Whih[n− 1] + bhi), (2)

f [n] = σ(Wifx[n] + bif +Whfh[n− 1] + bhf ), (3)

c̃[n] = tanh(Wicx[n] + bic +Whch[n− 1] + bhc), (4)

o[n] = σ(Wiox[n] + bio +Whoh[n− 1] + bho), (5)

c[n] = f [n]c[n− 1] + i[n]c̃[n], (6)

h[n] = o[n]tanh(c[n]), (7)

where i[n] is the input gate, f [n] is the forget gate, c̃[n] is the can-
didate cell state, o[n] is the output gate, tanh(.) is the hyperbolic
tangent function and σ(.) is the logistic sigmoid function.

h[n]h[n − 1] Gated
Recurrent Unit

x[n]

h[n]

 

n − 1

Time Step
 

n

Time Step
 

n + 1

Time Step

GRU
Output

GRU
Input

Previous
State

New
State

Figure 3: Diagram of a GRU, where h represents the hidden state
and x[n] is the input signal at time step n.

The LSTM unit state consists of the hidden state and the cell
state. The state update of the LSTM unit is determined by the
eight weight matrices and eight bias vectors, denoted by W and
b respectively in the above equations. It should be noted that the
biases in the neural network are simply constant offsets applied
during the unit computation, and are in no way related to bias in
electronic circuits. These weights and biases make up the learnable
parameters of the LSTM unit, which are learned during training.
The size of the weight matrices and bias vectors is determined by
the input size and the LSTM’s hidden size. The updated cell state,
c[n], and the updated hidden state, h[n], are used as the initial state
for the next time step, n+1. The updated hidden state is also used
as the output of the LSTM for the current time step, n, which is
input into the fully connected layer in our model.

3.2. Gated Recurrent Unit

A GRU [25] is an alternative recurrent unit, which can be used
in the proposed architecture shown in Figure 1. In a GRU, the
unit state consists of a single hidden state vector, h. At each time
step, the inputs are the current time step input, x[n] and the initial
hidden state, h[n − 1]. The GRU produces a single output, the
updated hidden state, h[n]. A GRU unit is depicted in Figure 3.
The hidden state is calculated according to the following functions:

r[n] = σ(Wirx[n] + bir +Whrh[n− 1] + bhr), (8)

z[n] = σ(Wizx[n] + biz +Whzh[n− 1] + bhz), (9)

h̃[n] = tanh(Wihx[n] + bih + r[n](Whhh[n− 1] + bhh)), (10)

h[n] = (1− z[n])h̃[n] + z[n]h[n− 1], (11)

where r[n] is the reset gate, z[n] is the update gate and h̃[n] is the
candidate hidden state.

The GRU unit state consists of the hidden state vector, which
is determined by the six weight matrices and six bias vectors, de-
noted by W and b respectively in the above equations. These
weights and biases are the learnable parameters of the GRU. The
size of the weight matrices and bias vectors is determined by the
input size and the GRU’s hidden size. The updated hidden state,
h[n], is used as the initial state for the time step, n+ 1, as well as
being used as the output of the GRU for the current time step n.
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3.3. Fully Connected Layer

The fully connected layer, which can be seen in Figure 1, is not
followed by an activation function, so the output sample predicted
by the network is simply an affine transformation of the hidden
state vector:

ŷ[n] =Wfch[n] + bfc, (12)

where Wfc and bfc are the fully connected layer’s weight matrix
and bias vector respectively and h[n] is the recurrent unit hidden
state at time n. As the model outputs a single value at each time
step, the fully connected layer consists of just a single neuron. As
such the weight matrix reduces to a vector and the bias vector con-
sists of a single value in this case.

4. TRAINING

Recurrent Neural Networks are generally considered to be harder
to train effectively in comparison to feedforward networks [26].
As such this section describes, in detail, the training process and
techniques used in the completion of this study. All the RNN mod-
els produced for this paper were trained using the Adam optimizer
[27], with an initial learning rate of 5× 10−4.

4.1. Loss Function

The loss function used during training is based on the error-to-
signal ratio (ESR) with pre-emphasis filtering, as used in [13, 14].
The ESR is the squared error divided by the energy of the target
signal. A pre-emphasis filter was applied to the output and target
signals before computing the ESR. The pre-emphasis filter helps
the network learn to model the high-frequency content. For a seg-
ment of training signal of length N , the pre-emphasised ESR is
given by:

EESR =

∑N−1
n=0 |yp[n]− ŷp[n]|

2∑N−1
n=0 |yp[n]|2

, (13)

where yp is the pre-emphasised target signal, and ŷp is the pre-
emphasised neural network output. The pre-emphasis filter was
chosen to be a first-order high-pass filter with transfer function

H(z) = 1− 0.85z−1. (14)

Additionally, a DC term was added to the loss to reduce the
DC offset in the model outputs. The DC loss term is given by:

EDC =
| 1
N

∑N−1
n=0 (y[n]− ŷ[n])|

2

1
N

∑N−1
n=0 |y[n]|2

. (15)

The DC term was introduced as early tests showed the model out-
puts contained a DC offset. The final loss function used for train-
ing is given by:

E = EESR + EDC. (16)

4.2. Truncated Back-Propagation Through Time

When training RNNs it is possible to update the network parame-
ters at each time step, however this comes with a very high com-
putational cost. An alternative approach is to allow the RNN to
process an entire sequence and then update the parameters. This
involves backpropagating through the entire sequence to find the
required gradients, as such this is often referred to as Backprop-
agation Through Time (BPTT) [28]. When modelling very long

sequences, updating once per sequence results in slow training as
the network parameters are updated infrequently. In addition to
this, each update requires backpropagation through the entire se-
quence, which is computationally expensive.

Truncated BPTT [29] is a method in which parameter updates
are carried out during the processing of a sequence. This means
that updates can be carried out frequently and the recurrent unit
state can persist between updates. The frequency of parameter
updates and the number of time steps to run BPTT through for each
update are training hyperparameters that are chosen by the user
[26]. Our model is trained on audio sampled at a rate of 44.1 kHz,
so the sequence length is very long even for a second of audio. As
such truncated BPTT was used during the training of the RNNs
in this study. The parameter updates were carried out every 2048
samples, with BPTT being run over 2048 time steps each update,
as this was found to be an effective update frequency during our
early experiments.

4.3. Batch-Processing

The training dataset was split into half-second segments. This was
done for two reasons, firstly, by creating a large number of sepa-
rate sequences, the short sequences can be processed in parallel,
greatly reducing the time required to process the entire dataset.
Secondly, having short segments allows the dataset to be shuffled
at each epoch, which is known to improve network convergence
rates [30]. The training data segments were shuffled at the begin-
ning of each epoch and processed in mini-batches of 40 segments.
At the start of each mini-batch the recurrent unit’s initial state is
set to 0. The first 1000 samples are then processed without up-
dating the network parameters, to allow the recurrent unit state to
initialise. The remaining samples are then processed, with back-
propagation and parameter updates being carried out every 2048
samples. This is repeated until the entire training dataset is pro-
cessed. The training dataset is then shuffled for the next training
epoch.

5. REAL-TIME IMPLEMENTATION

A real-time implementation of the RNN was developed in C++.
The implementation was built using the JUCE framework and the
Eigen library for matrix and vector operations. JUCE can be used
to build real-time audio plugins in the common VST, AU, and
AAX formats supported by modern digital audio workstations.
The developed plugin can be used to process audio through the
trained models.

5.1. Recurrent Layer Computations

Algorithm 1 shows how the state update for the LSTM, as given
by Equations (2)–(7), is carried out in practice. The eight matrix
multiplications in Equations (2)–(5), which involve the input x and
hidden state h, are performed as two bigger matrix multiplications.
Furthermore, the eight bias terms in these equations can be com-
bined to a single bias term.

The result of these matrix multiplications and the bias addi-
tion are stored in the vector v, which contains the non-activated
values of the input gate i[n], forget gate f [n], output gate o[n],
and the candidate cell state c̃[n]. The hyperbolic tangent and lo-
gistic sigmoid activation functions are applied to v elementwise
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Algorithm 1 LSTM State Update

Require: Layer input x, hidden state h, cell state c, hid-
den size N , input weight Wi, state weight Wh, bias b,
[conditioning term bcond]

1: v ←Wix+Whh+ b
2: if bcond was given then v ← v + bcond

3: for each i in [0, N [ do
4: c[i]← σ(v[N + i])c[i] + σ([v[i])tanh(v[2N + i])
5: h[i]← σ(v[3N + i])tanh(c[i])
6: return h, c

when computing the new cell state c and the new hidden state h.
The GRU computations are carried out in a similar fashion.

In the real-time implementation, the conditioning is not given
to the layer in the input vector x in the same way as it was de-
scribed in Section 3. Instead, since the conditioning is not typically
updated at audio rate, processing power is saved when the effect
of the conditioning in the layer activation is computed separately,
and stored into a vector bcond, which is then added to v at each time
step.

5.2. Computational Load

The computational load of the implementation was tested with dif-
ferent RNN configurations. Models using LSTM units and GRUs
were tested with different hidden state sizes. The results are shown
in Figure 4. The processing speed is reported in terms of compute
time required to process one second of audio, which was estimated
by running the models on an Apple iMac with an 2.8 GHz Intel
Core i5 processor. The GRU models run faster than LSTM mod-
els using the same hidden size. Using a single recurrent layer, an
LSTM network runs faster than real time up to a hidden size of
160, whereas a GRU runs faster than real time up to a hidden size
of 192.

6. COMPARISON OF MODELS

Models of the devices were created using two neural network ar-
chitectures, the RNN model described in this paper, and the con-
volutional WaveNet-like neural network described in [13, 14].

For the RNN model, both the LSTM and GRU recurrent unit
types were tested, with the hidden size ranging from 32 to 96. Each
model was trained for 20 hours on a Nvidia Tesla V100 Graphics
Processing Unit (GPU). The validation error was calculated every
other epoch. Once the training was complete, the test loss was
calculated using the model parameters from the epoch with the
lowest validation loss. An example of the validation and train-
ing loss during training is shown in Figure 5. It can be seen that
around epoch 250 there is a large increase in both the training and
validation loss. It is not entirely clear why this sudden increase in
loss occurs, however this was found to be fairly common during
the training of the RNN models. As the spike includes both the
training and validation loss, it does not indicate that the network is
overfitting to the training dataset.

For the WaveNet model, the three configurations presented in
[14] were used. The models vary in the number of convolutional
layers and in the number of channels in the convolutional layers,
i.e. the hidden size. All models use gated activations. Training
the WaveNet models took approximately two to three hours on the
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Figure 4: Compute time of the real-time implementation for pro-
cessing 1 s of audio at a 44.1-kHz sample rate, using different
hidden sizes.
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Figure 5: Validation and Training loss for an RNN model of the
Big Muff pedal.

GPU. The processing speed of the WaveNet models was estimated
using the C++ implementation presented in [14].

Model accuracy is evaluated in terms of the ESR loss, com-
puted without pre-emphasis filtering, achieved on the unseen test
dataset. The processing speed is reported in terms of compute time
required to process one second of audio. A comparison between
the RNN and WaveNet models of the HT-1 and the Big Muff is
shown in Tables 1 and 2 respectively.

In terms of speed the results show a clear improvement for
the RNN in comparison to the WaveNet model. The fastest RNN
requires just 0.097 s to process a second of audio. The slowest
RNN takes 0.41 s, which is less than the fastest WaveNet which
takes 0.53 s to process a second of audio.

In terms of accuracy, the results vary depending on the de-
vice being modelled. In the case of the Big Muff pedal, the most
accurate RNN model shows a considerable improvement over the
most accurate WaveNet model. For the HT-1 amplifier the most
accurate WaveNet outperforms the RNN. A comparison of audio
processed by the best performing RNN model and the HT-1 ampli-
fier is shown in the time domain in Figure 6 and in the frequency
domain in Figure 7. The plots show good agreement between the
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Table 1: Error-to-signal ratio and processing speed for the
Wavenet and the proposed GRU/LSTM models of the HT-1 Am-
plifier. The best results are highlighted.

Model Hidden Layers Number of ESR Time (s) / s
Size Parameters of Output

WaveNet 16 10 24065 2.2% 0.53
WaveNet 8 18 11265 1.2% 0.63
WaveNet 16 18 43265 0.79% 0.91
GRU 32 1 3393 3.3% 0.097
LSTM 64 1 17217 1.8% 0.24
LSTM 96 1 38113 1.1% 0.41

Table 2: Error-to-signal ratio and processing speed for the
Wavenet and proposed LSTM models of the Big Muff pedal. The
best results are highlighted.

Model Hidden Layers Number of ESR Time (s) / s
Size Parameters of Output

WaveNet 16 10 24065 11% 0.53
WaveNet 8 18 11265 9.9% 0.63
WaveNet 16 18 43265 9.2% 0.91
LSTM 32 1 4513 10% 0.12
LSTM 48 1 9841 6.1% 0.18
LSTM 64 1 17217 4.1% 0.24

model output and the target device, however in future work lis-
tening tests should be conducted to verify the performance of the
models.

6.1. Conditioning

The test loss was also computed separately for each of the five
conditioning values the RNN models were trained on. For each
model, the conditioning value with the greatest test loss was com-
pared to the average test loss over all the conditioning values. The
most extreme deviation from the average test loss was 16%, with
the average deviation being 8%. This demonstrates that the mod-
els achieve a similar level of accuracy for each of the conditioning
values.

On the devices modelled, the control knobs are continuous,
allowing the user to select any value between the minimum and
maximum setting. The models have been trained on data sam-
pled at just five of the possible control knob settings, however the
trained model is not limited to just these five settings. In order
to test how well the RNNs can extrapolate to conditioning values
not seen in training, a model was trained with the center condi-
tioning value removed from the training dataset. The test lost was
then computed for the unseen center conditioning value, and com-
pared to the average test loss. For both the HT-1 and Big Muff the
test loss for the unseen conditioning value was within 0.2% of the
average. Informal listening tests also indicate that the models pro-
duces realistic outputs when the conditioned value is set to a value
not seen during model training.

Audio examples of the models are available at the accompa-
nying web page [31].

7. CONCLUSIONS

This work has compared the performance of two types of neural
network for the real-time emulation of a distortion pedal and a vac-
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Figure 6: Waveform of a guitar sound processed through the HT-1
guitar amplifier, and through the most accurate RNN model.
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Figure 7: Spectrum of a guitar sound processed (top) through
the HT-1 guitar amplifier, and (bottom) through the most accurate
RNN model. The circles indicate the level of the first 15 harmonics
in the upper spectrum.

uum tube amplifier. The single layer RNN model presented in this
paper requires much less processing power to run in comparison
to a previously presented WaveNet-like convolutional neural net-
work, and can be run in real time. The accuracy of the RNN model
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was also comparable to or better than the WaveNet, depending on
the device being modelled. Whilst listening tests have been car-
ried out previously for the WaveNet-like model [13], future work
should include listening tests to validate the proposed RNN model.

Of the two types of the recurrent unit tested, the GRU was
shown to run slightly faster than the LSTM, for equivalent hid-
den sizes. However, we recommend the LSTM network over the
GRU, as our tests indicate that for LSTM and GRU networks of
roughly equivalent running speed, the LSTM generally achieved
higher accuracy.
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ABSTRACT

Nonnegative matrix factorization (NMF) is a family of methods
widely used for information retrieval across domains including
text, images, and audio. Within music processing, NMF has been
used for tasks such as transcription, source separation, and struc-
ture analysis. Prior work has shown that initialization and con-
strained update rules can drastically improve the chances of NMF
converging to a musically meaningful solution. Along these lines
we present the NMF toolbox, containing MATLAB and Python
implementations of conceptually distinct NMF variants—in par-
ticular, this paper gives an overview for two algorithms. The first
variant, called nonnegative matrix factor deconvolution (NMFD),
extends the original NMF algorithm to the convolutive case, en-
forcing the temporal order of spectral templates. The second vari-
ant, called diagonal NMF, supports the development of sparse di-
agonal structures in the activation matrix. Our toolbox contains
several demo applications and code examples to illustrate its po-
tential and functionality. By providing MATLAB and Python code
on a documentation website under a GNU-GPL license, as well as
including illustrative examples, our aim is to foster research and
education in the field of music processing.

1. INTRODUCTION

The general goal of NMF is to factorize a matrix V with nonneg-
ative entries into two other nonnegative matrices W and H which
typically are required to have much lower rank than V. Due to
the fact that NMF can learn a semantically meaningful parts-based
data representation [1], it has been used extensively in music sig-
nal processing and information retrieval, for tasks such as music
transcription [2], automatic drum transcription (ADT) [3], drum
source separation (DSS) [4], harmonic-percussive source separa-
tion (HPSS) [5, 6, 7], in combination with kernel additive model-
ing (KAM) [8, 9], redrumming [10, 11], sampling detection [12,
13], structure analysis [14, 15, 16], score-informed source separa-
tion [17], and key estimation [18], to name a few.
In the case of music tasks, we would like to learn two non-negative
matrices W and H that capture what happened (i.e., which particu-
lar sounds were produced, which drum kit parts were struck, which
piano notes were sounded), and when each one of these sound

∗ The International Audio Laboratories Erlangen are a joint institution
of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and the
Fraunhofer-Institut für Integrierte Schaltungen IIS.
Copyright: © 2019 Patricio López-Serrano et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

events was active in time. Intuitively, we can say that the tem-
plate (or spectral basis) matrix W contains the “what”—whereas
H, called the gain (or activation) matrix, contains the “when”.
We show this intuition in Figure 1, which illustrates an NMFD
model of a short drum signal. The templates are shown on the left
as color-coded component spectrograms representing kick drum
(KD), snare drum (SD), and hi-hat (HH). The activations are shown
as colored curves at the top of the figure. Throughout this paper
we present a number of didactic examples, aiming to contribute to
music processing education. In contrast to other NMF-related tool-
boxes [19], we provide an illustrated compendium of musically-
motivated applications found throughout the literature. In the spirit
of the DAFx book [20], the code examples can be used as a refer-
ence implementation in further research, whereas the figures (es-
pecially through the color-coding) provide concise illustrations of
the principles behind NMF(D), and can be used as learning mate-
rial.
The remainder of this paper is structured as follows. In Section 2
we introduce the basic theoretical framework and notation for NMF
and the variants that we use in this paper. In Section 3 we give
an overview of our toolbox code1, discussing the main functions,
parameters, and dependencies. In Sections 4, 5, and 6 we present
three application scenarios, illustrated by going through their source
code and examining the graphic output from visualization func-
tions. Although our code examples are given as MATLAB listings,
we ensured that the naming conventions and usage of our Python
implementation are basically the same.

2. NMF AND VARIANTS

In this section we give a brief formal overview of the NMF variants
that are provided as code in the toolbox.

2.1. NMF

Here we introduce NMF, closely following [21, Section 8.3] and [1].
NMF is based on iteratively computing a low-rank approximation
U ∈ RK×M

≥0 of the nonnegative matrix (typically a magnitude
spectrogram) V ∈ RK×M

≥0 , where K ∈ N is the feature dimen-
sionality and M ∈ N represents the number of elements or frames
along the time axis. Specifically, U is defined as the linear combi-
nation of the templates W ∈ RK×R

≥0 and activations H ∈ RR×M
≥0

such that V ≈ U := W ·H. The rank R ∈ N of the approximation
(i. e., number of components) is an important parameter that needs
to be specified beforehand.

1https://www.audiolabs-erlangen.de/resources/
MIR/NMFtoolbox/
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Figure 1: Output visualization generated by code in Listing L.1. NMFD model for drum source separation (KD in red, SD in green, HH in
blue). Top: activation matrix H . Bottom left: slices of template tensor P. Bottom right: color-coded approximated target spectrogram U.

NMF typically starts with a suitable initialization of the matrices
W and H. For example, both matrices could be populated with
non-negative random numbers—however, depending on the task
and availability of prior information, it might make more sense to
use other initialization strategies. After initialization, both W and
H are iteratively updated to approximate V with respect to a cost
function L. A standard choice is the generalized Kullback-Leibler
Divergence (KLD) [1], given as

L = DKL(V | U) =
∑(

V � log

(
V

U

)
−V+U

)
. (1)

The symbol � denotes element-wise multiplication; the logarithm
and division are to be performed element-wise as well. The sum is
to be computed over all K ·M elements of V. To minimize this
cost, an alternating scheme with multiplicative updates is used [1].
The respective update rules are given as

W←W �
V
U
·H>

J ·H>
, (2)

H← H�
W> · V

U

W> · J , (3)

with U := W ·H, where the symbol · denotes the matrix product.
Furthermore, J ∈ RK×M denotes a matrix of ones. Since this is
an alternating update scheme, it should be noted that Eq. (2) uses
the latest update of H from the previous iteration. In the same vein,
(3) uses the latest update of W. These update rules are typically
applied for a limited number of iterations L ∈ N.

2.2. NMFD

In this section we introduce NMFD, originally proposed in [22].
We follow the notation and formulation found in [23].
NMFD extends NMF by using two-dimensional templates (or pat-
terns) so that each of the R templates can be interpreted as a mag-
nitude spectrogram snippet consisting of T �M spectral frames.
We assume that the magnitude spectrogram V can be modeled us-
ing a mixture of R patterns Pr ∈ RK×Tr

, r ∈ [0 : R− 1] :=

{0, . . . , R − 1}. The parameter T r ∈ N is the number of feature
frames or observations for pattern Pr . Although the patterns can
have different lengths, without loss of generality, we define their
lengths to be the same T := T 0 = . . . = TR−1, which could
be achieved by adequately zero-padding shorter patterns until they
reach the length of the longest. Based on this assumption, the pat-
terns can be grouped into a pattern tensor P ∈ RK×R×T . The
subdimension (or slice) of the tensor which refers to a specific pat-
tern with index r is Pr := P(·, r, ·), whereas Pt := P(·, ·, t)
refers to frame index t simultaneously in all patterns. Thus, the
magnitude spectrogram can be modeled as

U :=

T−1∑
t=0

Pt ·
t→
H , (4)

where
t→
(·) denotes a frame shift operator [22]. Smaragdis [22] de-

fined the update rules that extend Eqs. 2 and 3 to the convolutive
case as follows:

Pt ← Pt �

V
U
·
(

t→
H

)>

J ·
(

t→
H

)> , (5)

H← H�
P>

t ·
←t[
V
U

]
P>

t · J
. (6)

As a side note, NMFD can be made to function like a regular NMF
(Section 2.1) by using a pattern tensor with dimensions K×R×1
(i. e., R patterns with a single frame).

2.3. Diagonal NMF

Diagonal NMF is a variant originally proposed by Driedger et al.
in [24] for the task of audio mosaicing. In audio mosaicing, a (tim-
bral) source is used to recreate or synthesize the sounds in a target.
In the original publication, Driedger et al. present an example con-
sisting of buzzing bees as a source and “Let It Be” by the Beatles
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as a target. Their objective is to synthesize a signal which sounds
as if the bees buzzed at different pitches to the tune of the Beat-
les’ song. In order to maximize the recognizability of the source
(buzzing bees), the authors propose using a fixed template matrix
as well as an extended set of update rules that support the devel-
opment of sparse diagonal structures in the activation matrix. The
crucial observation is that diagonals activate sequences of frames,
helping preserve temporality and recognizability. We present an
example of diagonal NMF for mosaicing in Section 6.

3. TOOLBOX

In this section we discuss the overall structure and functionality of
our toolbox, summarized in Table 1. The first four rows contain
the core functions, implementing variants of NMF. We begin with
NMFD, a core function used for the examples in Sections 4 and 5
(we briefly discussed the theory in Section 2.2).
The variant used as an application example in Section 6 is NMFdiag,
described in Section 2.3. It requires more input parameters as
fields of the structure parameter.continuity and specific
information can be found in the respective source code headers, as
well as in the original publication [24].
Next in the table we have convModel and shiftOperator.
convModel is called from within NMFD and NMFconv—it per-
forms the core convolution operation between P and H at every
iteration. On the other hand, shiftOperator is a helper func-
tion to perform the frame shifting used in Eqs. 4, 5, and 6, adding
boundary checks and zero-padding as necessary. The functions
initActivations and initTemplates are helper functions
that help us initialize the basis matrices/tensors and the activations
matrices. The user may call these functions explicitly to create
and assign parameters, but these functions are also called inter-
nally with default settings from within the core functions if the
user doesn’t pass variables in (see Sections 4 and 5 for more in-
formation on the types of initialization that are used for specific
circumstances.)
The function NEMA is used to introduce exponential decay when
initializing certain types of templates and activations with both
init functions. We also provide utility functions to transform be-
tween frequency in Hz and MIDI pitches, which are mainly used to
generate log-frequency spectrograms for visualization and to gen-
erate harmonic templates. Finally, we use forwardSTFT to com-
pute the spectrograms we use with our NMF examples. Some tasks
also require resynthesizing time-domain signals (such as DSS in
Section 4 and mosaicing in Section 6)—for these cases we in-
clude LSEE_MSTFTM_GriffinLim [28], inverseSTFT, and
alphaWienerFilter (see [29, 30]).

4. APPLICATION: DRUM SOURCE SEPARATION

We begin with an example from the task of DSS, taken from [26].
Given a recording of mixed drum kit components into one signal,
the goal of DSS is to produce individual component signals for
each instrument or piece in the drum kit as if it had been recorded
in isolation. This technique can be used within recording studio
or remixing settings, where it is often desirable to treat individual
drum kit components separately.

1 inpPath = 'data/';
2 outPath = 'output/';
3 filename = 'Winstons_AmenBreak.wav';
4

5 % 1. load the audio signal
6 [x,fs] = audioread([inpPath filename]);
7 x = mean(x,2);
8

9 % 2. compute STFT
10 % spectral parameters
11 paramSTFT.blockSize = 2048;
12 paramSTFT.hopSize = 512;
13 paramSTFT.winFunc = hann(paramSTFT.blockSize);
14 paramSTFT.reconstMirror = true;
15 paramSTFT.appendFrame = true;
16 paramSTFT.numSamples = length(x);
17

18 % STFT computation
19 [X,A,P] = forwardSTFT(x,paramSTFT);
20

21 % get dimensions and time and freq resolutions
22 [numBins,numFrames] = size(X);
23 deltaT = paramSTFT.hopSize / fs;
24 deltaF = fs / paramSTFT.blockSize;
25

26 % 3. apply NMF variants to STFT magnitude
27 % set common parameters
28 numComp = 3;
29 numIter = 30;
30 numTemplateFrames = 8;
31

32 % generate initial guess for templates
33 paramTemplates.deltaF = deltaF;
34 paramTemplates.numComp = numComp;
35 paramTemplates.numBins = numBins;
36 paramTemplates.numTemplateFrames = numTemplateFrames;
37 initW = initTemplates(paramTemplates,'drums');
38

39 % generate initial activations
40 paramActivations.numComp = numComp;
41 paramActivations.numFrames = numFrames;
42 initH = initActivations(paramActivations,'uniform');
43

44 % NMFD parameters
45 paramNMFD.numComp = numComp;
46 paramNMFD.numFrames = numFrames;
47 paramNMFD.numIter = numIter;
48 paramNMFD.numTemplateFrames = numTemplateFrames;
49 paramNMFD.initW = initW;
50 paramNMFD.initH = initH;
51

52 % NMFD core method
53 [nmfdW, nmfdH, nmfdV, divKL] = NMFD(A, paramNMFD);
54

55 % alpha−Wiener filtering
56 nmfdA = alphaWienerFilter(A,nmfdV,1);
57

58 % visualize
59 paramVis.deltaT = deltaT;
60 paramVis.deltaF = deltaF;
61 paramVis.endeSec = 3.8;
62 paramVis.fontSize = 24;
63 visualizeComponentsNMF(A, nmfdW, nmfdH, nmfdA, paramVis);
64

65 % resynthesize
66 for k = 1:numComp
67 Y = nmfdA{k} .* exp(j * P);
68

69 % re−synthesize, omitting the Griffin Lim iterations
70 y = inverseSTFT(Y, paramSTFT);
71

72 % save result
73 audiowrite([outPath,'Winstons_AmenBreak_NMFD_component_',

...
74 num2str(k)],y,fs);
75 end

Listing L.1: MATLAB code for drum source separation using
NMFD, following [26].

In lines 11–16 we define the parameters for STFT computation: a
block size N = 2048 samples, a hop size H = 512 samples, a
Hann window, a flag to discard the mirror spectrum (reconstMirror
= true), and a flag to indicate that we want to zero-pad the entire
signal with half-block lengths at the beginning and end. Now we
will discuss the most important part of this example, which is the
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Filename Description and main parameters

NMFD.m Nonnegative Matrix Factor Deconvolution with KLD and fixable components [22]. V, numComp, numIter,
numTemplateFrames, initW, initH, paramConstr, fixH

NMF.m Nonnegative matrix factorization with KLD as default cost function [21, Section 8.3], [1]. V, costFunc, numIter, numComp.
NMFdiag.m Nonnegative matrix factorization with enhanced diagonal continuity constraints [24]. V, W0, H0, distmeas, numOfIter,

fixW, continuity.length, continuity.grid, continuity.sparsen, continuity.polyphony

NMFconv.m Convolutive NMF with beta-divergence [25, Chapter 3.7]. V, numComp, numIter, numTemplateFrames, initW,
initH, beta, sparsityWeight, uncorrWeight

convModel.m Convolutive NMF model implementing Eq. (4) from [26]. Note that it can also be used to compute the standard NMF model in case
the number of time frames of the templates equals one. W, H

shiftOperator.m Shift operator as described in Eq. (5) from [26]. It shifts the columns of a matrix to the left or the right and fills undefined elements
with zeros. A, shiftAmount

initActivations.m Initialization strategies for NMF activations, including random and uniform. The pitched strategy places gate-like ac-
tivations at the frames where certain notes are active in the ground truth [27]. The strategy drums uses decaying im-
pulses at these positions [26]. numComp, numFrames, deltaT, pitches, onsets, durations, drums, decay,
onsetOffsetTol, tolerance, strategy

initTemplates.m NMF template initialization strategies, including random and uniform. The strategy pitched uses comb-filter templates [27].
The drums strategy uses pre-extracted averaged spectra of typical drum types. numComp, numBins, numTemplateFrames,
pitches, drumTypes, strategy

NEMA.m Row-wise nonlinear exponential moving average, introducing decaying slopes according to Eq. (3) from [9]. lambda
midi2freq.m,
freq2midi.m,
logFreqLogMag.m

Helper functions to convert between MIDI pitches and frequencies in Hz, as well as log-frequency and log-magnitude representations
for visualization. midi, freq, A, deltaF, binsPerOctave, upperFreq, lowerFreq

LSEE_MSTFTM_GriffinLim,
forwardSTFT.m,
inverseSTFT.m

Reconstruct the time-domain signal by means of the frame-wise inverse FFT and overlap-add method described as least squares
error estimation from the modified STFT magnitude (LSEE-MSTFT) in [28]. blockSize, hopSize, anaWinFunc,
synWinFunc, reconstMirror, appendFrame, analyticSig, numSamples

alphaWienerFilter.m Alpha-related soft masks for extracting sources from mixture. Details in [29] and experiments in [30]. alpha, binarize

Table 1: Overview of MATLAB functions, descriptions, and main parameters. The Python version of the toolbox follows the same naming
convention as far as possible.

particular setup of the NMF-related variables and parameters. In
line 28 we initialize the number of components R to 3, since we
know a priori that the drum recording contains the instruments kick
drum (KD), snare drum (SD), and hi-hat (HH). We will run NMFD
for a total of 30 iterations (of the update rules), L = 30, line 29,
and each spectral slice Pr will have a length of T = 8 time frames,
line 30. A unique thing that sets apart this example from the rest
is the fact that we initialize the templates with a particular strategy
that has proven to be very effective in DSS [26]. In line 37 we use
the string parameter drums to specify that we want to initialize the
templates by seeding them with a single-frame, data-driven statis-
tical mean of many drum sounds of that type, and then applying
a short exponential decay to that single frame in order to expand
the single frame into multiple frames across the template pattern
matrix. This initializes the template tensor to have three patterns,
each containing prototypical spectral properties of KD, SD, and
HH, respectively. For this particular application, the initial activa-
tion matrix initH can be initialized using a constant value of 1
throughout the entire matrix, indicated by the parameter uniform
in line 42. In lines 45–50 all the previously created parameters are
assigned to the parameter structure paramNMFD which will be
passed to NMFD(), the main function which we call in line 53. In
line 56 we use alphaWienerFilter() to compute spectro-
gram estimates for the components via Wiener filtering (see [29,
30]). We set visualization parameters to paramVis in lines 59–
62 and call visualizeComponentsNMF() in line 63, which
produces the output seen in Figure 1. It is important to mention
that the visualization function assigns default color schemes de-
pending on the NMF model’s rank. For instance, as seen in Fig-
ure 1, a model with R = 3 components will be colored with with
red, green, and blue, respectively. A model with R = 4 compo-

nents (Figure 2) is colored using hsv(4), and models with R > 4
(Figure 3) are colored with a grayscale colormap. Finally, we loop
over the component spectrograms, resynthesizing each one using
inverseSTFT() (line 70) and saving the result y as a WAV file.

5. APPLICATION: ELECTRONIC MUSIC STRUCTURE

Taken from [23], we show an example of the following task: Given
a downmix of an electronic music (EM) track produced with cer-
tain loops, together with individual instances of the loops that were
used to produce the track, can we use NMFD to learn an activa-
tion matrix which tells us when each loop was used in the track?
In this example, we want to highlight the fact that after initializ-
ing the template tensor pages, each pattern to one instance of one
of the loops used, we subsequently disallow updating/learning the
templates—also called fixing the templates. Thus, we are only in-
terested in allowing updates to the activation matrix, which will
end up telling us when each loop type was used.

1 % initialization
2 inpPath = 'data/';
3 outPath = 'output/';
4 filename = 'LSDDM_EM_track.wav';
5 filenameEffects = 'LSDDM_EM_Effects.wav';
6 filenameBass = 'LSDDM_EM_bass.wav';
7 filenameMelody = 'LSDDM_EM_melody.wav';
8 filenameDrums = 'LSDDM_EM_drums.wav';
9

10 % 1. load the audio signal
11 [xTr,fs] = audioread([inpPath filename]);
12

13 [xEffects, fsEffects] = audioread([inpPath filenameEffects]);

14 [xBass, fsBass] = audioread([inpPath filenameBass]);
15 [xMelody, fsMelody] = audioread([inpPath filenameMelody]);
16 [xDrums, fsDrums] = audioread([inpPath filenameDrums]);
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Figure 2: Top: Ground truth loop activations for the track used in Listing L.2. Middle: Activation matrix H with one row per loop/com-
ponent. Bottom left: Template tensor P with component spectrogram slices for drums (1), melody (2), bass (3), and FX (4). Bottom right:
component-colored spectrogram U.

17 % make monaural if necessary
18 xTr = mean(xTr, 2);
19 xEffects = mean(xEffects, 2);
20 xBass = mean(xBass, 2);
21 xMelody = mean(xMelody, 2);
22 xDrums = mean(xDrums, 2);
23

24 % 2. compute STFT
25 paramSTFT.blockSize = 4096;
26 paramSTFT.hopSize = 2048;
27 paramSTFT.winFunc = hann(paramSTFT.blockSize);
28 paramSTFT.reconstMirror = true;
29 paramSTFT.appendFrame = true;
30

31 % STFT computation
32 [XTr, ATr, PTr] = forwardSTFT(xTr, paramSTFT);
33

34 % get dimensions and time and freq resolutions
35 [numBinsTr, numFramesTr] = size(XTr);
36 deltaT = paramSTFT.hopSize / fs;
37 deltaF = fs / paramSTFT.blockSize;
38

39 % STFT computation
40 [XEffects, AEffects, PEffects] = forwardSTFT(xEffects,

paramSTFT);
41 [XBass, ABass, PBass] = forwardSTFT(xBass, paramSTFT);
42 [XMel, AMel, PMel] = forwardSTFT(xMelody, paramSTFT);
43 [XDrums, ADrums, PDrums] = forwardSTFT(xDrums, paramSTFT);
44 [numBinsBass, numFramesBass] = size(XBass);
45

46 % 3. apply NMF variants to STFT magnitude
47 numComp = 4;
48 numIter = 30;
49

50 initW = [];
51 initW{1} = ABass;
52 initW{2} = AMel;
53 initW{3} = ADrums;
54 initW{4} = AEffects;
55 paramNMFD.initW = initW;

56 numTemplateFrames = numFramesBass;
57

58 % generate initial activations
59 paramActivations.numComp = numComp;
60 paramActivations.numFrames = numFramesTr;
61 initH = initActivations(paramActivations, 'uniform');
62 paramNMFD.initH = initH;
63

64 % NMFD parameters
65 paramNMFD.numComp = numComp;
66 paramNMFD.numFrames = numFramesTr;
67 paramNMFD.numIter = numIter;
68 paramNMFD.numTemplateFrames = numTemplateFrames;
69 paramNMFD.numBins = numBinsTr;
70 paramNMFD.fixW = 1;
71

72 % NMFD core method
73 [nmfdW, nmfdH, nmfdV, divKL] = NMFD(ATr, paramNMFD);
74

75 %% visualize
76 paramVis.deltaT = deltaT;
77 paramVis.deltaF = deltaF;
78 paramVis.logComp = 1e5;
79 fh1 = visualizeComponentsNMF(ATr, nmfdW, nmfdH, nmfdV,

paramVis);
80

81 %% save result
82 saveas(fh1,[outPath,'LSDDM_EM.png']);

Listing L.2: Example code for learning loop activation points
using NMFD, following [23].

In lines 2–22 we prepare path names and load files for five audio
signals. These include the mixed track, as well as the four loops
that were used to produce the track: effects, bass, melody, and
drums. At the end of this block we convert all signals to mono.
In the next block (lines 25–29), we set the STFT parameters. In
lines 32–43 we use the parameter structure paramSTFT together
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with the respective signals to compute all the necessary spectro-
grams by calling forwardSTFT().
In the next lines we will be preparing the parameters that are re-
quired to run NMFD with the specific conditions for this example.
First, in line 47 we set numComp, the number of components or
patterns R, to 4 (since we know a priori that the track was com-
posed with four loops or patterns). In line 48 we specify 30 as
the desired number of iterations for the algorithm. In lines 50–55
we prepare a cell array initW containing the magnitude spec-
trograms for the loops, and set the initial template tensor to the
parameter structure paramNMFD.initW. As the number of tem-
plate frames T we use the number of frames of the bass loop, but
we could have used any loop’s length—we have constructed the
example such that all loops have the same number of frames. In
lines 59–62 we initialize the activation matrix using the uniform
strategy (i. e., with a constant value of one for all rows) and append
it to the parameter structure. In lines 65–69 we set some basic val-
ues to the parameter structure paramNMFD. Most importantly, in
line 70, we indicate with the flag fixW = 1 that we want to fix
the template tensor. Since we initialized the pattern tensor with
the loops we know to be contained in the track, we disallow mod-
ifications and only wish to learn the activation matrix. In line 73
we call NMFD() with the track magnitude spectrogram and the
previously set parameter structure, obtaining four return variables:
nmfdW, the learned templates (which are not modified during the
learning); nmfdH, the learned activation matrix, nmfdV, a cell ar-
ray containing the learned component spectrograms; and divKL,
an array with the KLD at each iteration (to visualize learning error
throughout the iterations). In lines 76–78 we set basic visualization
parameters to the structure paramVis, then visualize the learned
NMFD model with visualizeComponentsNMF() (line 79),
and save the result to disk (line 82).

6. APPLICATION: AUDIO MOSAICING

In this example we will be loading two sounds: a recording of bees
buzzing, which will act as the timbral source for the mosaicing and
a fragment of “Let It Be” by the Beatles, which is the target to be
synthesized with the sounds of bees buzzing. The main idea is to
produce a signal sounding as if buzzing bees were “playing” “Let
It Be” by the Beatles by buzzing at different pitches or frequencies.

1 % initialization
2 inpPath = 'data/';
3 outPath = 'output/';
4

5 filenameSource = 'Bees_Buzzing.wav';
6 filenameTarget = 'Beatles_LetItBe.wav';
7

8 % 1. load the source and target signal
9 % read signals

10 [xs,fs] = audioread([inpPath filenameSource]);
11 [xt,fs] = audioread([inpPath filenameTarget]);
12 % make monaural if necessary
13 xs = mean(xs,2);
14 xt = mean(xt,2);
15

16 % 2. compute STFT of both signals
17 % spectral parameters
18 paramSTFT.blockSize = 2048;
19 paramSTFT.hopSize = 1024;
20 paramSTFT.winFunc = hann(paramSTFT.blockSize);
21 paramSTFT.reconstMirror = true;
22 paramSTFT.appendFrame = true;
23 paramSTFT.numSamples = length(xt);
24

25 % STFT computation
26 [Xs,As,Ps] = forwardSTFT(xs,paramSTFT);
27 [Xt,At,Pt] = forwardSTFT(xt,paramSTFT);

28

29 % get dimensions and time and freq resolutions
30 [numBins,numTargetFrames] = size(Xt);
31 [numBins,numSourceFrames] = size(Xs);
32 deltaT = paramSTFT.hopSize / fs;
33 deltaF = fs / paramSTFT.blockSize;
34

35 % 3. apply continuity NMF variants to mosaicing pair
36 % initialize activations randomly
37 H0 = rand(numSourceFrames,numTargetFrames);
38

39 % init templates by source frames
40 W0 = bsxfun(@times,As,1./(eps+sum(As)));
41 Xs = bsxfun(@times,Xs,1./(eps+sum(As)));
42

43 % parameters taken from Jonathan Driedger's toolbox
44 paramNMFdiag.fixW = 1;
45 paramNMFdiag.numOfIter = 20;
46 paramNMFdiag.continuity.polyphony = 10;
47 paramNMFdiag.continuity.length = 7;
48 paramNMFdiag.continuity.grid = 5;
49 paramNMFdiag.continuity.sparsen = [1 7];
50

51 % reference implementation by Jonathan Driedger
52 [nmfdiagW, nmfdiagH] = NMFdiag(At, W0, H0, paramNMFdiag);
53

54 % create mosaic, replace magnitude by complex frames
55 contY = Xs*nmfdiagH;
56

57 % visualize
58 paramVis = [];
59 paramVis.deltaF = deltaF;
60 paramVis.deltaT = deltaT;
61 fh1 = visualizeComponentsNMF(At, nmfdiagW, nmfdiagH, [],

paramVis);
62

63 % save result
64 saveas(fh1,[outPath,'LetItBee_NMFdiag.png']);
65

66 % resynthesize using Griffin−Lim, 50 iterations by default
67 [Xout, Pout, res] = LSEE_MSTFTM_GriffinLim(contY, paramSTFT);

68

69 % save result
70 audiowrite([outPath,'LetItBee_NMFdiag_with_target_',

filenameTarget],res,fs);

Listing L.3: Example of audio mosaicing using NMF model
with diagonality-enhanced activation matrix and fixed templates,
following [24].

We will now go through the code in Listing L.3. In lines 2–14 we
load the audio files for both source and target signals, making them
mono for further processing. We then compute the source spectro-
grams Xs (complex-valued), As (magnitude), and Ps (phase) by
calling forwardSTFT() in line 26, and the same for the target
signal (yielding Xt, At, and Pt, in line 27). In lines 30–33 we ob-
tain the spectrogram dimensions, as well as the time and frequency
resolutions under the current settings. Since we want to learn ac-
tivations that will tell us which source frames to use to synthesize
the target, we initialize the activation matrix H0 with random val-
ues in line 37. We then initialize the template matrix W0 with
the source magnitude spectrogram As, normalized so that each
column has unit sum (line 40). We also normalize the complex-
valued spectrogram Xs on line 41. The following lines 44–49
define crucial parameters in the structure paramNMFdiag. In
line 44 we set fixW = 1, indicating that the template matrix W0
should not be updated during the NMF learning (i. e., we do not
want to modify the source’s timbral characteristics). In line 45 we
set the number of iterations to 20. In line 46 we set the degree of
polyphony to 10—this means that during learning, for every col-
umn in the activation matrix, the 10 highest entries will keep their
original magnitude, and the rest will be scaled down. In line 47 we
set continuity.length to 7, which controls the filter kernel
length that will be used to smooth the diagonal lines that we wish
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Figure 3: Visual output generated by code in Listing L.3: diagonally enhanced NMF for audio mosaicing. Top right: Diagonally enhanced
activation matrix H . Top left: Detail of diagonal structures in subregion of activation matrix (subplot was added manually). Bottom right:
Approximated magnitude spectrogram resulting from the diagonal NMF model U = W · H. Bottom left: Magnitude spectrogram used as
timbral source for mosaicing, used directly as template matrix W. The timbral source consists of bees buzzing sounds, pitched up stepwise
throughout an entire octave.

to enhance in the activation matrix. This choice is empirical since
it corresponds to perceived sound quality and can be varied ac-
cording to combinations of source and target signals. In line 48 we
set continuity.grid to 5, indicating that we want to filter the
activation matrix at every fifth iteration. If the user wishes to inter-
vene less in the NMF algorithm updates, a higher number can be
set (i. e., filtering will be performed every continuity.grid
iterations).
We use the field parameter.sparsen (line 49) to increase the
distance between neighboring diagonal structures. We now call the
main function, NMFdiag() (line 52), which returns the templates
nmfdiagW and diagonally enhanced activations nmfdiagH. It
only remains to create the mosaic by multiplying the learned acti-
vations nmfdiagHwith the previously normalized source complex-
valued spectrogram, in line 55. In lines 58–60 we set the visualiza-
tion parameters as fields of paramVis, and call the visualization
function in line 61, producing the output seen in Figure 3, and
saving it as a png file in line 64. To make the mosaicing result
audible, we apply LSEE_MSTFTM_GriffinLim() to the com-
plex mosaic spectrogram contY (line 67) and write the audio file
to disk (line 70).

7. SUMMARY

We have presented the NMF Toolbox, an easy-to-use collection of
illustrated code examples intended for research and learning of the
principles behind NMF, through real-world music processing ap-
plications. In particular, the toolbox provides baseline implemen-

tations and a small dataset for tasks such as drum source separa-
tion, structure analysis of electronic music, and audio mosaicing.
Although the toolbox is not optimized for high execution speed
and is not comprehensive (considering the large number of exist-
ing NMF variants), we hope that it serves an educational purpose
and as a starting point for integrating these techniques into existing
projects.
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ABSTRACT

Audio processors whose parameters are modified periodically
over time are often referred as time-varying or modulation based
audio effects. Most existing methods for modeling these type of
effect units are often optimized to a very specific circuit and cannot
be efficiently generalized to other time-varying effects. Based on
convolutional and recurrent neural networks, we propose a deep
learning architecture for generic black-box modeling of audio pro-
cessors with long-term memory. We explore the capabilities of
deep neural networks to learn such long temporal dependencies
and we show the network modeling various linear and nonlinear,
time-varying and time-invariant audio effects. In order to mea-
sure the performance of the model, we propose an objective metric
based on the psychoacoustics of modulation frequency perception.
We also analyze what the model is actually learning and how the
given task is accomplished.

1. INTRODUCTION

Modulation based or time-varying audio effects involve audio pro-
cessors or effect units that include a modulator signal within their
analog or digital implementation [1]. These modulator signals are
in the low frequency range (usually below 20 Hz). Their wave-
forms are based on common periodic signals such as sinusoidal,
squarewave or sawtooth oscillators and are often referred to as a
Low Frequency Oscillator (LFO). The LFO periodically modu-
lates certain parameters of the audio processors to alter the timbre,
frequency, loudness or spatialization characteristics of the audio.
This differs from time-invariant audio effects which do not change
their behavior over time. Based on how the LFO is employed and
the underlying signal processing techniques used when designing
the effect units, we can classify modulation based audio effects
into time-varying filters such as phaser or wah-wah; delay-line
based effects such as flanger or chorus; and amplitude modulation
effects such as tremolo or ring modulator [2].

The phaser effect is a type of time-varying filter implemented
through a cascade of notch or all-pass filters. The characteristic
sweeping sound of this effect is obtained by modulating the cen-
ter frequency of the filters, which creates phase cancellations or
enhancements when combining the filter’s output with the input
audio. Similarly, the wah-wah is based on a bandpass filter with
a variable center frequency, usually controlled by a pedal. If the
Copyright: c© 2019 Marco A. Martínez Ramírez, Emmanouil Benetos, Joshua D.

Reiss et al. This is an open-access article distributed under the terms of the Creative

Commons Attribution 3.0 Unported License, which permits unrestricted use, distribu-

tion, and reproduction in any medium, provided the original author and source are

credited.

center frequency is modulated by an LFO or an envelope follower,
the effect is commonly called auto-wah.

Delay-line based audio effects, as in the case of flanger and
chorus, are based on the modulation of the length of the delay
lines. A flanger is implemented via a modulated comb filter whose
output is mixed with the input audio. Unlike the phaser, the notch
and peak frequencies caused by the flanger’s sweep comb filter
effect are equally spaced in the spectrum, thus causing the known
metallic sound associated with this effect. A chorus occurs when
mixing the input audio with delayed and pitch modulated copies
of the original signal. This is similar to various musical sources
playing the same instrument but slightly shifted in time. vibrato
is digitally implemented as a delay-line based audio effect, where
pitch shifting is achieved when periodically varying the delay time
of the input waveform [3].

Tremolo is an amplitude modulation effect where an LFO is
used to directly vary the amplitude of the incoming audio, creat-
ing in this way a perceptual temporal fluctuation. A ring modu-
lator is also based on amplitude modulation, but the modulation
is achieved by having the input audio multiplied by a sinusoidal
oscillator with higher carrier frequencies. In the analog domain,
this effect is commonly implemented with a diode bridge, which
adds a nonlinear behavior and a distinct sound to this effect unit.
Another type of modulation based effect that combines amplitude,
pitch and spatial modulation is the Leslie speaker, which is imple-
mented by a rotating horn and a rotating woofer inside a wooden
cabinet. This effect can be interpreted as a combination of tremolo,
Doppler effect and reverberation [4].

Most of these effects can be implemented directly in the digi-
tal domain through the use of digital filters and delay lines. Never-
theless, modeling specific effect units or analog circuits has been
heavily researched and remains an active field. This is because
hardware effect units are characterized by the nonlinearities intro-
duced by certain circuit components. Musicians often prefer the
analog counterparts because the digital implementations may lack
this behavior, or because the digital simulations make certain as-
sumptions when modeling specific nonlinearities.

Virtual analog methods for modeling such effect units mainly
involve circuit modeling and optimization for specific analog com-
ponents such as operational amplifiers or transistors. This often
requires assumptions or models that are too specific for a certain
circuit. Such models are also not easily transferable to different
effects units since expert knowledge of the type of circuit being
modeled is required, i.e. specific linear and nonlinear components.

Prior to this work, deep learning architectures have not yet
been implemented to model time-varying audio effects. Thus,
building on [5, 6], we propose a general-purpose deep learning
approach to model this type of audio effects. Using convolutional,
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recurrent and fully connected layers, we explore how a deep neural
network (DNN) can learn the long temporal dependencies which
characterizes these effect units as well as the possibilities to match
nonlinearities within the audio effects. We include Bidirectional
Long Short-Term Memory (Bi-LSTM) neural networks and ex-
plore their capabilities when learning time-varying transformations.
We explore linear and nonlinear time-varying emulation as a content-
based transformation without explicitly obtaining the solution of
the time-varying system.

We show the model matching modulation based audio effects
such as chorus, flanger, phaser, tremolo, vibrato, tremolo-wah,
ring modulator and Leslie speaker. We investigate the capabilities
of the model when adding further nonlinearities to the linear time-
varying audio effects. Furthermore, we extend the applications
of the model by including nonlinear time-invariant audio effects
with long temporal dependencies such as auto-wah, compressor
and multiband compressor. Finally, we measure performance of
the model using a metric based on the modulation spectrum.

The paper is structured as follows. In Section 2 we present the
relevant literature related to virtual analog of modulation based au-
dio effects. Section 3 gives details of our model, the modulation
based effect tasks and the proposed evaluation metric. Sections 4
and 5 show the analysis, obtained results, and the respective con-
clusion.

2. BACKGROUND

2.1. Virtual analog modeling of time-varying audio effects

Virtual analog audio effects aim to simulate an effect unit and
recreate the sound of an analog reference circuit. Much of the ac-
tive research models nonlinear audio processors such as distortion
effects, compressors, amplifiers or vacuum tubes [7, 8, 9]. With re-
spect to modeling time-varying audio effects, most of the research
has been applied to develop white-box methods, i.e. in order to
model the effect unit a complete study of the internal circuit is
carried out. These methods use circuit simulation techniques to
characterize various analog components such as diodes, transis-
tors, operational amplifiers or integrated circuits.

In [10], phasers implemented via Junction Field Effect Tran-
sistors (JFET) and Operational Transconductance Amplifiers (OTA)
were modeled using circuit simulation techniques that discretize
the differential equations that describe these components. Using
a similar circuit modeling procedure, delay-line based effects are
modeled, such as flanger and chorus as implemented with Bucket
Brigade Delay (BBD) chips. BBD circuits have been widely used
in analog delay-line based effect units and several digital emula-
tions have been investigated. [11] emulated BBD devices through
circuit analysis and electrical measurements of the linear and non-
linear elements of the integrated circuit. [12] modeled BBDs as
delay-lines with fixed length but variable sample rate.

Based on BBD circuitry, a flanger effect was modeled in [13]
via the nodal DK-method. This is a common method in virtual
analog modeling [14] where nonlinear filters are derived from the
differential equations that describe an electrical circuit. In [15], a
wah-wah pedal is implemented using the nodal DK-method and
the method is extended to model the temporal fluctuations intro-
duced by the continuous change of the pedal. In [16], the MXR
Phase 90 phaser effect is modeled via a thorough circuit analy-
sis and the DK-method. This effect unit is based on JFETs, and
voltage and current measurements were performed to obtain the

nonlinear characteristics of the transistors.
Amplitude modulation effects such as an analog ring modula-

tor were modeled in [17], where the diode bridge is emulated as
a network of static nonlinearities. [18] modeled the rotating horn
of the Leslie speaker via varying delay-lines, artificial reverber-
ation and physical measurements from the rotating loudspeaker.
[19] also modeled the Leslie speaker and achieved frequency mod-
ulation through time-varying spectral delay filters and amplitude
modulation using a modulator signal. In both Leslie speaker emu-
lations, various physical characteristics of the effect are not taken
into account, such as the frequency-dependent directivity of the
loudspeaker and the effect of the wooden cabinet.

In [20], gray-box modeling was proposed for linear time-varying
audio effects. This differs from white-box modeling, since the
method was based on input-output measurements but the time-
varying filters were based on knowledge of analog phasers. In this
way, phaser emulation was achieved by multiple measurements of
the impulse response of a cascade of all-pass filters.

Another method to model time-varying audio effects is dis-
cretizing electrical circuit elements via Wave Digital Filters (WDF).
The Hammond organ vibrato/chorus was modeled using WDFs in
[21], and [22] performed circuit modeling through WDFs to emu-
late modulation based effects that use OTAs.

2.2. End-to-end deep neural networks

End-to-end deep learning is based on the idea that an entire prob-
lem can be taken as a single indivisible task which must be learned
from input to output. Deep learning architectures using this prin-
ciple have recently been researched in the music information re-
trieval field [23, 24, 25], since the amount of required prior knowl-
edge may be reduced and engineering effort minimized by learn-
ing directly from raw audio [26]. Recent work also demonstrated
the feasibility of these architectures for audio synthesis and audio
effects modeling. [27, 28] proposed models that synthesize au-
dio waveforms and [29] obtained a model capable of performing
singing voice synthesis.

End-to-end deep neural networks for audio effects modeling
were implemented in [5], where Equalization (EQ) matching was
achieved with convolutional neural networks (CNN). Also, [6] pre-
sented a deep learning architecture for modeling nonlinear proces-
sors such as distortion, overdrive and amplifier emulation. The
DNN is capable of modeling an arbitrary combination of linear
and nonlinear memoryless audio effects, but does not generalize
to transformations with long temporal dependencies such as mod-
ulation based audio effects.

3. METHODS

3.1. Model

The model is entirely based on the time-domain and operates with
raw audio as the input and processed audio as the output. It is
divided into three parts: adaptive front-end, latent-space and syn-
thesis back-end. A block diagram can be seen in Fig. 1 and its
structure is described in detail in Table 1. We build on the architec-
ture from [6], since we incorporate Bi-LSTMs into the latent-space
and we modify the structure of the synthesis back-end in order to
allow the model to learn nonlinear time-varying transformations.
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Figure 1: Block diagram of the proposed model; adaptive front-end, Bi-LSTM and synthesis back-end.

Table 1: Detailed architecture of a model with input frame size of
4096 samples and ±4 context frames.

Layer Output shape Units Output

Input (9, 4096, 1) . x
Conv1D (9, 4096, 32) 32(64) X1

Residual (4096, 32) . R
Abs (9, 4096, 32) . .

Conv1D-Local (9, 4096, 32) 32(128) .
Softplus (9, 4096, 32) . X2

MaxPooling (9, 64, 32) . Z

Bi-LSTM (64, 128) 64 .
Bi-LSTM (64, 64) 32 .
Bi-LSTM (64, 32) 16 .

SAAF (64, 32) 25 Ẑ

Unpooling (4096, 32) . X̂3

Multiply (4096, 32) . X̂2

Dense (4096, 32) 32 .
Dense (4096, 16) 16 .
Dense (4096, 16) 16 .
Dense (4096, 32) 32 .
SAAF (4096, 32) 25 .
Abs (4096, 32) . .

Global Average (1, 32) . .
Dense (1, 512) 512 .
Dense (1, 32) 32 .

Multiply (4096, 32) . X̂1

Add (4096, 32) . X̂0

deConv1D (4096, 1) . ŷ

3.2. Adaptive front-end

The front-end performs time-domain convolutions with the incom-
ing audio. It follows a filter bank architecture and is designed to
learn a latent representation for each audio effect modeling task. It
consists of a convolutional encoder which contains two CNN lay-
ers, one pooling layer and one residual connection. This residual
connection is used by the back-end to facilitate the synthesis of the
waveform based on the specific time-varying transformation.

In order to allow the model to learn long-term memory depen-
dencies, the input consists of the current audio frame x(t) concate-
nated with the k previous and k subsequent frames. These frames
are of size N and sampled with a hop size τ . The input x is de-
scribed by (1).

x = x(t+ jτ), j = −k, ..., k (1)

The first convolutional layer has 32 one-dimensional filters of
size 64 and is followed by the absolute value as nonlinear activa-
tion function. The operation performed by the first layer can be
described by (2).

X1 = x ∗W 1 (2)

Where X1 is the feature map after the input audio x is con-
volved with the kernel matrix W 1. R is the corresponding row
in X1 for the frequency band decomposition of the current input
frame x(t). The back-end does not directly receive information
from the past and subsequent context frames. The second layer
has 32 filters of size 128 and each filter is locally connected. We
follow a filter bank architecture since each filter is only applied
to its corresponding row in |X1| and so we significantly decrease
the number of trainable parameters. This layer is followed by the
softplus nonlinearity [30], described by (3).

X2 = softplus(|X1| ∗W 2) (3)

Where X2 is the second feature map obtained after the local
convolution with W 2, the kernel matrix of the second layer. The
max-pooling operation is a moving window of size N/64 applied
over X2, where the maximum value within each window corre-
sponds to the output.

By using the absolute value as activation function of the first
layer and by having larger filters W 2, we expect the front-end to
learn smoother representations of the incoming audio, such as en-
velopes [24]. All convolutions and pooling operations are time
distributed, i.e the same convolution or pooling operation is ap-
plied to each of the 2 · k + 1 input frames.

3.3. Bidirectional LSTMs

The latent-space consists of three Bi-LSTM layers of 64, 32, and
16 units respectively. Bi-LSTMs are a type of recurrent neural net-
work that can access long-term context from both backward and
forward directions [31]. Bi-LSTMs are capable of learning long
temporal dependencies when processing timeseries where the con-
text of the input is needed [32].

The Bi-LSTMs process the latent-space representation Z. Z
is learned by the front-end and contains information regarding the
2 · k+1 input frames. These recurrent layers are trained to reduce
the dimension of Z, while also learning a nonlinear modulation
Ẑ. This new latent representation is fed into the synthesis back-
end in order to reconstruct an audio signal that matches the time-
varying task. Each Bi-LSTM has dropout and recurrent dropout
rates of 0.1 and the first two layers have the hyperbolic tangent as
activation function.

The performance of CNNs in regression tasks has improved
by using adaptive activation functions [33]. So we add a Smooth
Adaptive Activation Function (SAAF) as the nonlinearity for the
last layer. SAAFs consist of piecewise second order polynomials
which can approximate any continuous function and are regular-
ized under a Lipschitz constant to ensure smoothness. As shown
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in [6], SAAFs can be used within deep neural networks to model
nonlinearities in audio processing tasks.

3.4. Synthesis back-end

The synthesis back-end accomplishes the reconstruction of the tar-
get audio by processing the current input frame x(t) and the non-
linear modulation Ẑ. The back-end consists of an unpooling layer,
a DNN block with SAAF and Squeeze-and-Excitation (SE) [34]
layers (DNN-SAAF-SE) and a final CNN layer.

The DNN-SAAF-SE block consists of 4 fully connected (FC)
layers of 32, 16, 16 and 32 hidden units respectively. Each FC
layer is followed by the hiperbolic tangent function except for the
last one, which is followed by a SAAF layer. Overall, each SAAF
is locally connected and each function consists of 25 intervals be-
tween −1 to 1.

The SE blocks explicitly model interdependencies between
channels by adaptively scaling the channel-wise information of
feature maps [34]. The SE dynamically scales each of the 32 chan-
nels and follows the structure from [35]. It consists of a global
average pooling operation followed by two FC layers of 512 and
32 hidden units respectively. The FC layers are followed by a rec-
tifier linear unit (ReLU) and sigmoid activation functions accord-
ingly. Since the feature maps of the model are based on time-
domain waveforms, we incorporate an absolute value layer before
the global average pooling operation.

The back-end matches the time-varying task by the following
steps. First, a discrete approximation of Z (X̂3) is obtained by
an upsampling operation. Then the feature map X̂2 is the result
the element-wise multiplication of the residual connection R and
X̂3. This can be seen as a frequency dependent amplitude mod-
ulation between the learned modulator Z and the frequency band
decomposition R.

X̂2 = X̂3 ·R (4)

The feature map X̂1 is obtained when the nonlinear and channel-
wise scaled filters from the DNN-SAAF-SE block are applied to
the modulated frequency band decomposition X̂2. Then, X̂1 is
added back to X̂2, acting as a nonlinear delay-line.

X̂0 = X̂1 + X̂2 (5)

The last layer corresponds to the deconvolution operation, which
can be implemented by transposing the first layer transform. This
layer is not trainable since its kernels are transposed versions of
W 1. In this way, the back-end reconstructs the audio waveform in
the same manner that the front-end decomposed it. The complete
waveform is synthesized using a hanning window and constant
overlap-add gain.

All convolutions are along the time dimension and all strides
are of unit value. The models have approximately 300k trainable
parameters, which, within a deep learning context, represents a
model that is not very large or difficult to train.

3.5. Training

The training of the model is performed in two steps. The first step
is to train only the convolutional layers for an unsupervised learn-
ing task, while the second step consists of an end-to-end super-
vised learning task based on a given time-varying target. During
the first step only the weights of Conv1D and Conv1D-Local are
trained and both the raw audio x(t) and wet audio y(t) are used as

input and target functions. This means the model is being prepared
to reconstruct the input and target data in order to have a better fit-
ting when training for the time-varying task. Only during this step,
the unpooling layer of the back-end uses the time positions of the
maximum values recorded by the max-pooling operation.

Once the model is pretrained, the Bi-LSTM and DNN-SAAF-
SE layers are incorporated into the model, and all the weights of
the convolutional, recurrent, dense and activation layers are up-
dated. Since small amplitude errors are as important as large ones,
the loss function to be minimized is the mean absolute error be-
tween the target and output waveforms. We explore input size
frames from 1024 to 8192 samples and we always use a hop size
of 50%. The batch size consisted of the total number of frames per
audio sample.

Adam is used as optimizer and we perform the pretraining for
200 epochs and the supervised training for 500 epochs. In order to
speed convergence, during the second training step we start with a
learning rate of 5·10−5 and we reduce it by 50% every 150 epochs.
We select the model with the lowest error for the validation subset.

3.6. Dataset

Modulation based audio effects such as chorus, flanger, phaser,
tremolo and vibrato were obtained from the IDMT-SMT-Audio-
Effects dataset [36]. It corresponds to individual 2-second notes
and covers the common pitch range of various 6-string electric gui-
tars and 4-string bass guitars.

The recordings include the raw notes and their respective ef-
fected versions for 3 different settings for each effect. For our
experiments, for each of the above effects, we only use the setting
#2 from where we obtained the unprocessed and processed audio
for bass guitar. In addition, processing the bass guitar raw audio,
we implemented an auto-wah with a peak filter whose center fre-
quency ranges from 500 Hz to 3 kHz and modulated by a 5 Hz
sinusoidal.

Since the previous audio effects are linear time-varying, we
further test the capabilities of the model by adding a nonlinearity
to each of these effects. Thus, using the bass guitar wet audio, we
applied an overdrive (gain= +10dB) after each modulation based
effect.

We also use virtual analog implementations of a ring modula-
tor and a Leslie speaker to process the electric guitar raw audio.
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Figure 2: mae values for linear time-varying tasks with different
input size frames.
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Figure 3: mae and msed values with the test dataset for all the time-varying tasks. od, ef and mb mean overdrive, envelope follower and
multiband respectively.

The ring modulator implementation1 is based on [17] and we use
a modulator signal of 5 Hz. The Leslie speaker implementation2

is based on [18] and we model each of the stereo channels.
Finally, we also explore the capabilities of the model with non-

linear time-invariant audio effects with long temporal dependen-
cies, such as compressors and auto-wah. We use the compressor
and multiband compressor from SoX3 to process the electric guitar
raw audio. The settings of the compressor are as follows: attack
time 10 ms, release time 100 ms, knee 1 dB, ratio 4:1 and threshold
-40 dB. The multiband compressor has 2 bands with a crossover
frequency of 500 Hz, attack time: 5 ms and 625 µs, decay time:
100 ms and 12.5 ms, knee: 0 dB and 6 dB, ratio: 3:1 and 6:1 and
threshold: −30 dB and −60 dB.

Similarly, we use an auto-wah implementation4 with an enve-
lope follower and a peak filter which center frequency modulates
between 500 Hz to 3 kHz.

For each time-varying task we use 624 raw and effected notes
and both the test and validation samples correspond to 5% of this
subset each. The recordings were downsampled to 16 kHz and
amplitude normalization was applied with exception to the time-
invariant audio effects.

3.7. Evaluation

Two metrics were used when testing the models with the various
test subsets. Since the mean absolute error depends on the am-
plitude of the output and target waveforms, before calculating this
error, we normalize the energy of the target and the output and
define it as the energy-normalized mean absolute error (mae).

We also propose an objective metric which mimics human per-
ception of amplitude and frequency modulation. The modulation
spectrum uses time-frequency theory integrated with the psychoa-
coustics of modulation frequency perception, thus, providing long-

1https://github.com/nrlakin/robot_voice/blob/master/robot.py
2https://ccrma.stanford.edu/software/snd/snd/leslie.cms
3http://sox.sourceforge.net/
4https://github.com/lucieperrotta/ASP

term knowledge of temporal fluctuation patterns [37]. We pro-
pose the modulation spectrum euclidean distance (msed), which is
based on the audio features from [38] and [39] and is defined as
follows:

• A Gammatone filter bank is applied to the target and output
entire waveforms. In total we use 12 filters, with center
frequencies spaced logarithmically from 26 Hz to 6950 Hz.

• The envelope of each filter output is calculated via the mag-
nitude of the Hilbert transform and downsampled to 400
Hz.

• A Modulation filter bank is applied to each envelope. In
total we use 12 filters, with center frequencies spaced loga-
rithmically from 0.5 Hz to 100 Hz.

• The Fast Fourier Transform (FFT) is calculated for each
modulation filter output of each Gammatone filter. The
energy is normalized by the DC value and summarized in
the following bands: 0.5-4 Hz, 4.5-10 Hz, 10.5-20 Hz and
20.5-100 Hz.

• The msed metric is the mean euclidean distance between
the energy values at these 4 bands.

4. RESULTS & ANALYSIS

First, we explore the capabilities of Bi-LSTMs to learn long-term
temporal dependencies. Fig. 2 shows the mae results of the test
dataset for different input frame sizes and various linear time-
varying tasks. The most optimal results are with an input size
of 4096 samples, since shorter frame sizes represent a higher er-
ror and 8192 samples do not represent a significant improvement.
Since the average modulation frequency in our tasks is 2 Hz, for
each input size we select a k that covers one period of this mod-
ulator signal. Thus, for the rest of our experiments, we use an
input size of 4096 samples and k = 4 for the number of past and
subsequent frames.
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Figure 4: Various internal plots for the test dataset of the tremolo modeling task. 4a) Input, target and output frames of 4096 samples
and their respective FFT magnitudes. 4b) For the input frame x(t), respective 8 rows from R. 4c) Following the filter bank architecture,
respective 8 rows from X2. 4d) From Ẑ, corresponding 8 modulator signals learned by the Bi-LSTM layer. 4e) In the same manner, 8
rows from X̂0, which is the input to the deconvolution layer prior to obtaining the output frame ŷ(t). Vertical axes in 4b)-4e) are unitless
and horizontal axes correspond to time.

The training procedures were performed for each type of time-
varying and time-invariant audio effect. Then, the models were
tested with samples from the test dataset and the audio results are
available online5. Fig. 3 shows the mae and msed for all the test
subsets. To provide a reference, the mean mae and msed values be-
tween input and target waveforms are 0.15 and 0.11 respectively.
It can be seen that the model performed well on each audio effect
modeling task. Overall, the model achieved better results with am-
plitude modulation and time-varying filter audio effects, although
delay-line based effects were also successfully modeled.

Fig. 4 visualizes the functioning of the model for the tremolo
task. It shows how the model processes the input frame x(t) into
the different frequency maps X1 and X2, learns a modulator sig-
nal Ẑ, and applies the respective amplitude modulation. This lin-
ear time-varying audio effect is easy to interpret. For more com-
plex nonlinear time-varying effects, a more in-depth analysis of
the model is required.

For selected linear and nonlinear time-varying tasks, Fig. 5
shows the input, target, and output waveforms together with their
respective modulation spectrum. In the time-domain, it is evident
that the model is matching the target waveform. From the modu-
lation spectrum it is noticeable that the model introduces different
modulation energies into the output which were not present in the
input and which closely match those of the respective targets.

The task becomes more challenging when a nonlinearity is
added to a linear time-varying transformation. Fig. 5d depicts re-
sults for the phaser-overdrive task. Given the large overdrive gain
the resulting audio has a lower-frequency modulation. It can be
seen that the model introduces modulations as low as 0.5 Hz. But
the waveform is not as smooth as the target, hence the larger mae

5https://mchijmma.github.io/modeling-time-varying/

values. Although the mae increased, the model does not signif-
icantly reduce performance and is able to match the combination
of nonlinear and modulation based audio effects.

Much more complicated time-varying tasks, such as the ring
modulator and Leslie speaker virtual analog implementations were
also successfully modeled. This represents a significant result,
since these implementations include nonlinear modulation; ring
modulator, or varying delay lines together with artificial reverber-
ation and Doppler effect simulation; and the Leslie speaker.

Lastly, the model is also able to perform linear and nonlinear
time-invariant modeling. The long temporal dependencies of an
envelope driven auto-wah, compressor and multiband compres-
sor are succesfully modeled. Furthermore, in the latter case, the
crossover filters are also matched. The msed may not be relevant
for these effects, but the low mae values represent that the model
also performs well here.

5. CONCLUSION

In this work, we introduced a general-purpose deep learning archi-
tecture for modeling audio effects with long temporal dependen-
cies. Using raw audio and a given time-varying task, we explored
the capabilities of end-to-end deep neural networks to learn low-
frequency modulations and to process the audio accordingly. The
model was able to match linear and nonlinear time-varying au-
dio effects, time-varying virtual analog implementations and time-
invariant audio effects with long-term memory.

Other white-box or gray-box modeling methods suitable for
these time-varying tasks would require expert knowledge such as
specific circuit analysis and discretization techniques. Moreover,
these methods can not easily be extended to other time-varying
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Figure 5: Results with the test dataset for the following time-varying tasks: 5a) chorus, 5b) ring modulator, 5c) Leslie speaker (right chan-
nel) and 5d) phaser-overdrive. For each subfigure and from top to bottom: input, target and output waveforms and respective modulation
spectrum plots.

tasks, and assumptions are often made regarding the nonlinear be-
havior of certain components. To the best of our knowledge, this
work represents the first black-box modeling method for linear and
nonlinear, time-varying and time-invariant audio effects. It makes
less assumptions about the audio processor target and represents
an improvement of the state-of-the-art in audio effects modeling.

Using a small amount of training examples we showed the
model matching chorus, flanger, phaser, tremolo, vibrato, auto-
wah, ring modulator, Leslie speaker and compressors. We pro-
posed an objective perceptual metric to measure the performance
of the model. The metric is based on the euclidean distance be-
tween the frequency bands of interest within the modulation spec-
trum. We demonstrated that the model processes the input audio
by applying different modulations which closely match with those
of the time-varying target.

Perceptually, most output waveforms are indistinguishable from
their target counterparts, although there are minor discrepancies at
the highest frequencies and noise level. This could be improved by
using more convolution filters, which means a higher resolution in
the filter bank structures [6]. Moreover, as shown in [5], a cost
function based on time and frequency can be used to improve this
frequency related issue, though listening tests may be required.

The generalization can also be studied more thoroughly, since
the model learns to apply the specific transformation to the audio
of a specific musical instrument, such as the electric guitar or the
bass guitar. In addition, since the model strives to learn long tem-
poral dependencies with shorter input size frames, and also needs
past and subsequent frames, more research is needed on how to
adapt this architecture to real-time implementations.

Real-time applications would benefit significantly from the ex-
ploration of recurrent neural networks to model transformations
that involve long-term memory without resorting to large input
frame sizes and the need for past and future context frames. Al-
though the model was able to match the artificial reverberation of
the Leslie speaker implementation, a thorough exploration of re-
verberation modeling is needed, such as plate, spring or convolu-
tion reverberation. In addition, since the model is learning a static
representation of the audio effect, ways of devising a parametric
model could also be explored. Finally, applications beyond virtual
analog can be investigated, for example, in the field of automatic
mixing the model could be trained to learn a generalization from
mixing practices.
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ABSTRACT

VisualAudio-Design (VAD) is a spectral-node based approach to
visually design audio collages and sounds. The spectrogram as a
visualization of the frequency-domain can be intuitively manipu-
lated with tools known from image processing. Thereby, a more
comprehensible sound design is described to address common ab-
stract interfaces for DSP algorithms that still use direct value in-
puts, sliders, or knobs. In addition to interaction in the time-
domain of audio and conventional analysis and restoration tasks,
there are many new possibilities for spectral manipulation of au-
dio material. Here, affine transformations and two-dimensional
convolution filters are proposed.

1. INTRODUCTION

After Pierre Schaeffer’s first experiments with bouncing records
as a representative of the musique concrète, the availability of
magnetic tapes glued together enabled later composers, such as
Karlheinz Stockhausen, John Cage, or Edgard Varèse, to create
loops. In the 1970s, spectral music was pioneered as a composi-
tional technique using computer-aided analysis of acoustic music
or artificial timbres at IRCAM with the Ensemble l’Itinéraire by
composers such as Gérard Grisey and Tristan Murail. Murail him-
self has described spectral music as an aesthetic, not a style - not a
set of techniques, but an attitude [1].

Nowadays, spectrograms are frequently used to analyze audio
material. After applying audio effects, the spectrogram can illus-
trate the implications of the manipulation, for instance. However,
processing and analysis tools are ordinarily separated. Although,
manipulations within the visualization of analysed audio data al-
low a more comprehensible sound design (cf. [2]).

Popular spectrogram manipulations are time-scaling, transpo-
sition, restoration and compression. Apart from that, visual ma-
nipulation can also be used for more advanced spectral processing
[3]. Especially since small spectral modifications are not perceived
as unnatural or synthetic [4].

A spectrogram that is interpreted as a pixel-based representa-
tion can be manipulated with image processing to achieve a Visual-
Audio-Design (VAD). This is an opportunity for a more compre-
hensible sound design, in contrast to directly editing the parameter
of DSP algorithms.

According to Klingbeil [3], the following challenges occur in
spectral editing:

Copyright: c© 2019 Lars Engeln et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

• Time and cost – The analysis of signals must be computed
in the shortest possible time. By efficient implementation,
for example the STFT, and an increase of the computational
power this goal is reached.

• Synthesis problem – Processed signals from the frequency
domain must be transformed back for playback.

• Control problem – Exciting music is dynamic and consists
of many finely tuned frequencies. Processing must there-
fore be equally finely granular.

• Compositional problem – In addition to subsequent edit-
ing, there are approaches to compose music directly in the
frequency domain.

This creates new demands both on the software and on the com-
poser, who has to deal intuitively with the composition of individ-
ual frequencies and their magnitudes.

There are tools and papers concerning generally visual manip-
ulation of the frequency-domain [5, 3] and the timbre design [6].
Our research addresses the Control and Compositional problem.
Thus, a workflow for sound designers to creatively manipulate and
generate sounds is described.

1.1. Coherence of Visual and Auditory Perception

In recent years, studies have shown that the combination of audi-
tory and visual stimuli can change and even improve human per-
ception (see [7, 8]).

In particular, it was shown that multisensory convergence ex-
ists in low sensory processing phases [7] and exists for visual-
auditive stimuli (see [9, 10]). Convergence does not only occur
after extensive processing in unisensory brain regions. This low-
level processing of coherent sensor inputs allows the improvement
of visual and acoustic perception by simultaneous matching stim-
uli. Based on the early convergence it can be assumed that acous-
tic and visual stimuli have a positive effect on each other [11]. For
example, multimodal objects were detected faster and more accu-
rately than unimodal objects [12].

Furthermore, the relationship between color and sound was in-
vestigated with an empirical approach [13], as existing mappings
were often inconsistent and unfounded. The works perform a map-
ping of tonality, loudness and timbre to hue, saturation and bright-
ness in different constellations. Although, there is a strong cor-
relation between loudness and saturation as well as tonality and
brightness (cf. [13]).

2. RELATED WORKS

Spectral editing was often implemented as a kind of painting pro-
gram (cf. [14]). It started early with SpecDraw [2], at which
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frequencies were filtered (rejected) with an eraser and rectangu-
lar selection and transformation of the frequency-domain. In Au-
dioSculpt [5] polygonal and freehand selections provided more
freedom for damping, enforcing, and duplicating spectrals, as well
as for time-stretching [15]. TAPESTREA [16] made it possible for
the first time to create sound spaces from different audio sources.
SPEAR [3] abstracts the frequency-domain and uses a sparse rep-
resentation of audio. Therefore the manipulation is mediated by a
vector visualization (reprasentation of partials with lines) and not
by a pixel visualization (sonagram) like the other works. Prehear-
ing is done by STFT, and when exporting files in higher resolutions
it is possible to choose between different implementations, such as
the McAulay-Quatieri method [17] or oscillator banks. In Meta-
Synth image data is used as input besides the freehand drawing of
shapes within the spectrogram [18]. Moreover, filters and transpo-
sitions with metaphorical manipulations of the frequency-domain
with fluids [19] and with virtual reality [20] are proposed.

All works have a collection of user interface elements and in-
teraction possibilities. Free zoom levels in time and frequency axis
allow the user both a quick overview of the entire spectral space
and the possibility to edit temporal details. A tool palette usually
allows switching between different modes for the selection and
modification of magnitudes.

Besides that, with Sound Mosaics [21, 22] a system for sound
synthesis via influencing graphical variables was created. Thereby,
timbre is described by three parameters: sharpness, compactness
and roughness (sensory dissonance). Compactness classifies sig-
nals on a scale between complex tones and simple noise. The vi-
sualization uses color (hue, saturation and brightness), as well as
texturial structure. In addition, there is the research field of sound-
textures (compare [23]), which also describes a graphical synthesis
that is sometimes done in the frequency-domain.

Moreover, the Sonic Visualizer [24] is a program for analyz-
ing audio signals. The program has an external API and a plu-
gin infrastructure. Thus, for example, psychoacoustic parameters
can be calculated and various features like a beat-detection can be
extracted. Also, the ArtemiS SUITE enables sound and vibration
analysis in an industrial context and displays psychoacoustic pa-
rameters according to Zwicker and Sottek’s hearing model.

3. VISUALAUDIO-DESIGN

Our VisualAudio-Design (VAD) is written in modern C++ and
is based on libCinder using FFTW for analysis/resynthesis and
openCV for two-dimensional convolutional spectral processing.
Therefore, it is cross-platform compileable, but mainly it is de-
veloped for Windows.

VAD allows the user to load, analyze and play natural sounds
as audio files in a canvas (see Figure 1). Through the analysis
(FFT) the overtones (or generally the frequencies involved in the
sound) can be visualized.

In addition to natural sounds, images of any type can also be
loaded and converted into sound (phase estimation + iFFT). This
allows graphical structures to be used as sound material.

The central part is the SpectralCanvas (a sonagram), in which
sounds and effects can be freely transformed as nodes in groups
and layers.

A sound object can be moved freely in the SpectralCanvas. A
horizontal shift in time repositions the sound object and a verti-
cal shift transposes it. Rotation can also be performed. A slight
rotation causes a gradual glissando of the entire spectral range of

Figure 1: Workspace of the VisualAudio-Design: the SpectralCan-
vas with its nodes consisting of sounds and effects (center), sur-
rounded by widgets, and a toolbar (left).

the sound object. With strong rotations (approx. 90◦ ) overtones
become transients. Thereby, a sound rich in overtones becomes an
impulse-like clicking (see Figure 2). Timestreching can be per-
formed by stretching the node along the time axis. Stretching
along the frequency axis contracts or expands the harmonics.

Figure 2: Sound-nodes can be freely transformed. Thereby, a flute
(left), is rotated by 90◦ (middle) or less (right). Effect-nodes can
alter a certain area (see white rectangle (right) with blurring).

In addition, effects equivalent to image processing can be used
to distort the frequency domain to further alter the material. In this
way, for example, a blur filter can be used to optically smooth the
spectral space and thus audibly noise out the sound. The advantage
over conventional audio effects over time is that individual fre-
quency bands or individual overtones can be specifically assigned
to an effect.

In this way, the VAD is suitable for creating sound surfaces
as collages for creative use. A composer or sound designer is not
limited to the mere temporal arrangement of sounds. New ways for
musical expression can be found through transposition, rotation,
overtone-exact effects, the use of graphical structures, and also by
cutting & re-inserting individual frequency ranges/overtones.

3.1. System Design

The system is based on a scenegraph (the SpectralCanvas) of nodes
and is highly modularized for extending with new features. At the
same time, it is highly parallelized in order to guarantee a smooth
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UserExperience with fast calculations in background worker. Ba-
sically, there are modules providing tools for the user to create or
modify nodes in different ways, and widgets that can visualize ad-
ditional parameters besides to the sonagram of the SpectralCanvas.

A tool is created as a module (inherits from ModuleBase-class)
and is registered at the ModuleManager. This also creates the en-
try in the GUIManager for the toolbox. The active tool receives all
interaction events that are performed with it on the SpectralCan-
vas. The tool also has direct access to the nodes of the Spectral-
Canvas and its spectral data. Thus a tool directly manipulates the
nodes. A node can own spectral data itself (sound-node) or ma-
nipulate underlying spectral data in the hierarchy as effect-node.
If a node has been changed, the corresponding layer and all lay-
ers above it are updated by the SpectralCanvas and are processed
by the SpectralEngine. The SpectralEngine always keeps the time
and frequency domain consistent with each other.

Multimodal input (mouse, key and touch at the moment) is
preprocessed. Afterwards, the input event is recognized in the In-
teractionManager as gesture and propagated as interaction event.
When starting an interaction, the GUI is handled first. If the GUI
is not involved, the event is passed on to the WidgetManager. In
this very moment the SpectralCanvas is treated as Widget. If the
current interaction takes place on the SpectralCanvas, the event is
passed to the active module. However, when interacting on a ac-
tual widget, the event is processed in the corresponding widget.
If no one handles the event, so the interaction is done somewhere
else in the workspace, then standard interactions for zooming and
panning to navigate in the workspace are done.

3.1.1. Tools and Interaction

Each module provides a tool for the user, to manipulate the nodes
or directly the frequency-domain of the SpectralCanvas. Several
modules have been implemented but many more suitable modules
are possible. Description of touch gestures according to GeForMT
[25] are shortend in the following. For instance, a two finger swipe
gesture is shortened to 2Fswipe and a gesture in which one finger
holds while another finger performs a circular movement is short-
ened to 1Fhold + 1Fcircle.

Figure 3: SaveModule: selecting a time range (left) or an area of
spectrals (middle) in the SpectralCanvas, or selecting a time range
in the waveform widget aswell (right).

• load & save – Loading of any audio and image files and
simultaneous positioning by clicking (1Ftap) into Spectral-
Canvas or time-based widgets. The sound is always aligned
to the 0Hz line. A time range for saving can be selected
as a line in the SpectralCanvas or in the waveform widget.
To export the frequency domain, an area above a certain
threshold is drawn instead of a line. (see Figure 3)

Figure 4: StampModule: Selecting spectrals (left) and stamping it
as new sound-nodes to the SpectralCanvas (right).

• transform – Translation via dragging (1Fmove), rotation &
scaling via right-click drag (1Fhold +1Fcircle & 1Fhold +
1Fsplit), warping via manipulation handles.

• stamp – With the stamp-tool an area of spectrals is copied
and stamped to a new location within the SpectralCanvas
(see Figure 4). Soundtextures can be created.

• draw – Lines can be drawn representing sinusoids or tran-
sients. Drawing multiple lines via multitouch ([1Fmove]

∗)
is possible. Therefore, navigational tasks with 3Fmove/sparse

are ignored. This module has high potential for drawing
fundamental tones with instantaneously generated overtones
to create lines with natural and artificial timbre.

• effect – Effect-nodes are treated like sound-nodes. They are
created via normal selection.

• loop – VAD offers the possibility to create loops. The loops
can cover the entire frequency and time range or, like the
effects, individual frequency ranges. Individual loops can
be started and stopped. In this way, a myriad of spectral
synchronous and asynchronous loops can be played.

• navigational tasks – Panning via drag on workspace (1Fmove

on workspace, or 3Fmove anywhere) and zooming via scroll
(2Fsplit/pinch on workspace, or 3Fsparse anywhere).

3.1.2. Widgets

The widgets surround the SpectralCanvas (see Figure 5). This al-
lows widgets to have one of the four orientations (TOP, RIGHT,
BOTTOM, LEFT). LEFT & RIGHT are frequency-based widgets
and TOP & BOTTOM are time-based widgets. The same type
of widgets can be arranged in arbitrary ways. In the following
table each row can be modelled as a adaptive widget (see Tabel
1). For instance, if the waveform widget is dragged to a LEFT
or RIGHT position it transforms into a spectrum. Advanced wid-
gets for displaying and manipulating perceptual parameters such
as sharpness, compactness, etc. are planed as future work.
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time frequency
timeline, time axis labeling frequency axis labeling

waveform spectrum
spectral power long-term spectrum

current parameters parameter distribution

Table 1: Relation of time based and frequency based widgets.

Figure 5: Widgets are aligned horizontally or vertically to the
SpectralCanvas.

Widgets can bind themselves to events for getting the current
play position, current spectrum, the whole frequency-domain, the
whole time-domain, and the nodes of the SpectralCanvas. Each
event will occur, if the corresponding data has been changed. At
the same time, the data in the widgets can also be edited. An ex-
ample is an equalizer in the spectrum.

The widget for spectral power and long-term spectrum are pro-
jections of the frequency-domain on the corresponding axis (see
figure 5) and visualizes the minimum, maximum and mean values
(min, max, avg).

3.1.3. Spectral Effects

A effect-node receives the underlaying spectral data as an event.
Now, convolution kernels are applied. The easiest way is to just
apply a kernel for blurring and sharpening, but conditional filter
like a gain-threshold (Equation 1) can also be applied (Figure 6).

5x5 filter kernel for gaussian blur:

1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



Figure 6: Examples of effect-nodes: blurring (left), sharpening
(unsharp masking) (middle) and gain-threshold (right).

5x5 filter kernel for unsharp masking:

−1
256


1 4 6 4 1
4 16 24 16 4
6 24 −476 24 6
4 16 24 16 4
1 4 6 4 1



fthreshold(spectral) =

{
spectral, if spectral ≥ threshold

0, otherwise
(1)

The unsharp masking is thereby derived from the gaussian blur
and amplifies the high-frequency components of the neighbouring
magnitudes in the two-dimensional space. The gaussian blur cre-
ates a more noisy and distant sound. On the other hand, the un-
sharp masking creates a rough and more direct sound. These ker-
nels are structure-preserving, because harmonics and partials are
not displaced. A short table shows the equivalent of time-domain
effects for image processing frequency-domain effects (see Table
2). With this transfer, most conventional time-domain effects can
be used directly in the VisualAudio-Design in a comprehensible
way. Of particular interest are effects from the time-domain and
image processing for which no transfer can be found. These are
unique features.

audio image
gate&limiter tonal correction, black&white reassign

overdrive tonal correction, white shift
compressor&expander exposure lights&shadows

simple reverb directional blur

Table 2: Relation of ordinary audio and image effects.

Additionally, some novel spectral effects are non-structure-
preserving effects, like inflate and contract (see Figure 7). Those
non-structure-preserving effects deform harmonics and transients,
meaning that timbre and envelope are altered.
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Figure 7: Examples of non-structure-preserving/structure-invasive
effects: none (left), inflating (middle) and contracting (right).

3.2. Processing

The SpectralEngine has four worker threads for forward trans-
formation, backward transformation, windowed time-data cumu-
lation, and phase-estimation. The SpectralCanvas (scenegraph)
has an instance of the SpectralEngine to process the overall re-
sults. In addition, every layer and every node have their own
SpectralEngine. That offers the opportunity to instantly prehear
only the node or layer soloistically. So there are at least 4 ∗ (1 +∑

node+
∑

layer) threads running, but most of them are idled.
To prehear a layer or the entire project, all spectral data of the

nodes are merged. At first, nodes are merged to their layer and then
the layers are merged at the same way to one consistent data layer.
Merging in fact of the spectral data means, that the maximum value
of all magnitudes and the average value of all phases are taken to
reduce multiple spectral datasets to one.

To speed up processing, only the changed area of the corre-
sponding and higher layers are recalculated. By transforming a
node the changed area has to be processed. The whole changed
area consists of the part where the node was before and the part
where the node was moved to (see Figure 8). Because of overlap-
ping windows, the influenced time range is windowSize many sam-
ples larger (Equation 4) than just the time position of the changed
spectrums. Especially if an effect-node on top of a changed node
is not fully covered in the changed Area (Achanged), then the half
kernel size (see Equation 3) has to be added as well. In fact of
multiple layered effect-nodes, for each effect Equation 3 has to be
repeated. Only this range will be cumulated to the actual part of
the audio buffer. For a smooth prehearing, the playback is double-
buffered. While playing buffer A, new data is inserted to buffer B
and after that the buffers are swapped.

Achanged =
∑

spectrumchanged (2)

if effect-node is not totally included in Achanged, repeat:

Achanged +=


‖kernel‖ , if effect is overlapping both sides
‖kernel‖

2
, if effect is overlapping one side

0, otherwise
(3)

where: ‖kernel‖ = size of kernel

Tinfluenced = windowSize+ hopSize ∗Achanged (4)

3.2.1. Phase-estimation

The SpectralEngine decides depending on the strength of the ma-
nipulation, whether the phase values can be used further or whether
they have to be re-estimated. The phase estimation is iteratively
approximated with Griffen&Lim’s Algorithm (GLA) [26] on its
own thread in the background. After 5-10 iterations the root-mean-
square error (RMSE) is already / 0.1. Therefore,t he data is prop-
agated to the rest of the system for the first time, so that the widgets

Figure 8: Illustration of the changed area consisting of the old
position (grey) and the new position (red) of a node, which is in-
fluencing a certain time range (blue).

are updated and a first prehearing is possible. In the background,
the phases are approximated more and more, so that after 100 it-
erations (RMSE of some signals can already be / 0.05) a further
propangation takes place. Depending on the desired quality, fur-
ther iterations are performed.

3.3. Challenges for Visualizations

Objective physical measurements are the basis for analysis, how-
ever, psychoacoustics deals with the subjective perception of sig-
nals (cf. [27]). Thereby, a non-linearity and a non-orthogonality
occur. Sensory quantities often do not behave linearly to their cor-
responding acoustic quantities. Moreover, many sensory variables
influence each other. For example, both frequency and volume
have an influence on the perceived pitch.

Also, visual perception is non-linear and non-orthogonal. For
the perception of the areas and volumes, the actual area or volume
is underestimated [28, 29], although, for instance, the perception
of lengths is directly proportional to the actual length of a line.

Spectrogram visualizations have a high dynamic range. Due to
the visualization of a lot of sound nodes, there is a risk that the es-
sential properties of a spectrogram are difficult to capture. Visual
recognition is also complicated by noise. In the context of visual
or image-based audio processing, however, a fast and simple in-
spection of sounds spectral space is necessary. One possibility for
a improved visual inspection of a spectrogram is an abstraction of
the frequency-domain. At the same time, the basic visual prop-
erties of the spectrogram, such as its dimensions, transients and
harmonics, should be preserved.

When visualizing information, visual differences should be
as subtle as possible, while being effective and meaningful [30].
Contrasts are defined as minimal and distinct. The number of dis-
tinctions can be increased by minimizing their differences. Using
lower contrasts and differences, a potential visual disorder is re-
duced.

One approach is a sparse vectorized visualization of the over-
tones as in [31]. Another is the method presented here to extract
layers of same decibels and visualize them in analogy to maps (see
Figure 9). To achieve that, the magnitudes are quantized using
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Figure 9: Abstraction of the frequency-domain with different decibel thresholds: 3 threshold layer (left) and up to 6 (right), with no blurring
(upper) and with blurring before thresholding (lower).

kmeans. Here, the x largest clusters of similar magnitudes are
determined. However, this means that each sound-node will have
layers on different dB levels. Whereby these planes characterize
the respective node particularly well. For an improved comparabil-
ity of sound-nodes a threshold is performed at specific dB level.
For this, user-controlled exact levels can be generated. However,
important information can be lost during visualization. Therefore,
a combination is proposed. The kmeans show the main clusters
of a node and via threshold uniform user controlled planes are
shown over all nodes. For a smoother result where the plane edges
are less noisy a prior blurring is done.

No more than about 20 layers with different color gradations
should be used, as otherwise the distinguishability between the
color gradations is made more difficult [32]. For the differentia-
tion of two areas the indication of a line is sufficient, if needed at
all. The line should have a hue which is in the color scale [32].
The distinguishable brightness values of colors depend on the cor-
responding hue.

3.4. User-centered Design

VAD highly focuses on UserExperience and ease-of-use. That is
why it is designed and developed in a user-centered way. No for-
mal study is carried out, yet. However, qualitative evaluations (ex-
pert interviews) with professionals and students from the fields of
human-computerinteraction, sound design and music composition
are conducted continuously in short design loop intervals.

3.4.1. User study

A brief user study was conducted. 26 subjects (20 male, 6 fe-
male) with average age of 26.12 participated. The subjects tested
the VisualAudio-Design (VAD) with mouse only and had to per-
form transpositions of sound-nodes, rotations (arbitrary angles, but
always including 90◦), and applying effect-nodes (blur, sharpen,
threshold) (compare Section 3.1.3). After performing these ex-
plicit tasks, they had time to create sound collages on their own.

Then they were asked with a 5-Likert scale whether VAD is
creative, the resulting resynthesis is predictable, the interface and

Figure 10: Results of a brief user study with a 5-Likert scale (the
higher the better): uncreative (1) – creative (5), unpredictable –
predictable, confusing – clear, complicated – easy to use

visualization is clear (or confusing) and whether it is easy to use.
In addition, the user experience was tested with the short user ex-
perience questionaire (UEQ-S) [33] (with a 7-Likert scale).

The results are indicating that VAD is highly creative (see Fig-
ure 10), while the predictability is moderate. The clarity and the
ease of use of VAD is given. The UEQ-S is reflecting these indica-
tions. The user experience (hedonic quality) is more than average
and the usability (pragmatic quality) is more than moderate (see
Figure 11). This is a good starting point, but the interface to effec-
tivly use the node-based VAD has to be improved in future work.

4. FUTURE AND ON-GOING WORK

Users of the qualitative evaluations wanted more intiutive touch
gestures than the existing ones in order to operate VAD without
GUI as mode switch. To achieve this, a complete GeForMT in-
terpreter has to be implemented. Also gaze and pen should be
included in the interaction.

At the moment it is only possible to select magnitudes via
a rectangle selection. For this, freehand and polygon selections
should be added, as stated in the related works, which follow con-
tent based features like harmonic overtones.
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Figure 11: Results of the UEQ-S test.

The next stage of development will be formal studies. In par-
ticular, the coherence and influence of the visual on the auditory
perception will be investigated for achieving a non-invasive sound-
design.

The draw module has to be completely redesigned in order
to paint meaningful timbre directly. In this sense also machine
learning supported morphing between timbres should follow.

In addtion, great potential also has the merging of the nodes
timbre. In this way, combined sounds are created by aligning
the maximum harmonic components and/or the maximum spectral
power (transient component) (see Figure 12).

5. CONCLUSIONS

In this paper the VisualAudio-Design was introduced, which is
intended for the creative use for sound design and composition.
The spectral manipulation is based on nodes within a scenegraph
(SpectralCanvas) and its SpectralEngine, a highly multi-threaded
processing kernel. In this context, basic tools for manipulating
nodes and specialised effect-nodes for convolutions were presented.
Additionally, widgets are used for analysis, advanced selection and
interaction. As well as an abstraction of the frequency-domain was
discussed.

6. ACKNOWLEDGMENTS

Thanks to all students who took part in practical and theoretical
courses around VAD, testing it, or served as subjects, and thus
contributed to the overall development.

7. REFERENCES

[1] Joshua Fineberg, “Spectral music,” Contemporary Music
Review, vol. 19, no. 2, pp. 1–5, 2000.

[2] G Eckel, “Manipulation of Sound Signals Based on Graph-
ical Representation-A Musical Point of View,” in Proceed-
ings of the International Workshop on Models and Represen-
tations of Musical Signals, Capri, Italia, 1992.

[3] Michael Klingbeil, “Software for spectral Analysis, Editing,
and synthesis.,” in International Computer Music Confer-
ence (ICMC), Barcelona, Spain, 2005.

[4] John M Grey and John W Gordon, “Perceptual effects of
spectral modifications on musical timbres,” vol. 63, no. 5,
pp. 1493–1500.

[5] Niels Bogaards, Axel Roebel, and Xavier Rodet, “Sound
analysis and processing with audiosculpt 2,” International
Computer Music Conference (ICMC), p. 1, Nov 2004.

[6] Allan Seago, “A new interaction strategy for musical timbre
design,” in Music and human-computer interaction, pp. 153–
169. Springer, 2013.

[7] Shams Watkins, Ladan Shams, Sachiyo Tanaka, J-D Haynes,
and Geraint Rees, “Sound alters activity in human v1 in as-
sociation with illusory visual perception,” Neuroimage, vol.
31, no. 3, pp. 1247–1256, 2006.

[8] Gemma A Calvert, Peter C Hansen, Susan D Iversen, and
Michael J Brammer, “Detection of audio-visual integration
sites in humans by application of electrophysiological crite-
ria to the bold effect,” Neuroimage, vol. 14, no. 2, pp. 427–
438, 2001.

[9] Charles E Schroeder and John J Foxe, “The timing and lam-
inar profile of converging inputs to multisensory areas of the
macaque neocortex,” Cognitive Brain Research, vol. 14, no.
1, pp. 187–198, 2002.

[10] Francesca Frassinetti, Nadia Bolognini, and Elisabetta Là-
davas, “Enhancement of visual perception by crossmodal
visuo-auditory interaction,” Experimental brain research,
vol. 147, no. 3, pp. 332–343, 2002.

[11] Charles E Schroeder and John Foxe, “Multisensory contribu-
tions to low-level, unisensory processing,” Current opinion
in neurobiology, vol. 15, no. 4, pp. 454–458, 2005.

[12] Marie-Helene Giard and Franck Peronnet, “Auditory-visual
integration during multimodal object recognition in humans:
a behavioral and electrophysiological study,” Journal of cog-
nitive neuroscience, vol. 11, no. 5, pp. 473–490, 1999.

[13] Kostas Giannakis and Matt Smith, “Imaging soundscapes:
Identifying cognitive associations between auditory and vi-
sual dimensions,” Musical Imagery, pp. 161–179, 2001.

[14] Jean-Baptiste Thiebaut, Patrick GT Healey, and Nick Bryan-
Kinns, “Drawing electroacoustic music.,” in ICMC, 2008.

[15] Niels Bogaards and Axel Röbel, “An Interface for Analysis-
Driven Sound Processing,” in Audio Engineering Society
Convention 119, 2005.

[16] Ananya Misra, Perry R. Cook, and Ge Wang, “Tapestrea:
Sound scene modeling by example,” in ACM SIGGRAPH
2006 Sketches, New York, NY, USA, 2006, SIGGRAPH ’06,
ACM.

[17] T Quatieri and Rl McAulay, “Speech transformations based
on a sinusoidal representation,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 34, no. 6, pp.
1449–1464, 1986.

[18] E Wenger and E Spiegel, “Metasynth 4.0 user guide and
reference,” Redwood City, CA: U&I Software LLC. www.
uisoftware. com/MetaSynth, 2005.

DAFX-7

203



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

Figure 12: Alignment of sound-nodes: (1) original position (no alignment), (2) harmonic alignment, (3) temporal alignment, (4) harmonic
and temporal, and more complex harmonic & temporal alignments with mirroring of the first node: (5) vertical, (6) vertical and horizontal.

[19] Lars Engeln and Rainer Groh, “AudioFlux : A Proposal
for interactive Visual Audio Manipulation,” in Mensch und
Computer 2017 - Workshopband, M. Burghardt, R. Wimmer,
C. Wolff, and C. Womser-Hacker, Eds., Regensburg, Ger-
many, 2017, number September, Gesellschaft für Informatik
e.V.

[20] Lars Engeln, Natalie Hube, and Rainer Groh, “Immersive
visualaudiodesign: Spectral editing in vr,” in Proceedings of
the Audio Mostly 2018 on Sound in Immersion and Emotion.
ACM, 2018, p. 38.

[21] Konstantinos Giannakis, “Sound mosaics a graphical user
interface for sound synthesis based on auditory-visual asso-
ciations,” 2001.

[22] Kostas Giannakis, “A comparative evaluation of auditory-
visual mappings for sound visualisation,” Organised Sound,
vol. 11, no. 3, pp. 297–307, 2006.

[23] Diemo Schwarz, “State of the Art in Sound Texture Synthe-
sis,” in Digital Audio Effects (DAFx), Paris, France, Sept.
2011, pp. 221–232.

[24] Chris Cannam, Christian Landone, and Mark Sandler,
“Sonic visualiser: An open source application for viewing,
analysing, and annotating music audio files,” in Proceed-
ings of the 18th ACM international conference on Multime-
dia. ACM, 2010, pp. 1467–1468.

[25] Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer Groh,
and Severin Taranko, “Towards a formalization of multi-
touch gestures,” in ACM International Conference on In-
teractive Tabletops and Surfaces. ACM, 2010, pp. 49–58.

[26] Nathanaël Perraudin, Peter Balazs, and Peter L Søndergaard,
“A fast griffin-lim algorithm,” in 2013 IEEE Workshop on
Applications of Signal Processing to Audio and Acoustics.
IEEE, 2013, pp. 1–4.

[27] Gareth Loy, Musimathics: the mathematical foundations of
music, vol. 1, MIT press, 2011.

[28] Stanley S Stevens and Eugene H Galanter, “Ratio scales and
category scales for a dozen perceptual continua.,” Journal of
experimental psychology, vol. 54, no. 6, pp. 377, 1957.

[29] James John Flannery, “The relative effectiveness of some
common graduated point symbols in the presentation of
quantitative data,” Cartographica: The International Jour-
nal for Geographic Information and Geovisualization, vol.
8, no. 2, pp. 96–109, 1971.

[30] Edward R Tufte, Susan R McKay, Wolfgang Christian, and
James R Matey, “Visual explanations: images and quantities,
evidence and narrative,” 1998.

[31] Michael Klingbeil, “SPEAR: Sinusoidal Partial Editing
Analysis and Resynthesis,” 2012, vol. 12, p. 3.

[32] Edward R Tufte, Nora Hillman Goeler, and Richard Benson,
Envisioning information, vol. 126, Graphics press Cheshire,
CT, 1990.

[33] Martin Schrepp, Andreas Hinderks, and Jörg
Thomaschewski, “Design and evaluation of a short
version of the user experience questionnaire (ueq-s).,” .

DAFX-8

204



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

SYNTHETIC TRANSAURAL AUDIO RENDERING (STAR):
A PERCEPTIVE APPROACH FOR SOUND SPATIALIZATION

Eric Méaux

L3i
University of La Rochelle, France
eric.meaux01@univ-lr.fr

Sylvain Marchand

L3i
University of La Rochelle, France

sylvain.marchand@univ-lr.fr

ABSTRACT

The principles of Synthetic Transaural Audio Rendering (STAR)
were first introduced at DAFx-06. This is a perceptive approach for
sound spatialization, whereas state-of-the-art methods are rather
physical. With our STAR method, we focus neither on the wave
field (such as HOA) nor on the sound wave (such as VBAP), but
rather on the acoustic paths traveled by the sound to the listener
ears. The STAR method consists in canceling the cross-talk sig-
nals between two loudspeakers and the ears of the listener (in a
transaural way), with acoustic paths not measured but computed
by some model (thus synthetic). Our model is based on perceptive
cues, used by the human auditory system for sound localization.
The aim is to give the listener the sensation of the position of each
source, and not to reconstruct the corresponding acoustic wave or
field. This should work with various loudspeaker configurations,
with a large sweet spot, since the model is neither specialized for
a specific configuration nor individualized for a specific listener.
Experimental tests have been conducted in 2015 and 2019 with
different rooms and audiences, for still, moving, and polyphonic
musical sounds. It turns out that the proposed method is com-
petitive with the state-of-the-art ones. However, this is a work in
progress and further work is needed to improve the quality.

1. INTRODUCTION

The purpose of sound spatialization (or “3D sound”) [1] is to give
the listener the sensation that the sound is coming from a certain
position in space, or that he/she is surrounded by sounds, etc.

This research area is not new, and several state-of-the-art meth-
ods have been proposed, such as Vector Base Amplitude Panning
(VBAP) proposed by Pulkki [2], Ambisonics proposed by Gerzon
[3] and generalized to higher orders (High Order Ambisonics or
HOA) by Daniel [4], or Wave Field Synthesis (WFS) introduced
by Berkhout [5]. However, all these methods are based on physics,
and tend to reproduce either the sound wave (VBAP) or the sound
field at the position of the listener (HOA) or everywhere in space
(WFS). Moreover, WFS requires a lot of calibrated loudspeakers,
HOA requires also calibration, less speakers but with a sound re-
production localized to a sweet spot. Since we want a system
that can be used in practical situations, with a limited number of
loudspeakers, in a room where the acoustics cannot be optimized,
and computationally efficient, the only option seems to be VBAP,
which appears to be a good choice in practice for the musical situ-
ations we are interested in [6].
Copyright: c© 2018 Eric Méaux et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

However, together with Mouba we proposed in [7, 8] the prin-
ciples of a perceptive approach for sound spatialization in practical
conditions. We focus neither on the wave field (such as HOA) nor
on the sound wave (such as VBAP), but rather on the acoustic paths
traveled by the sound to the listener ears. Our method consists
in canceling the cross-talk signals between two loudspeakers and
the ears of the listener (in a transaural way), with acoustic paths
not measured but computed by some model (thus synthetic). Like
MPEG Surround [9], our model is based on perceptive cues, used
by the human auditory system for sound localization. The aim is
to give the listener the sensation of the position of each source, and
not to reconstruct the corresponding acoustic wave of field. This
should work with various loudspeaker configurations, with a large
sweet spot, since the model is neither specialized for a specific
configuration nor individualized for a specific listener.

The original method suffered instabilities for some configura-
tions, as well as for extreme frequencies. Since then, the method
has been enhanced and we propose now the Synthetic Transaural
Audio Rendering (STAR) method.

Experimental tests have been conducted in 2015 and 2019 with
different rooms and audiences, for still, moving, and polyphonic
sources. The HOA, VBAP, and STAR methods have been com-
pared.

The remainder of this paper is organized as follows. Section
2 introduces the STAR method, Section 3 describes the practical
experiments used to evaluate the method, then Section 4 presents
the results of experiments conducted in 2015 and 2019, before a
conclusion and some perspectives in Section 5.

2. THE STAR METHOD

The principles of Synthetic Transaural Audio Rendering (STAR)
we detail here were first introduced in [7, 8].

This method is suitable for spatial audio objects. Each object
(or source) consists of a signal to be played at a given position. For
now, we focus only on the azimuth θ in the horizontal plane.

For short, the STAR method consists in canceling the cross-
talk signals between two loudspeakers and the ears of the listener
(in a transaural way), with acoustic paths not measured but com-
puted by some model (thus synthetic). Our model is based on per-
ceptive cues, used by the human auditory system for sound local-
ization. The aim is to give the listener the sensation of the position
of each source, and not to reconstruct the corresponding acoustic
wave of field. This is indeed a perceptive approach.

In a setup with many speakers such as the one illustrated on
Figure 1, we use the classic pair-wise paradigm [10], consisting in
choosing for a given source only the two speakers closest to it (in
azimuth): one at the left of the source, the other at its right. This is
the same choice as in the VBAP method in this two-dimensional
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case. Of course, when the source is exactly on one speaker, the
source signal is directly played from this speaker and thus the spa-
tialization process is bypassed.

LS 5

LS 4

LS 3

LS 2

LS 1

LS 8

LS 7

LS 6 S 2

S 1

transaural axis

θ
=

0

Figure 1: Octophonic setup, thus with eight loudspeakers (LS), and
with two sound sources (S). S1 is located between LS 2 and LS 3,
and S2 is between LS 5 and LS 6.

STAR operates in the spectral domain. Each source signal
is passed into the frequency domain with a Short-Time Fourier
Transform (STFT), using the Fast Fourier Transform (FFT), pro-
cessed and distributed among the loudspeakers, then the signal for
each loudspeaker is obtained from the spectral domain using the
inverse FFT, see Figure 2. Thus, for n sources and m loudspeak-
ers, we compute n + m FFTs in total (i.e. 10 FFTs in the case
illustrated in Figure 1). In practice, with use a Hann window and
frames of 1024 samples at 44100Hz, with 50% overlap.

Spatialization
FFT

iFFT

iFFT

LS 3

LS 2

S1

Spatialization
FFT

iFFT

iFFT

LS 6

LS 5

S2

Figure 2: General principle of STAR spatialization.

Since low frequencies can cause problems with windowing in
the STFT, such as clicks in the case of moving sources (thus chang-
ing parameters) when there are not enough periods of the signal
within the window w, we filter out the frequencies below 150Hz
prior to the spatialization and re-inject them equally in all the loud-
speakers afterwards (we could even use a subwoofer, although we
preferred not to use this possibility in our experiments). This is not
problematic since human beings hardly localize such low frequen-
cies (see [1]).

2.1. Synthetic Paths

With the STAR method, we consider the acoustic paths traveled
by the sound to the listener ears. These paths are represented in

the spectral domain by their transfer functions, and derived from
interaural cues using a model.

The Interaural Time Difference (ITD) corresponds to the travel
time difference of a sound between the two ears, while the Inter-
aural Level Difference (ILD) corresponds to the level difference
between the two ears.

These interaural cues can be derived from real Head-Related
Transfer Functions (HRTFs), which are the spectral versions of the
Head-Related Impulse Responses (HRIRs) that can be found, for
example, in the CIPIC database [11]. More precisely, we have:

ILDreal(f) = −20 log10(|HRTFL(f)/HRTFR(f)|)
ITDreal(f) = −∠(HRTFL(f)/HRTFR(f))/(2πf) (1)

The HRTFs depend on the subject. Since we are consider-
ing only the azimuth, individualization is not really necessary and
we could consider average HRTFs among subjects (see Figure 3).
However, after Viste [12], in our system we use a model for each
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Figure 3: HRTF magnitude as a function of azimuth and frequency.

interaural cue. Mouba et al. proposed in [8] the following models:

ILD(θ, f) = α(f) sin(θ)
ITD(θ, f) = β(f)r sin(θ)/c (2)

whereα and β are scaling factors obtained from the CIPIC database
[11] by matching the model to the data, in the least-square sense
(see Figure 4). The overall error for all subjects, azimuths, and
frequencies is of 4.29dB for the ILD and 0.052ms for the ITD.

Now that we have synthetic interaural cues (see Figure 5), we
can propose synthetic paths respecting these cues, first by comput-
ing

∆a(f) = ILD(θ, f)/20
∆φ(f) = ITD(θ, f) · 2πf (3)

then by using the fact that the left and right HRTFs are roughly
symmetric (see Figure 3), we propose

HL = 10+∆a(f)/2 · e+i∆φ(f)/2

HR = 10−∆a(f)/2 · e−i∆φ(f)/2 (4)

where HL and HR are the paths going to the left and right ears,
respectively.
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frequency Hz

(a) α scaling factor (ILD)

frequency Hz

(b) β scaling factor (ITD)

Figure 4: α and β scaling factors.

frequency (Hz)

(a) synthetic ILD (dB)

frequency (Hz)

(b) synthetic ITD (s)

Figure 5: Synthetic ILD (a) and ITD (b).

2.2. Transaural Principle

The STAR method is largely based on the transaural principle. As
shown in Figure 6, we aim at reproducing the paths HL and HR
between the (virtual) source and the left and right ears of the lis-
tener, using the (real) acoustic path between each loudspeaker and
each ear (e.g. HLR denoting the path from the left loudspeaker to
the right ear).

More precisely, for a given sound s (S being its spectral ver-
sion), the sounds measured at the left and right should be HL · S
and HR · S, respectively. But to reproduce this virtual source, we
use instead two real loudspeakers (the pair at the left and right of
the source), thus we must verify the following equation system

HL · S = KL ·HLL · S +KR ·HRL · S
HR · S = KL ·HLR · S +KR ·HRR · S (5)

where KL and KR are some coefficients to be applied to the left
and right loudspeakers, respectively. These two coefficients are
the solutions of the preceding two-equation system, where S can
be simplified.

LSR

LSL

S

HLL

HRR

HL

HRL

HR

L R

HLR

Figure 6: Transaural principle: 4 real acoustic paths (HLL,HRL,
HLR, and HRR) used to reproduce 2 virtual ones (HL and HR).
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Figure 7: STAR processing chain.

Figure 7 then summarizes the whole STAR processing chain.
First (Part a), we start by calculating every acoustic path (as

shown on Figure 6), using the procedure described above in Sec-
tion 2.1, thus with Equation (4).

Second (Part b), we compute the system determinant:

d = HLR ·HRL −HLL ·HRR (6)

Third (Part c), it is now possible to invert the system to find
the loudspeaker coefficients, and more precisely:

KL = (HR ·HRL −HL ·HRR)/d
KR = (HL ·HLR −HR ·HLL)/d (7)

The fourth and last step (Part d) consists in applying the coef-
ficients to the signal spectrum for the left and right speakers of the
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speaker pair:

XL(t, f) = KL(f) ·X(t, f)
XR(t, f) = KR(f) ·X(t, f) (8)

2.3. The Determinant

Of course, things are not so simple in practice. For example, the
system determinant d (see Equation (6)) plays an essential role
in the STAR method. It shall not approach the 0 value, or else
the system is ill-conditioned. As shown in Equation (6), the de-
terminant only depends on the paths of the speakers, thus on the
positions of these speakers relatively to the ears of the listener. Of
course, a problem would happen if the two speakers were at the
same position (which is supposed to be impossible), or very close.
Figure 8 shows the determinant norm as a function of the speakers
spacing. We see that is necessary to have an angle between the
two speakers which is greater than 2 degrees to have a determinant
norm greater than 0.01 (the value we chose to guarantee the stabil-
ity of the system). Hopefully, this will be the case in practice since
unlike Wave Field Synthesis (WFS) [5], STAR aims at addressing
sparse speaker configurations. In fact, a problem arises with the
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Figure 8: Determinant norm as a function of frequency and speak-
ers spacing (in red where it is below 0.01).

low frequencies, but hopefully recall that they are filtered out prior
to the spatialization.

But if nothing is done, because of the symmetry of our syn-
thetic paths (see Equations (4)), a null determinant problem also
appears if the speakers are placed symmetrically with the transaural
axis, as in our experimental setup (see Figure 15, LS 2 and 3, or
LS 6 and 7). A solution could be to shift the azimuth reference
(axis rotation) to break the symmetry of the paths, and move to a
problem-free configuration such as the one of Figure 1. This has
been done in our first experiments (prior to 2018). For this article,
we made a more radical choice: placing the azimuth reference at
the center of the loudspeaker pair. This way, the determinant only
depends on frequency (and no more on the azimuth). Figure 9
shows the resulting determinant, which is problem-free except for
very low frequencies (which are filtered). Studying the influence
of this azimuth reference is part of our ongoing research.

2.4. The Coefficients

The calculation of coefficients KL and KR described in Equation
(7) is the last step of the method.

Even if the determinant of the system is correct, we have to
verify that the solutions are also correct. For example, the bigger
are the coefficient values, the bigger is the risk to have a saturation
on the speakers. Moreover, unlike VBAP or HOA, our coefficients
are complex.

frequency Hz

Figure 9: Determinant norm as a function of the frequency value
(here for θ = 0).

Figure 10 shows the modulus of the left and right coefficients
depending of the position of the virtual source. The value is mostly
between 0 and 1.4, and never exceeds 1.6, thus a risk of saturation
exists, for a loud sound source.
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Figure 10: Magnitude of theKL andKR coefficients as a function
of frequency and source azimuth.

Figure 11 compares the STAR and VBAP coefficients for a
virtual source placed at 0 deg, which is in the middle of two speak-
ers in the configuration of our experiment (see Figure 15), the two
loudspeakers being then placed relatively at ±22.5 deg. Although
the STAR coefficients are complex, and spectral (i.e. dependent on
the frequency), we can see that their modulus stays relatively close
to the coefficients of VBAP (which are constant).

frequency Hz

Figure 11: VBAP (dashed black) and STAR (plain green) coeffi-
cients comparison (for θ = 0, where the left and right coefficients
are the same).

Figures 11 and 10 also show the sinusoidal and symmetric as-
pects of the ITD and ILD used to compute the coefficients, in the
first step of the method.
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3. EXPERIMENTS

The experiments consist of a pre-test followed by three tests. The
pre-test is used to identify people who are not sensitive to spa-
tialization. The aim of the three others is to compare the STAR
method with two state-of-the-art methods (VBAP and HOA pan-
ning) in different situations.

For each of these three tests, a sound example is played using
VBAP, HOA, and STAR, together with a spatial anchor consist-
ing of the monophonic version of the sound (with full bandwidth).
The sounds are then adjusted to the same volume. The resulting
4 stimuli are randomly attributed a letter (A, B, C, or D), and the
sequence (A, B, C, and D) is played and repeated.

The subjects are asked to answer for each method, possibly
randomly if they do not know what to answer (for example in the
case of the anchor). They also have the possibility to write free
comments for each test.

3.1. Preliminary Test

A preliminary test is used for subjects who are neither sound ex-
perts nor used to spatial sound. This is a “warm up”, so that the
subjects listen to the sound system and focus on the spatial as-
pects. Moreover, this pre-test allows us to identify the subjects
who do not pay attention to the spatialization, and thus have to be
ruled out from the panel for the results.

For this pre-test, 4 different bird sound examples are played 4
times each, but at different positions. For each example, the first
time is the reference, and the subject should retrieve this reference
randomly hidden among the 3 other sounds. Thus one position is
correct (the one of the reference), and two are far from the one of
the reference sound, so that this exercise should be easy for non
experts.

3.2. Static Test

In the static test, a musical excerpt is played by a saxophone at
a fixed azimuth. The subjects are then asked two things: first,
to localize this single source, by placing the letter corresponding
to the method on a reference circle (see Figure 12); second, to
evaluate the quality of the sound, on a MUSHRA-like [13] notation
scale (see Figure 13).

A

B

C
D

Figure 12: Reference circle.

3.3. Dynamic Test

The aim of the dynamic test is to compare the spatialization meth-
ods in the case of a moving source. For this purpose, we cre-
ated a circular trajectory (direct orientation) on a percussive music

bad

AD
B

C

good

Figure 13: Notation scale.

(tablas). Again, the subjects are asked two things: first, to choose
the trajectory they find the best among 8 possibilities (see Figure
14); second, again to evaluate the quality of the sound.

AC

D

B

Figure 14: A choice of 8 trajectories, the correct one being the
second one (circle in the direct direction).

3.4. Polyphonic Test

The third test is a polyphonic case. A pop musical song (jazz)
is spatialized, with singers and instruments (drums, bass, saxo-
phone, guitar, keyboards) as spatial audio objects, i.e. individual
sources distributed in space with positions closest to the choice of
the sound engineer for the artistic mix. Moreover, this musical ex-
cerpt has the advantage of presenting singing voice with different
dynamics, together with various instruments, and ends with a cap-
pella. This time we ask the listeners to evaluate three parameters,
all on the notation scale of Figure 13: the quality (like in the two
previous tests), the immersion, and the “intelligibility” (or clarity).

4. RESULTS

In 2015, during the Electrocution festival for electroacoustic mu-
sic in Brest, France, the previous experiments were conducted by
a group of Master’s students, with an octophonic configuration
placed in a quite reverberant concert hall (a former factory made
of concrete. . . ), with an audience constituted by composers, sound
engineers, and other people with a majority of music professionals
used to spatial sound (29 subjects in total). This configuration was
exactly the one used for the diffusion of the concerts of the festival.

The conclusion of these experiments showed that STAR had a
large sweet spot, was better for the dynamic test (VBAP was the
worse, with many hexagons chosen instead of circles, i.e. jumps
between loudspeakers), and preferred for the polyphonic test, al-
though the sound timbre has sometimes been described as “nasal
quality”. Thus, the results were quite promising, although we had
to fix this timbre problem, thought to be large coefficient values in
the high frequencies (producing a high-pass filter effect).

For the present article, we decided to re-conduct these experi-
ments in La Rochelle, again with an octophonic configuration but
in a classroom with moderate reverberation. Figure 15 describes
the setup. LS 1 to LS 8 are the active loudspeakers, B are 4 baits
(inactive loudspeakers, to artificially increase the complexity of the
setup, because it was impossible to hide the other loudspeakers),
and 9 seats placed in the middle of this setup (S 1 to S 9).
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LS 3

LS 2

LS 1LS 8

LS 7

LS 6

B B

B
B

S 1 S 2 S 3

S 4 S 5 S 6

S 7 S 8 S 9

Figure 15: Experimental setup (2019): 8 active loudspeakers (LS
1 to 8), 4 inactive ones or baits (B), and 9 seats (S 1 to 9).

The panel consisted of 32 persons (the experiment was run
4 times), almost exclusively composed of amateurs or neophytes
on music (only 1 music professional), mainly students and staff
of the technical university. After the pre-test only 2 persons were
eliminated (people who did not manage to find the reference for at
least half of the 4 examples). Thus, the final panel consisted of 30
people (8 women and 22 men), ranging from 17 to 49 years old,
with 23 of them below 25 years old.

4.1. Static Test

Figure 16 summarizes the results of the static test, where the lis-
teners were asked to localize a static source, in terms of mean and
standard deviation. It appears clearly than the (mono) anchor score
is very bad, which is normal. For the three methods the mean is
not very far from the real position of the virtual source, but it is
clear than VBAP and STAR are better than HOA (which uses all
speakers, which can be a drawback for a small room and thus some
subjects seating relatively far from the sweet spot or too close to
one speaker). The STAR method exhibits the best mean value but a
larger standard deviation than VBAP, which seems the best choice.
Principal Component Analysis (PCA) showed that the positions of
the listeners and their perception of the source position are clearly
correlated. More precisely, the listener tends to perceive the sound
in the direction of the closest loudspeaker, which is not surprising
but problematic.

Regarding the perceived quality, the results (see Figure 17)
are quite surprising, because all methods show comparable results,
with a mean in the middle and a large standard deviation. This
might be a problem with the anchor, which is mono but with full
bandwidth, thus with a probably too high quality (for an anchor).

Anchor HOA VBAP STAR
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Figure 16: Static test: perceived source localization. The correct
source azimuth is materialized by the dashed line.
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Figure 17: Static test: perceived sound quality.

4.2. Dynamic Test

Figure 18 summarizes the results of the dynamic test, where the
listeners were asked to recognize the trajectory described in time
by a moving source. The anchor exhibits a random behavior, which
is normal, since there is no trajectory rendered by this mono ver-
sion. Then, for all methods, there is some hesitation between
the circular (correct one) and hexagonal trajectories. HOA seems
to perform best, followed by VBAP then STAR. This looks sur-
prising to us, because for the test conducted in 2015 (see Figure
19) the STAR method was first (and not last. . . ). Apart from the
room characteristics and audience qualification, the only change
between the 2015 and 2019 tests is the fact that, because we sus-
pected that this was the cause of the “nasal quality”, we chose to
place the azimuth reference at the center of the loudspeaker pair to
improve the system determinant (see Section 2.3). This might be
a bad choice.
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Figure 18: Dynamic test: perceived source trajectory.

Figure 19: Dynamic test: perceived source trajectory (values in
percents), for the test conducted in 2015.

Regarding the perceived quality, the results (see Figure 20)
show that the anchor gets a lower score (which is normal since
the anchor does not move), but the score of the three methods are
quite similar. Again, this might be a problem of a too high quality
anchor for inexperienced listeners.

4.3. Polyphonic Test

Figure 21 shows the perceived quality in the case of the polyphonic
test. This time, the anchor is statistically lower, but all the three
methods are judged equally good. The results are consistent be-
tween 2015 and 2019, even if in 2015 STAR was preferred, but in
a non statistically significant way.

In 2019, we asked for subjective immersion and intelligibility
(but not in 2015). Figure 22 shows the the perceived immersion is
very similar to the perceived quality. Regarding intelligibility (see
Figure 23), STAR seems to have some problems, which might be
explained by the fact that unlike HOA and VBAP, the STAR co-
efficients are spectral and complex, thus modify also the phase in
a frequency-dependent way, which might help smoothing trajecto-
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Figure 20: Dynamic test: perceived sound quality.
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Figure 21: Polyphonic test: perceived sound quality.

ries but also might modify the timbre of the sound sources.

5. CONCLUSIONS AND FUTURE WORK

In this article we proposed a perceptive approach for sound spa-
tialization. With our STAR method, we focus neither on the wave
field (such as HOA) nor on the sound wave (such as VBAP), but
rather on the acoustic paths traveled by the sound to the listener
ears. The STAR method consists in canceling the cross-talk sig-
nals between two loudspeakers and the ears of the listeners (in a
transaural way), with acoustic paths not measured but computed
by some model (thus synthetic). Our model is based on perceptive
cues, used by the human auditory system for sound localization.
The aim is to give the listener the sensation of the position of each
source, and not to reconstruct the corresponding acoustic wave of
field. This should work with various loudspeaker configurations,
with a large sweet spot, since the model is neither specialized for
a specific configuration nor individualized for a specific listener.

Experimental tests have been conducted in 2015 and 2019 with
different rooms and audiences. The positive aspect is that the pro-
posed method is competitive with the state-of-the-art ones. The
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Figure 22: Polyphonic test: perceived immersion.
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Figure 23: Polyphonic test: perceived intelligibility.

negative aspect is that the results are not really consistent between
the 2015 and 2019 experiments. One explanation might be the fact
that the anchor chosen is only spatial, with mono quality but full
bandwidth, which might be too good for the non experts we had
in 2019. We plan to re-conduct new tests with a low-pass filtered
version, such as in standard MUSHRA tests. Another explanation
is that between 2015 and 2019 we chose to place the azimuth ref-
erence at the center of the loudspeaker pair to improve the system
determinant, because we suspected that this was the cause of the
“nasal quality” reported by some listeners. This might be a bad
choice, since the performance seems to degrade while the quality
is not really improved (although it is quite good).

In the near future we plan to correct these issues, and re-
conduct the experiments with a more calibrated loudspeaker con-
figuration (a dome, that should favor HOA), and with expert listen-
ers. Eventually, we will do some A/B testing such as in Marentakis
et al. [6]. Finally, we will extend the method to distance and ele-
vation, to generate a full 3D sound.
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ABSTRACT

This paper introduces an algorithm for time-scale modification of
audio signals based on using non-negative matrix factorization.
The activation signals attributed to the detected components are
used for identifying sound events. The segmentation of these events
is used for detecting and preserving transients. In addition, the al-
gorithm introduces the possibility of preserving the envelopes of
overlapping sound events while globally modifying the duration
of an audio clip.

1. INTRODUCTION

Time-scale modification (TSM) of audio signals is nowadays an
essential audio processing tool in music and audio production.
TSM became particularly popular in music creation workflows
based on the reuse of readily available audio. A common goal
in this context is to stretch audio clips, that often contain their own
rhythmic micro-structures, so that they will match a given musi-
cal context. It can be argued that the key aspect for preserving the
structure is the location of sound events in time. Existing TSM
algorithms will also change the duration of the sounds themselves,
for instance, the duration of a drum hit, which is not necessarily
desirable and may sound unnatural. On the other hand, artifacts of
TSM algorithms are used as musical features in electronic music
experimentation. Different algorithms will produce different kinds
of artifacts so they can be creatively abused to produce different
sound effects. In the end, a common situation in music production
software is to choose between different TSM algorithms that may
perform differently for different material.

One difficulty in TSM is the presence of overlapping sound
events of different durations and temporal structures. Given recent
advances in audio source separation research, we are interested
in whether source separation algorithms could help with TSM.
Even when separation is not perfect, mixing the estimates of sound
sources back together often helps to diminish any artifacts intro-
duced in the separation. This feature can be used to improve TSM
by allowing separate scaling of the component sounds of an audio
excerpt.

A key algorithm often used for source separation is non-negative
matrix factorization (NMF). NMF is an unsupervised method, which
has been shown to produce good results for transcription and sep-
aration of signals with a clear percussive profile, such as piano
sounds [1] or drums [2]. Since it has to learn from the signal
Copyright: c© 2019 Gerard Roma et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

(typically the magnitude spectrogram), its effectiveness depends
largely on the invariants present in the structure of the data, as the
algorithm tries to reconstruct it from a limited set of spectral pat-
terns and their activations. In this sense, while NMF is limited for
dealing with polyphonic music, it can often cope well with short
sounds such as the musical loops used for some types of rhythmic
music. NMF will essentially capture repetitions of spectral pat-
terns, so, for example, in drum patterns it will capture the structure
of activations of drum sounds. Similarly, in the case of pitched
sounds with fixed spectrum such as piano notes, it can easily cap-
ture the structure of tonal melodies.

In this paper we investigate the use of NMF for TSM. By sep-
arating different sound events, we expect NMF to make it possible
to stretch them separately, allowing the envelope of overlapping
events, such as percussive instruments and resonant bodies, to be
perceived more naturally. In addition, by introducing a new way of
modifying the duration of audio signals, our algorithm introduces
a different kind of artifact for materials on which the algorithm
fails to produce natural sounding results, which in turn may yield
new affordances for sound design and music. Specifically, when
NMF fails to identify note-like events, the proposed algorithm may
produce rhythmic modifications or even more extreme misplacing
of parts of the signal. These artifacts could no doubt be creatively
abused by experimenters seeking new sonorities.

The paper is organized as follows. In the next section, we
briefly review related work in the field of TSM. In Section 3, we
describe our proposed algorithm for TSM using NMF. In Section
4 we discuss some examples that illustrate the potential of the al-
gorithm. Finally, we draw some conclusions and discuss future
work.

2. RELATED WORK

Research in TSM was relatively active between the 1980s and
early 2000s. Algorithms developed back then, such as time do-
main overlap and add (OLA), waveform similarity overlap and add
(WSOLA) [3], or the phase vocoder [4], remain popular. The lat-
ter two algorithms provide relatively good results for music con-
tent, but introduce very strong artifacts when stretching transients.
Both WSOLA and the phase vocoder have been thus improved
with transient detection [5, 6, 7]. Academic research on TSM con-
siderably slowed down afterwards. Perhaps due to the success of
TSM for music and audio production in digital audio workstations,
industry took the lead. During the last few years, research on TSM
has been growing again. This may be partially due to the potential
of audio source separation research. To some extent, growing in-
terest in reproducible research in audio signal processing can also
be credited for the renewed interest, since algorithms used in com-
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mercial products are often not well known outside the companies
that make them.

A significant recent contribution was provided in [8] by apply-
ing harmonic-percussive source separation (HPSS) and then using
OLA for percussive estimates and the phase vocoder for harmonic
estimates. The authors also presented the Matlab TSM toolbox,
including the classic algorithms and their own, in [9]. The algo-
rithm proposed in [10] applies a similar concept, but unlike [8] it
is able to keep transient processing in the frequency domain.

In this paper, we explore the use of another source separa-
tion technique, NMF, which allows different treatment of different
sources more generally than transient/harmonic separation. The
activation curves resulting from the NMF separation are used as a
cue for the presence of transients due to specific components. Our
approach is inspired by the system presented in [5]. An impor-
tant detail is that, unlike in the classic phase vocoder, the system
in [5] proposed the use of the same hop size for both the analysis
and synthesis stages. Using the same hop size allows using the
(slower) NMF decomposition as part of the analysis stage, while
different scaling factors can be tried in the synthesis stage without
the need to analyze again. It also allows tuning all the windowing
parameters as suitable for the input material.

3. PROPOSED ALGORITHM

3.1. Overview

We now briefly describe the proposed system. A block diagram is
shown in Figure 1. The system is intended for time-scale modifi-
cation of relatively short (e.g. a few seconds) audio signals. The
time domain audio signal is first converted to a spectrogram via the
short-time Fourier transform (STFT). The magnitude spectrogram
is then decomposed into several components via NMF. As per the
NMF framework (described in Section 3.3), each component con-
sists of a basis function and an activation function. Components
are then segmented into sound events by analysis of the activation
function. The activation function is also used to identify one or
more transients within a given sound event. For each of the re-
sulting events, a number of frames are copied verbatim into the
synthesized spectrogram. These can be either the detected tran-
sients or the whole event, which can be preferred for percussive
sounds. For the remaining frames, a new scaling factor is com-
puted in order to respect the scaled duration for the whole event.
Time scaling is then applied following the principles of the phase
vocoder. The resulting component spectrograms are then mixed
and synthesized via inverse STFT.

Audio STFT NMF

Source
Activations

Segmentation

Event-wise
scaling

+

Scaled Audio

ISTFT

TF Masking

Source Bases

Figure 1: Block diagram of the proposed system.

3.2. Source separation

Our system is based on the assumption that the input signal is a
mixture of I component signals,

x(t) =
I∑

i=1

xi(t) (1)

Here, the component signal xi is assumed to have the appropri-
ate gain with respect to the mixture. We want to produce a time-
scaled version of x, y, which is analogously a mixture of signals∑

i yi(t). Assuming the mixing model holds in the (complex)
frequency domain, we estimate the component frequency-domain
signals Xi(k, n) from the STFT X(k, n) of x (where k and n are
respectively frequency and time indices) via NMF. We then stretch
each component Xi into Yi, and obtain yi via inverse STFT. The
stretched components are then mixed in the time domain.

3.3. NMF decomposition

NMF is typically applied to a magnitude spectrogram. TSM will
require using both the magnitude spectrogram, denoted as

V = |X| (2)

and the phase spectrogram, denoted as

Φ = 6 (X) (3)

Under the NMF framework, an approximation of V is obtained as

V̂ = WH (4)

The matrix W ∈ RK×I contains a set of I bases, which typi-
cally represent static spectra corresponding to each of the detected
sources. The matrix H ∈ RI×N contains a corresponding set of I
activations, which represent the temporal envelopes of each com-
ponent. We can use these activations to find the positions of tran-
sients (typically corresponding to note onsets) and general active
regions corresponding to each component, thus applying different
stretch factors to preserve the structure of sound events. In addi-
tion, it is often possible to classify the bases into tonal and percus-
sive sounds [11, 12], which could be used for applying different
stretching strategies similar to [8]. However in this paper we just
consider the option of preserving the duration of the active region
as a user parameter.

For this to work it is of course crucial to obtain a good decom-
position that represents the perceived components of the signal. A
common strategy is to minimize the divergence

DKL(V |WH) =
∑
kn

dKL(V (k, n)|
∑
i

Wi(k)Hi(n)) (5)

where

dKL(x|y) = x log
x

y
− x+ y. (6)

As originally proposed in [13], this can be done via a simple
multiplicative update algorithm. This can often produce noisy acti-
vation functions, which make the segmentation step more difficult.
Some works have proposed constraining the objective function to
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produce smooth activations. In this work we use the NMF algo-
rithm presented in [14]. Here, a penalty factor is introduced to
promote smoothness of H:

S(H) =
1

2

∑
i

∑
n

(Hi(n)−Hi(n− 1))2. (7)

The algorithm then tries to minimize the cost function

DKL(V |WH) + βS(H), (8)

subject to the non-negativity constraints of the NMF frame-
work. Here β is a parameter that can be used to control the smooth-
ness of the resulting activation curves, at the expense of the algo-
rithm having a harder time finding the appropriate components. In
our experiments, a value of β = 0.1 (an order of magnitude higher
than in [14]) worked well in most cases.

Another challenge with NMF is in how to select the rank, I ,
of the decomposition for a particular source. One approach is pro-
posed in [15], where a singular value decomposition (SVD) is per-
formed on V . The SVD of a matrix has the form Z = UΣV ᵀ,
where the singular values of Z lie along the diagonal of Σ. The
NMF rank, I , is then estimated by finding the number of singular
values that account for some proportion of the total sum along the
diagonal of Σ.

From the NMF decomposition, we obtain a soft mask

Mi =
WiHi

V̂
(9)

which we can apply to the original magnitude and phase spectro-
grams to obtain estimates for each component, V̂i = Mi � V ,
Φ̂i = Mi � Φ (where � denotes the element-wise product).

3.4. Event segmentation

Segmentation is based on the observation that activations tend to
loosely follow a binary on-off pattern (Figure 2). We identify
sound events when the activation is above a certain threshold de-
fined as µi + τ1σi (where µi and σi are respectively the mean and
standard deviation of the activation Hi(n), and τ1 is a paramerter)
for more than 3 frames. The end of the event is then adjusted to
when the activation crosses a typically lower threshold determined
in the same way for a parameter τ2. We then look for transients
within the event by identifying peaks in the first order difference
of Hi(n), and pick them in the same way by a third threshold pa-
rameter τ3.

When multiple transients are found within the same active
event (e.g. for a rapid succession of percussive or note events with
long decay), the event is split so that each transient will always
start an event (although in general it is not required that all events
start with a transient). A transient is defined to have a fixed num-
ber of frames corresponding to 10ms (which can be controlled as a
user parameter), depending on the hop size. Finally, the ‘silence‘
in the activation between two events is attached to the preceding
event, so that an event is considered to have a transient, an active
part and a silence part, where transient and silence may have zero
duration. The idea is that—as the signal has a rhythmic structure—
we need to proportionally scale the spaces between event onsets,
but within an event we may apply different scaling.

Figure 2: Event segmentation of NMF activation. Top: activation
function. Bottom: first order difference.

3.5. Scaling and synthesis

The segmented events for each of the NMF components are then
scaled according to the desired factor, r. We can take advantage of
the component- and event-wise separation in several ways. First,
in order to preserve the perceptual quality of transient, the tran-
sient part of each event is not scaled. By default, a new scaling
factor rA is computed for the active part. An optional feature,
which can be called envelope preservation may be used so that the
active part is also copied without scaling as if it was a transient.
The silence scaling factor rS has then to be recomputed to keep
the whole of the event aligned according to r. When the event has
no silence (typically as a result of splitting the event due to mul-
tiple transients) envelope preservation is not applied. Outside of
transient and potentially percussive events, magnitudes are inter-
polated from the input V̂i, and phases are propagated according to
the phase vocoder strategy, including identity phase locking [16].
Thus, after finding the bin kp corresponding to the peak in the
region of influence of a given magnitude bin k, we compute the
phase envelope as

φe(k, n) = Φ(k, n)− Φ(kp, n), (10)

and the deviation with respect to the bin’s frequency as

∆φ(k, n) = Φ(k, n)− Φ(k, n− 1)− ω(k)R (11)
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where w(k) is the normalized frequency corresponding to bin k,
and R is the hop size. The phase for the scaled signal in non-
transient regions is then synthesized as

ΦY i(k, n) = ΦY i(k, n− 1) + ω(k)R+

Arg(∆φ(k, n) + φe(k, n)),
(12)

where Arg(x) is the principal argument function.
The estimates of the scaled spectrogram, V̂Y i and Φ̂Y i, are

then composed into Ŷi as

Ŷi(k, n) = V̂Y i(k, n) eΦ̂Y i(k,n)j , (13)

and synthesized using the inverse STFT as described in Sec-
tion 3.2.

4. EXAMPLES

We implemented the proposed algorithm in a Python package,
which includes a partial port of the Matlab TSM toolbox. The
code is available on github1. While testing with several excerpts,
we found that results are generally better than classic methods such
as OLA or WSOLA, or the phase vocoder without transient preser-
vation, and closer to HPSS and state-of-the-art commercial pack-
ages. A number of examples can be listened to on the companion
web page for this paper2. It is possible to obtain good results by
automating the choice of the NMF rank as outlined in Section 3.3,
which often produces a large number of components. This is an
interesting result, considering that the TSM is performed piece-
wise through potentially several hundreds of events and then re-
assembled, however it bears a high computational cost. In prac-
tice, a better solution is often to manually set a suitable value for
the NMF rank. Generally, the algorithm works better for percus-
sive and repetitive material, and suffers with slow frequency or
amplitude modulations. With respect to the envelope preservation
option, it is generally sensitive to errors in the detection of events,
and hence it tends to work best for sounds that are well modeled
by NMF, such as percussive loops. In these cases it can produce a
more natural sound than most available algorithms. Our approach
is generally comparable to using HPSS [8], which is also based
on a source separation technique that decomposes the magnitude
spectrogram. We now demonstrate the strengths and weaknesses
of the NMF decomposition through some examples.

4.1. Glockenspiel

Using NMF tends to produce better attacks for simple percussive
loops and melodies. Figure 3 shows the spectrogram of a few
notes of the Glockenspiel melody included in the TSM Toolbox,
as stretched by both the HPSS and the NMF approaches. It can
be seen that using NMF produces sharper transient at note onsets.
This is probably partly due to the NMF activations providing a
good cue of the locations of transients due to individual notes, but
also to the fact that our algorithm stays in the same frame rate, al-
lowing to build a more coherent representation of the note, while
the HPSS approach requires going back to the time domain for the
percussive part, while staying in the frequency domain for stretch-
ing the harmonic part.

1https://github.com/flucoma/DAFX-2019
2http://www.flucoma.org/DAFX-2019/

Figure 3: Excerpt of a glockenspiel melody stretched with a 1.8
factor using HPSS (top) and NMF (bottom)

4.2. Drum loop

One unique aspect of the proposed algorithm is the ability to mod-
ify the duration of the signal while preserving the envelope of per-
cussive sounds. This option may introduce some artifacts if the
events are not well detected, but it works well for dry percussive
loops. An example is shown in Figure 4, showing the initial beats
of a drum loop. Here, we can observe that the NMF approach ap-
proximates better the duration of the first two sound events (a bass
drum and a hi-hat). Our approach modifies the tempo of the pattern
while preserving the natural sound of each beat, while stretching
via HPSS also stretches the sound’s envelope, which gives it an ar-
tificial time profile. The latter is also generally the case in current
commercial products.

4.3. Novel artifacts

As mentioned in the introduction, we are also interested in the
creative possibilities of the failures of TSM algorithms. In this
sense, we hope the proposed algorithm will also contribute new
kinds of artifacts that can be used for exploring new musical pos-
sibilities. The main user parameters are the NMF rank (I), and
the three parameters influencing the event segmentation (Section
3.4). Without the envelope preservation feature, our algorithm can
reproduce common artifacts related with the phase vocoder. For
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Figure 4: Excerpt of a drum loop (top:original) stretched with a
0.6 factor using HPSS (middle) and NMF (bottom).

example, raising the transient detection threshold τ3 can be used
to induce transient smearing, while extreme stretching factors will
produce well-known phasing effects. The novel contribution of
our algorithm is the possibility to preserve the envelope of a sound
event, but when events are not properly detected, this results in
misplaced components that produce rhythmic variations and dif-
ferent smearings of time not usually found in phase vocoder. An
example (zoomed again for detail) is shown in Figure 5. Here, we
intentionally raised the chances of mistakes by raising the rank to

20 (which is more than needed for a drum kit using mainly four
sounds) and made it difficult for the algorithm to find the events
by playing with parameters τ1 and τ2. As a result, part of the
rhythm becomes confusing. The main impression is that some of
the sounds have been divided and parts of them have been mis-
placed, creating a new rhythmic effect.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented an algorithm for time scale modi-
fication of audio using non-negative matrix factorization. We have
presented an implementation and demonstrated several examples.
The algorithm has the unique feature of being able to preserve the
duration of sound events while modifying the duration of the se-
quence. This is generally not possible without source separation,
unless the signal is purely monophonic, as the envelopes of dif-
ferent events tend to overlap. The NMF framework also helps
generally in the identification of transients due to different compo-
nents in the frequency domain. As future work, we plan to investi-
gate strategies for synchronizing event boundaries across compo-
nents so that envelope preservation can be used without compro-
mising rhythmic structure. Similarly, classification of NMF bases
would allow applying selectively to percussive events. Also, since
frequency-domain TSM generally requires careful attention to the
phase, we plan to experiment with complex NMF variants.
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AN FPGA-BASED ACCELERATOR FOR SOUND FIELD RENDERING   TEMPLATES FOR DAFX-17, EDINBURGH, UK 

 
ABSTRACT 

Finite difference time domain (FDTD) schemes are widely applied 
to analyse sound propagation, but are computation-intensive and 
memory-intensive. Current sound field rendering systems with 
FDTD schemes are mainly based on software simulations on per-
sonal computers (PCs) or general-purpose graphic processing 
units (GPGPUs). In this research, an accelerator is designed and 
implemented using the field programmable gate array (FPGA) for 
sound field rendering. Unlike software simulations on PCs and 
GPGPUs, the FPGA-based sound field rendering system directly 
implements wave equations by reconfigurable hardware. Further-
more, a sliding window-based data buffering system is adopted to 
alleviate external memory bandwidth bottlenecks. Compared to 
the software simulation carried out on a PC with 128 GB DDR4 
RAMs and an Intel i7-7820X processor running at 3.6 GHz, the 
proposed FPGA-based accelerator takes half of the rendering time 
and doubles the computation throughput even if the clock fre-
quency of the FPGA system is about 267 MHz. 

1. INTRODUCTION 

Sound field rendering models sound propagation in spatial and 
time domains, and is fundamental to numerous scientific and en-
gineering applications, which vary widely from interactive appli-
cations, such as computer games and virtual reality, to offline ap-
plications like architectural design and noise control. Generally, 
the sound field rendering algorithms are categorized into geomet-
ric methods and wave-based methods. The geometric methods 
make the assumption that surface primitives are much larger than 
the wavelength of sound. As a result, the low-frequency diffraction 
effects of sound wave are lost while the computation capability is 
reduced significantly. Nowadays, the geometric methods are 
widely applied in interactive applications because of easy imple-
mentation and low computation demand. In contrast, the wave-
based methods, such as finite difference time domain (FDTD) 
methods, boundary element and finite element methods, directly 
solve the acoustic wave equations in either time domain or fre-
quency domain using numerical methods, and they provide highly 
accurate modelling of all aspects of sound propagation, including 
full wave diffraction.   

Among the wave-based methods, the FDTD method, which 
numerically solves the wave equation by using a finite number of 
grids in a discretized space at discrete time steps, has become an 
essential approach in room acoustic simulation owing to its ease 
of implementation and parallelization since it was introduced to 
analyse acoustical behaviour by O. Chiba et al., and D. Bottel-
dooren et al. [1–3]. However, the FDTD method suffers from the 
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numerical dispersion, which is an inherent problem constraining 
the valid usable bandwidth.  

To reduce numerical dispersion in the FDTD method, many 
works have been done in 3-D scheme. L. Savioja et al., G. R. Cam-
pos et al., and D. Murphy et al. proposed alternative digital wave-
guide mesh topologies [4–6]; K. Kowalczyk and M. Walstijn de-
veloped the explicit second-order accurate schemes, including the 
27-point compact explicit FDTD scheme [7]. J. Mourik and D. 
Murphy investigated two-step high-order explicit “large-star” 
schemes [8]. B. Hamilton and S. Bilbao introduced the fourth-or-
der accurate explicit and implicit FDTD schemes for 2-D and 3-D 
wave equations [9][10], respectively. They also developed a set of 
two-step explicit FDTD schemes with high-order accuracy in both 
spatial and time domains for 3-D room acoustics [11]. 

On the other hand, numerical dispersion is still challenge in 
sound field rendering with the FDTD method, and conventional 
approach to alleviate the effects of numerical dispersion through 
spatial grid oversampling incurs significant computational cost. 
This results in the FDTD method scales poorly with the volume of 
sound spaces and the analysed maximum frequency. Generally, 
the computing capability of solving wave equations in the FDTD 
method is increased as the fourth power of frequency [12] and pro-
portionally with the volume of sound spaces. Given the auditory 
range of humans (20 Hz–20 kHz), simulating sound wave propa-
gation in a space like a concert hall or a cathedral for the maximum 
simulation frequency of 20 kHz requires petaflops of computing 
power and terabytes of memory. Only large computer cluster or 
supercomputer can satisfy such requirements in current computer 
systems, but they are prohibitive expensive. 

In recent years, GPGPUs and FPGAs were applied to acceler-
ate computation in sound field rendering because of their coarse-
grain parallelism of thousands of arithmetic units [13-22]. Cur-
rently, an FPGA chip has more hardware resources owing to the 
development of fabrication technology, including thousands of 
hardened floating-point arithmetic units, large on-chip block 
memories, millions of reconfigurable logic blocks. Unlike soft-
ware simulations on PCs and GPGPUs, FPGA-based sound ren-
dering systems directly implement sound wave equations by con-
figurable logic blocks and hardened arithmetic units inside an 
FPGA. The system data-path and input/output (I/O) interfaces can 
be customized in accordance to applications, and thousands of 
arithmetic units are coordinated to work in parallel to improve 
computation performance. The incident signals and the rendering 
results can be directly put in and out through the customized I/O 
interfaces. From the point of view of real-time processing, FPGA 
provides a promising solution to real-time sound rendering appli-
cations. In our previous work, a FPGA-based accelerator was de-
veloped for real-time sound field rendering [17-23]. Although the 
accelerator outperformed PC-based simulations significantly in 
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rendering speed, the rendered sound space is small (32 × 32 × 16 
grids) because only small on-chip block memories were applied. 
In this paper, a FPGA-based accelerator for sound rendering is de-
signed by using high-level synthesis approach, and large external 
memory is applied to extend the rendering sound volume. The 
main contributions of this work are shown as follows. 

(1) Uniform computing units in rendering algorithm to simplify 
system design. The explicit FDTD rendering algorithm and 
its uniform computing format are derived, which makes it 
easy to design the computing unit in hardware system.  

(2) Sliding window-based data buffering to reduce the data ac-
cess overhead and the requirement of memory bandwidth. 

(3) Design and implementation of an FPGA-based accelerator 
for sound field rendering by using high-level synthesis, in-
cluding design flow, system architecture, and system imple-
mentation. 

(4) Evaluation and analysis of system performance based on the 
prototype machine. The rendering time and computation 
throughput of the FPGA-based prototype machine are eval-
uated and compared with those of the software simulation 
carried out on a PC with 128 GB DDR4 RAMs and an Intel 
i7-7820X processor running at 3.6 GHz.  

The rest of this paper is organized as follows. The rendering 
algorithm is introduced in Section 2, including the updated equa-
tions for general grids and grids on the reflective boundary. In Sec-
tion 3, the system design and implementation by using the FPGA 
board DE5a-NET are described, as well as the system architecture 
and the functions of main components. System performance of the 
FPGA-based prototype machine is presented in Section 4, fol-
lowed by the conclusions drawn in Section 5. 

2. RENDERING ALGORITHM 

The wave equations for 3-D room acoustic simulation is expressed 
as:  

(
𝜕2

𝜕𝑡2 − 𝑐2𝛻2)𝑝(x, 𝑡) = 0                                (1)   

Here, 𝑝(x, 𝑡) is the sound pressure at time 𝑡 and position x, x =
(𝑥, 𝑦, 𝑧) ∈ ℛ3  is the spatial position with coordinates being 

(𝑥, 𝑦, 𝑧) in a 3-D space, c is the propagation speed of sound in air, 

the operator 
𝜕2

𝜕𝑡2   denotes the second partial derivative with re-

spect to time, the operator 𝛻2 stands for the spatial 3-D Laplacian 

operator, and 𝛻2 =
∂2

∂𝑥2 +
∂2

∂𝑦2 +
∂2

∂𝑧2 . Then, the wave equation 

(1) can be described by the time domain formulation shown in 
Equation (2)  

    
𝜕2𝑝(x,𝑡)

𝜕𝑡2 = 𝑐2(
𝜕2𝑝(x,𝑡)

𝜕𝑥2 +
𝜕2𝑝(x,𝑡)

𝜕𝑦2 +
𝜕2𝑝(x,𝑡)

𝜕𝑧2 )          (2)  

In order to discretize Equation (2) at time and spatial domains, us-

ing 𝑃𝑛(𝑖, 𝑗, 𝑘) ≅ 𝑝(𝑖Δ𝑥, 𝑗Δ𝑦, 𝑘Δ𝑧, nT) as an approximation to 

𝑝(x,t) at time 𝑡 = 𝑛𝑇 and position x = (𝑖, 𝑗, 𝑘), where 𝑇 is the 

time step, 𝑛 is the number of time steps, and Δ𝑥, Δ𝑦, Δ𝑧 are the 

Cartesian grid spacing in x, y, and z axes, respectively. Then the 
temporal and spatial difference operators can be defined as  

𝜕2𝑝(x,𝑡)

𝜕𝑡2 =
𝑃𝑛+1(𝑖,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛−1(𝑖,𝑗,𝑘)

𝑇2   

𝜕2𝑝(x,𝑡)

𝜕𝑥2 =
𝑃𝑛(𝑖+1,𝑗,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖−1,𝑗,𝑘)

𝛥𝑥2                    (3) 

𝜕2𝑝(x,𝑡)

𝜕𝑦2 =
𝑃𝑛(𝑖,𝑗+1,𝑘)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗−1,𝑘)

𝛥𝑦2   

𝜕2𝑝(x,𝑡)

𝜕𝑧2 =
𝑃𝑛(𝑖,𝑗,𝑘+1)−2𝑃𝑛(𝑖,𝑗,𝑘)+𝑃𝑛(𝑖,𝑗,𝑘−1)

𝛥𝑧2    

In a cubical grid, letting Δ𝑥 = Δ𝑦 = Δ𝑧 = Δ𝑙  and inserting 

Equation (3) in Equation (2), Equation (2) is discretized and Equa-
tion (4) is yielded. 

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = 𝜒2[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘)        (4) 

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)
+ 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1)] + (2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) − 𝑃𝑛−1(𝑖, 𝑗, 𝑘) 

where 𝜒 =
𝑐𝑇

Δ𝑙
 is the Courant number, and cannot be larger than 

1

√3
 

because of numerical stability in a 3-D sound space. From Equa-
tion (4), to compute the sound pressure of a grid needs three mul-
tiplications, six additions, and one subtraction. In order to reduce 
the multiplication operations, which need more clock cycles and 

hardware resources, 𝜒 is assumed to be 
1

2
, and Equation (4) is then 

rewritten as [18][19][23]  

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1

4
[𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) 

+ 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)       (5) 

+𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝑃𝑛−1(𝑖, 𝑗, 𝑘) 

In Equation (5), two multiplication operations can be replaced by 
right and left shift operations, which are easily implemented by 
hardware and consume less clock cycles.  

2.1. Reflective boundary 

In realistic room acoustics, the boundary conditions should be con-
sidered to model the reflection and absorption from walls. In this 
study, the reflective boundary is concerned. A reflective boundary 
can be modelled as a locally reacting surface by assuming that 
wave does not propagate along with the boundary surface, and the 
acoustical behavior is only affected by the sound pressure and par-
ticle velocity perpendicular to the boundary surface. If a sound 

wave travels in a positive axis (𝑥, 𝑦, 𝑧) direction, the boundary 

impedance 𝑍 is denoted by the sound pressure and the particle vi-
bration through Equation (6) [24]. 

                          𝑍 =
𝑃

𝑈
                                                  (6) 

Here, 𝑈 is the particle velocity component perpendicular to the 
boundary, and P is the sound pressure. For a boundary perpendic-
ular to an axis, the momentum conservation equation of wave 
propagation is 

 𝛻𝑃 + 𝜌
𝜕𝑈

𝜕𝑡
= 0                            (7) 

where 𝜌 is the air density. Differentiating both sides of Equation 

(6) with respect to 𝑡 and inserting Equation (7), the boundary con-

ditions are obtained in terms of sound pressure [19][23][25]. 

220



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 3–6, 2019 

 

 DAFX-3 

                                     
𝜕𝑃

𝜕𝑡
= −𝑐𝜉𝛻𝑃                                     (8) 

where 𝜉 =
𝑍

𝜌𝑐
 is the normalized boundary impedance. For a cubi-

cal sound space, boundary grids are classified into interior grids of 
a boundary, edges, and corners according to their positions. Dif-
ferent formulas are applied to update their sound pressures. For 
example, for the interior grids of right boundary, wave travels 

along the positive  𝑥 axis direction, and Equation (9) is derived by 

discretizing Equation (8).   

𝑃𝑛+1(𝑖,𝑗,𝑘)−𝑃𝑛−1(𝑖,𝑗,𝑘)

2𝑇
= −𝑐𝜉

𝑃𝑛(𝑖+1,𝑗,𝑘)−𝑃𝑛(𝑖−1,𝑗,𝑘)

2𝛥𝑥
    (9) 

Rearranging the terms in Equation (9) and introducing the param-

eter 𝜒, Equation (10) is obtained to represent a virtual grid outside 

the sound space.  

𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) = 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) 

+
1

𝜒𝜉
[𝑃𝑛−1(𝑖, 𝑗, 𝑘) − 𝑃𝑛+1(𝑖, 𝑗, 𝑘)]           (10)                                                                        

Substituting 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘)  in Equation (4) with Equation (10), 
then  

𝑃𝑛+1(𝑖, 𝑗, 𝑘) = [𝜒2(2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1)) +

(2 − 6𝜒2)𝑃𝑛(𝑖, 𝑗, 𝑘) + (
𝜒

𝜉
− 1) 𝑃𝑛−1(𝑖, 𝑗, 𝑘)] / (

𝜒

𝜉
+ 1)   (11) 

By introducing the reflection factor 𝑅  as 
(𝜉−1)

(𝜉+1)
 and 𝜒  being 

1

2
, 

Equation (11) is changed to Equation (12) [19][23], which is ap-
plied to update the sound pressure of the interior grids of right 
boundary. 

𝑃𝑛+1(𝑖, 𝑗, 𝑘) =
1+𝑅

2(3+𝑅)
[2𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) +

𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) +

2𝑃𝑛(𝑖, 𝑗, 𝑘)] −
3𝑅+1

3+𝑅
𝑃𝑛−1(𝑖, 𝑗, 𝑘)                                       (12) 

Equation (12) consists of the sum of the sound pressures of a 

grid and its neighbor grids at the time step 𝑛, and its sound pres-

sure at the time step 𝑛 − 1. Compared with Equation (5), except 
for the multiplicands, Equation (12) only replaces the sound pres-

sure of the virtual grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) by the sound pressure of the 

neighbor grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) in the summation. Moreover, for the 
interior grids of other boundaries, the multiplicands are same ex-
cept for the sound pressure of the substituted virtual grid in the 
summation. For example, the updated equation for an interior grid 
of left boundary is obtained by substituting the sound pressure of 

the virtual grid 𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) with the sound pressure of the direct 

neighbor grid 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) in Equation (12). Hence, the summa-

tion is changed as 2 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) +  𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) +  𝑃𝑛(𝑖, 𝑗 −
1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) +  𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) + 2 𝑃𝑛(𝑖, 𝑗, 𝑘). The sim-
ilar derivation procedure can be applied to edges and corners by 
using different boundary conditions.  

Equations (5) and (12) show that to compute sound pressure 
of a grid needs the sound pressures of its own and neighbors at 
previous time steps. For different types of grids, the updated equa-
tions have similar formats except for the multiplicands for the 

summation and 𝑃𝑛−1(𝑖, 𝑗, 𝑘) , respectively. From Equations (5) 
and (12), a uniform updated Equation (13) can be derived.  

𝑃(𝑛+1)(𝑖, 𝑗, 𝑘) = 𝐷1 ∗ [𝑃𝑛(𝑖 − 1, 𝑗, 𝑘) + 𝑃𝑛(𝑖 + 1, 𝑗, 𝑘) +
𝑃𝑛(𝑖, 𝑗 − 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗 + 1, 𝑘) + 𝑃𝑛(𝑖, 𝑗, 𝑘 − 1) +
𝑃𝑛(𝑖, 𝑗, 𝑘 + 1) + 2𝑃𝑛(𝑖, 𝑗, 𝑘)] − 𝐷2 ∗ 𝑃(𝑛−1)(𝑖, 𝑗, 𝑘)     (13) 

As shown in Table 1, the parameters D1, D2, and items in the sum-
mation in Equation (13) are associated with the position of a grid. 
For grids on boundaries, the sound pressures of the virtual grids 
are replaced by those of the related direct neighbor grids. 

Table 1: Parameters 

Grid position D1 D2 

General 

 

1 

Interior   
  

Edge 
  

R 

Corner 
  

  

3. SYSTEM DESIGN AND IMPLEMENTATION 

3.1. Design flow  

The accelerator is designed using OpenCL, which is a program-
ming language for high-level synthesis of FPGA. As shown in Fig-
ure 1, the OpenCL design flow consists of the host and kernel, and 
the related codes are compiled separately. The accelerator is de-
signed as kernels using OpenCL, which are then compiled to an 
intermediate representation (LLVM IR), optimized, and converted 
to the Verilog files by the Intel FPGA SDK for OpenCL. The EDA 
tool Quartus Prime Pro is called to perform synthesis, placement 
and routing to generate the FPGA bitstream, which is finally 
downloaded in the FPGA and executed. The host is developed us-
ing C or C++ programming language. It initializes the kernels, 
maintains the computation flow, and charges data exchange be-
tween the host machine and FPGA board. The system drivers and 
controllers for I/O, such as PCIe bus and DDR memory controllers, 
are generated and integrated in the system by the Intel FPGA SDK 
for OpenCL automatically. Therefore, user mainly focuses on de-
signing the kernels. The system design becomes much easier, and 
the development period is shortened significantly.  

3.2. System design 

Sound field rendering is memory-intensive. It is impossible to 
store all data in the on-chip memories inside FPGA as the space 
volume is increased even if the size of the on-chip memories inside 
current FPGAs has been increased significantly. Instead, the ex-
ternal large DDR memory is adopted in this research. To improve 
system performance, the overhead of data access to external 
memory should be shortened. In the system, a sliding window-
based data buffering system is introduced to speed up data access 
between the rendering engine and the on-board external memory.  

R + 1

2（R + 3)
 

3R + 1

R + 3
 

R + 1

8
 

R + 1

2（5 − R)
 

5R − 1

5 − R
 

1

4
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In the sliding window-based data buffering, the blocking tech-
nique is applied to reduce the buffer size and memory bandwidth 

demand, in which a large sound space with M × N × K grids is 

divided into sub-cubes with each having Nx  × Ny × Nz grids. 

The sub-cubes are read into the system along the Z direction, and 
computations are carried out. Inside a sub-cube, sound pressures 
of grids on two consecutive x-y planes are kept by buffers. There-

fore, the buffer size is reduced from M × N to Nx × Ny . The 

data buffering system is implemented by using the high-speed and 
high-bandwidth on-chip block RAMs inside FPGA. However, the 
problem of the blocking technique is that the halo exists between 
two sub-cubes, which will incur additional computations. 

 

Host code

(.c/.cpp)

Host binary

Execution on 

FPGA

Kernel code

(.cl)

LLVM IR

(.aoco)

Verilog

(.v/.sv)

FPGA bitstream

(.aocx)

C/C++ Compiler & Intel’s 

OpenCL Runtime

Intel’s OpenCL Compiler

Intel’s OpenCL Compiler

Quartus: Placement & Routing

Compiler 

Optimization

 

Figure 1: Design flow 

The system diagram is illustrated in Figure 2, which consists 
of system controller, three buffers (shift_register_p1, shift_regis-
ter_p2, and shift_register_posi), computing units, and output con-
troller. The incident data and position flags of grids are firstly writ-
ten into the on-board DDR memory from the host machine before  
computation is started. The functions of each module are described 
as follows. 

 

Figure 2: System diagram 

• system controller. The system controller maintains computa-
tion flow and generates control signals according to the com-
puting flow. It reads data and position flags from the on-board 
DDR memory, and writes them to the buffers shift_register_p1, 
shift_register_p2, and shift_register_posi, respectively. After 
computation is completed, it also generates the writing ad-
dresses of the grids to store the computation results back to the 
DDR memory. At each time step, sound pressure of the obser-
vation grid is stored in the on-board DDR memory. It is not 

written back to the host machine until computations at all time 
steps are finished. 

• shift_register_p1, shift_register_p2, and shift_register_posi. 
The shift_register_p1, shift_register_p2, and shift_regis-
ter_posi are three buffers to store the data involved in compu-
tations and their position flags, respectively. Before computa-
tion is started, data in the two continuous x-y planes of the sub-
cube are streamed into the buffers. The data at the time step n-
1 are stored in the buffer shift_register_p1 while the data at the 
time step n-2 are kept by the buffer shift_register_p2. And the 
corresponding position flags of grids are streamed into the 

shift_register_posi. If the sub-cube contains Nx × Ny × Nz 

grids and i grids are computed concurrently, the depth of the 
shift_register_p1, shift_register_p2, and shift_register_posi is 

Nx * Ny + i. Along with computation, the three buffers are 

shifted right by i data, and another i new data and their position 
flags are streamed into the buffers at each clock cycle. Such 
procedure is repeated until sound pressures of all grids inside 
a sub-cube are computed, and then computation is moved to 
the next sub-cube. The three buffers are implemented by the 
high-width and high-speed block memory inside FPGA. In the 
current design, the sub-cube has 256 × 256 × 256 grids and i 
is 16. 

• computing units. The computing units is the arithmetic unit to 
calculate sound pressures of i grids concurrently according to 
the input sound pressures at previous time steps and location 
indicators (position_flag). The location indicator is used to se-
lect the multiplicands D1 and D2 in Equation (13). As shown 
in Figure 3, a uniform computing unit is designed based on 
Equation (13), which consists of a 7-input adder, a subtractor, 
two multipliers, and four multiplexers [19][23]. In Figure 3, 
the multipliers are used for boundary grids while they are re-
placed by the right and left shifters for general grids. Two mul-
tiplexers are applied to select the multiplicands D1 and D2 in 
accordance to the location indicator of a grid. At each clock 
cycle, sound pressures of 16 grids are computed in parallel. 

• memory controller. The memory controller stores the compu-
tation results to the external on-board DDR memory. 
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Figure 3: Computing unit 

3.3. System implementation 

The accelerator is implemented by using the FPGA board DE5a-
NET from the Terasic Company [26], which contains an Intel Ar-
ria 10 FPGA and 8 GB on-board DDR memory arranged in two 
independent channels. As shown in Figure 4, the incident data and 
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position information of all grids are firstly written into the on-
board memory from the host machine through the PCIe bus. The 
Rendering Engine reads an incident datum from the memory, cal-
culates the sound pressures of all grids, and stores the computation 
results back to the DDR memory. Then another incident datum is 
read into, and computations are repeated. This procedure is iter-
ated until all incident data are read into the rendering engine, and 
sound pressures of all grids are obtained. Finally, the sound pres-
sure at the observation point will be written back to the host ma-
chine. The two independent DDR memory will be updated in turn. 

Rendering Engine DDR Controller

PCIe Controller

DDR4 SDRAM 

A (4 GB)

DDR4 SDRAM 

B (4 GB)
DDR Controller

Host 

Machine

PCIe Bus

FPGA

FPGA Board

 

Figure 4: System diagram 

When the accelerator is implemented by the FPGA board 
DE5a-net, the hardware resource utilization is shown in Table 2. 
From Table 2, the current design consumes less half of the availa-
ble hardware resources inside the FPGA chip Arria 10, and the 
system performance can be improved further by using more com-
putation kernels to work in parallel. 

 Table 2: Hardware resource utilization 

4. PERFORMANCE EVALUATION 

To estimate the performance of the proposed accelerator, the ren-
dering time in the sound spaces with grids being 128 ×128 × 128, 
256 × 256 × 256, 510 × 510 × 510, and 764 × 764 × 764, is meas-
ured. The reflection coefficient of boundaries is 0.95, and the time 
steps are 1000. As a comparison, the same system is developed 
using C++ programming language, parallelized using OpenMP, 
and executed on a PC with 128 GB DDR4 memory and an Intel 
i7-7820X processor, which has eight cores running at 3.6 GHz. 
The reference C++ codes are compiled by the gcc compiler with 
the soption -O3 and -fopenmp to use all eight cores in the PC. The 
simulation and execution environment are shown in Table 3. As 
shown in Table 3, the memory size of the FPGA-based system, 
including the external and on-chip memories, is much smaller than 
that of the PC in software simulation, and the clock frequency of 
FPGA is about 267 MHz while the PC runs at 3.6 GHz.  

4.1. Rendering time 

 Figure 5 shows the rendering time taken by the software simula-
tions on the PC and the FPGA-based system in the case of different 
sound space volumes. In Figure 5, the sub-cube is with 128 × 128 
× 128 grids in the case of sound space volume being 128 × 128 × 
128 grids while it is with 256 × 256 × 256 grids in other cases. The 
number of grids computed in parallel is 16. As shown in Figure 5, 

the rendering time taken by the FPGA-based accelerator is almost 
half of that consumed by the software simulations on PC. In addi-
tion, due to the effect of the existing halo, the simulated area be-
comes a little smaller. 

Table 3: Technology specification 

  FPGA 
Software  

simulation 

Model 
Arria 10 GX 

10AX115N2F45E1SG 
i7-7820X 

Cores 1518 DSP blocks 8 cores 

Clock  

frequency 
About 267 MHz 3.6 GHz 

On-chip 

memory 

6.625 MB block 

RAMs 

L1 cache: 256 KB 

L2 cache: 8 MB 

L3 cache: 11 MB 

External 

memory 
8 GB 128 GB 

OS CentOS 7.0 CentOS 7.0 

Programming 

language  
OpenCL C 

Compiler 
Intel FPGA SDK for 

OpenCL  17.1 
gcc 4.8.5 

Fabrication  20 nm 14 nm 

 

Figure 5: Rendering time 

4.2. Computation throughput 

The computation throughput denotes the updated speed of grids at 
each time step, and is calculated by using the following formula.  

                   𝐷𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 =
𝑁𝑔𝑟𝑖𝑑

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝
                              (14) 

Logic  

utilization 

DSP 

blocks 

RAM 

blocks 

Clock  

frequency 

70701 (17%) 152 (10%) 891 (33%) 267 MHz 
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where 𝑁𝑔𝑟𝑖𝑑 is the number of grids in a sound space, and 

𝑡𝑝𝑒𝑟_𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 is the rendering time at each time step. Figure 

6 presents the computation throughput in the case of differ-

ent grid scales in the FPGA-based accelerator and the soft-

ware simulations on the PC. Figure 6 indicates that the pro-

posed accelerator almost doubles the computation through-

put of the software simulations, especially in the case of 

large sound spaces. 

 

Figure 6: Computation throughput 

5. CONCLUSIONS 

Sound field rendering is computation-intensive and memory-in-
tensive. FPGAs provide an alternative solution to sound field ren-
dering, especially for real-time applications because the I/O inter-
faces are easily tailored according to applications. In this study, a 
FPGA-based accelerator for sound field rendering is developed us-
ing high-level synthesis in FPGA, in which the sliding window-
based data buffering scheme is applied to reduce the demand of 
memory bandwidth. Although the FPGA-based accelerator runs at 
1/13 (0.267/3.6) of clock frequency of the PC in software simula-
tions, and the memory size of the FPGA board is about 1/16 
(8/128) of that on the PC, the FPGA-based accelerator doubles the 
performance of the software simulations carried out on the PC. 
However, Figure 5 indicates that the rendering time at a time step 
is still long in the accelerator, which results in low sampling rate 
at the output rendered results. Hence, the current design is not suit-
able for real-time applications. From Table 2, we can find that the 
hardware resource utilization is low, and more computing units 
may be involved in calculation. Then, more grids may be com-
puted concurrently to shorten the computation time at a time step. 
The related system is under development. 
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ABSTRACT

Reusing recorded sounds (sampling) is a key component in
Electronic Music Production (EMP), which has been present since
its early days and is at the core of genres like hip-hop or jungle.
Commercial and non-commercial services allow users to obtain
collections of sounds (sample packs) to reuse in their composi-
tions. Automatic classification of one-shot instrumental sounds
allows automatically categorising the sounds contained in these
collections, allowing easier navigation and better characterisation.

Automatic instrument classification has mostly targeted the
classification of unprocessed isolated instrumental sounds or de-
tecting predominant instruments in mixed music tracks. For this
classification to be useful in audio databases for EMP, it has to be
robust to the audio effects applied to unprocessed sounds.

In this paper we evaluate how a state of the art model trained
with a large dataset of one-shot instrumental sounds performs
when classifying instruments processed with audio effects. In or-
der to evaluate the robustness of the model, we use data augmenta-
tion with audio effects and evaluate how each effect influences the
classification accuracy.

1. INTRODUCTION

The repurposing of audio material, also known as sampling, has
been a key component in Electronic Music Production (EMP)
since its early days and became a practice which had a major in-
fluence in a large variety of musical genres. The availability of
software such as Digital Audio Workstations, together with the au-
dio sharing possibilities offered with the internet and cloud storage
technologies, led to a variety of online audio sharing or sample li-
brary platforms. In order to allow for easier sample navigation,
commercial databases such as sounds.com1 or Loopcloud2 rely on
expert annotation to classify and characterise the content they pro-
vide. In the case of collaborative databases such as Freesound [1]
the navigation and characterisation of the sounds is based on un-
restricted textual descriptions and tags of the sounds provided by
users. This leads to a search based on noisy labels which different
members use to characterise the same type of sounds.

Automatically classifying one-shot instrumental sounds in un-
structured large audio databases provides an intuitive way of nav-
igating them, and a better characterisation the sounds contained.

1https://sounds.com/
2https://www.loopcloud.net/
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For databases where the annotation of the sounds is done manu-
ally, it can be a way to simplify the job of the annotator, by pro-
viding suggested annotations or, if the system is reliable enough,
only presenting sounds with low classification confidence.

The automatic classification of one-shot instrumental sounds
remain an open research topic for music information retrieval
(MIR). While the research on this field has been mostly performed
on clean and unprocessed sounds, the sounds provided by EMP
databases may also contain “production-ready” sounds, with au-
dio effects applied on them. Therefore, in order for this automatic
classification to be reliable for EMP sample databases, it has to be
robust to the types of audio effects applied to these instruments. In
our study, we evaluate the robustness of a state of the art automatic
classification method for sounds with audio effects, and analyse
how data augmentation can be used to improve classification ac-
curacy.

2. RELATED WORK

Automatic instrument classification can be split into two related
tasks with a similar goal. The first is the identification of in-
struments in single instrument recordings (which can be isolated
or overlapping notes) while the second is the recognition of the
predominant instrument in a mixture of sounds. A thorough de-
scription of this task and an overview of the early methodolo-
gies used is presented in [2]. These early approaches used two
modules for classification, one for extracting and selecting hand-
crafted features (e.g. Mel Frequency Cepstral Coefficients, spec-
tral centroid, roll-off, and flux) and another for classification (e.g.
k-nearest neighbours, support vector machines or hidden Markov
models). Datasets used for the evaluation and training of these
algorithms included RWC [3] or the University of Iowa Musical
Instrument Samples3. While these datasets are small (RWC has
50 instruments) they proved to be good for classification using
handcrafted features. New datasets such as IRMAS [4] for pre-
dominant instrument classification and GoodSounds [5] with sin-
gle instrument recordings have been created and provided suffi-
cient data for deep learning approaches to be able to surpass more
traditional machine learning approaches. A review of the evolu-
tion of traditional machine learning and deep learning approaches
for instrument classification is presented in [6]. While the perfor-
mance of traditional machine learning methods rely on developing
handcrafted features, deep learning methods learn high-level rep-
resentations from data using a general-purpose learning procedure,
eliminating the need of expert feature extraction [7]. However, the
success of these approaches is highly dependent on both the type

3http://theremin.music.uiowa.edu/MIS.html
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and amount of data they are provided [8].
Recent work has shown the effectiveness of using Convo-

lutional Neural Networks (CNNs) for instrument classification
[9–12]. CNNs can be seen as trainable feature extractors, where
kernels (or filters) with trainable parameters are convolved over
an input, being able to capture local spatial and temporal char-
acteristics. This architecture has been applied with great success
to the detection, segmentation and recognition of objects and re-
gions in images [7]. In the audio domain, when raw audio or
spectograms are given, CNNs are able to learn and identify lo-
cal spectro-temporal patterns relevant to the task to which they are
applied. When utilized for MIR tasks, CNNs have outperformed
previous state of the art approaches for various tasks [10, 13]. For
automatic instrument classification, the state of the art approaches
use CNNs trained on different representations of the input, such as
raw audio [11], spectograms together with multiresolution recur-
rence plots [12] and log mel-frequency spectograms [9,10]. In [9],
CNNs were tailored towards learning timbre representations in log
mel-frequency spectograms through the use of vertical filters in-
stead of the commonly used square filters. For instrument classi-
fication, this approach displays a close to the state of the art [10]
accuracy on the IRMAS dataset [4], while reducing the number
of trainable parameters by approximately 23 times, on the single-
layer proposed model.

Within the context of NSynth [14], a new high-quality dataset
of one shot instrumental notes was presented, largely surpassing
the size of the previous datasets, containing 305979 musical notes
with unique pitch, timbre and envelope. The sounds were collected
from 1006 instruments from commercial sample libraries and are
annotated based on their source (acoustic, electronic or synthetic),
instrument family and sonic qualities. The instrument families
used in the annotation are bass, brass, flute, guitar, keyboard, mal-
let, organ, reed, string, synth lead and vocal. The dataset is avail-
able online4 and provides a good basis for training and evaluating
one shot instrumental sound classifiers. This dataset is already split
in training, validation and test set, where the instruments present in
the training set do not overlap with the ones present in validation
and test sets. However, to the best of our knowledge, no meth-
ods for instrument classification have so far been evaluated on this
dataset.

In order to increase the generalisation of a model further than
the data provided to it, one possible approach is to use data aug-
mentation. This approach can be described as applying deforma-
tions to a collection of training samples, in a way that the correct
labels can still be deduced [15]. In computer vision, transforming
images by cropping, rotation, reflection or scaling are commonly
used techniques for data augmentation. In the audio domain, an
intuitive and practical transformation is applying audio effects to
the original training audio files. Transformations such as time-
stretching, pitch-shifting, dynamic range compression and adding
background noise have been applied with success to environmen-
tal sound classification, for overcoming the data scarcity prob-
lems [16]. In [17], artificial reverberation was applied to speech
recordings, so as to create a speech recognition system robust to
reverberant speech. For instrument recognition, the same set of
effects used in [16] was applied with success in [15]. We believe
that the use of audio effects typically used in EMP such as echo,
reverb, chorus, saturation, heavy distortion or flanger can lead to a
useful augmentation, as well as to an increase in robustness in in-

4https://magenta.tensorflow.org/datasets/nsynth

strument classification scenarios where the instrument recordings
have these effects applied.

3. METHODOLOGY

In our study we will conduct two experiments. First, we will try
to understand how augmenting a dataset with specific effects can
improve instrument classification and secondly, we will see if this
augmentation can improve the robustness of a model to the se-
lected effect.

To investigate this, we process the training, validation and test
sets of the NSynth [14] dataset with audio effects. A state of the art
deep learning architecture for instrument classification [9] is then
trained with the original training set, and appended with each of
the augmented datasets for each effect. We use the model trained
with the original training set as a baseline and compare how the
models trained with augmented versions perform on the original
test and on the augmented versions of it for each effect. The code
for the experiments and evaluation is available in a public GitHub
repository5.

3.1. Data Augmentation and Pre-Processing

The audio effects for the augmentation were applied directly to the
audio files present in the training, validation splits of the NSynth
dataset [14]. For the augmentation procedure, we used a pitch-
shifting effect present in the LibROSA6 library and audio effects in
the form of VST audio plugins. For the augmentation which used
audio plugins, the effects were applied directly to the audio signals
using the Mrs. Watson7 command-line audio plugin host. This
command line tool was designed for automating audio processing
tasks and allows the loading of an input sound file, processing it
using a VST audio effect and saving the processed sound. In or-
der to maintain transparency and reproducibility of this study only
VST plugins which are freely distributed online were selected. The
parameters used in the augmentation procedure were the ones set
in the factory default preset for each audio plugin, except for those
whose default preset did not alter significantly the sound.

The audio effects used were the following:

• Heavy distortion: A Bitcrusher audio effect which pro-
duces distortion through the reduction of the sampling rate
and the bit depth of the input sound was used in the training
set. The VST plugin used for augmenting the training set
was the TAL-Bitcrusher8. For the test and validation set, we
used Camel Audio’s CamelCrusher9 plugin which provides
distortion using tube overdrive emulation combined with a
compressor.

• Saturation: For this effect, tube saturation and amplifier
simulation plugins were used. The audio effect creates har-
monics in the signal, replicating the saturation effect from
a valve- or vacuum-tube amplifier [18]. For this augmenta-
tion we focused on a subtle saturation which did not create
noticeable distortion. The plugin used in the training set
was the TAL-Tube8, while for the validation and test set

5https://github.com/aframires/
instrument-classifier/

6https://librosa.github.io/librosa/
7https://github.com/teragonaudio/MrsWatson
8 https://tal-software.com/products/tal-effects
9https://www.kvraudio.com/product/camelcrusher-
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Shattered Glass Audio’s Ace10 replica of a 1950s all tube
amplifier was used.

• Reverb: To create a reverberation effect, the TAL-Reverb-
4 plugin11 was used in the test set. This effect replicates the
artificial reverb obtained in a plate reverb unit. For the val-
idation and test set we used OrilRiver12 algorithmic reverb,
which models the reverb provided by room acoustics. The
default preset for this plugin mimics the reverb present in a
small room.

• Echo: A delay effect with long decay and with a big de-
lay time (more than 50ms) [18] was used to create an echo
effect. We used the TAL-Dub-213 VST plugin in the train-
ing set and soundhack’s ++delay14 validation and test set.
For this last plugin, we adapted the factory default preset,
changing the delay time to 181.7ms and the feedback pa-
rameter to 50%, so that the echo effect was more noticeable.

• Flanger: For this delay effect, the input audio is summed
with a delayed version of it, creating a comb filter effect.
The time of the delay is short (less than 15ms) and is varied
with a low frequency oscillator [18,19]. Flanger effects can
also have a feedback parameter, where the output of the
delay line is routed back to its input. For the training set,
the VST plugin used was the TAL-Flanger8, while for the
test and validation sets we used Blue Cat’s Flanger15, which
mimics a vintage flanger effect.

• Chorus: The chorus effect simulates the timing and pitch
variations present when several individual sounds with sim-
ilar pitch and timbre play in unison [19]. The implemen-
tation of this effect is similar to the flanger. The chorus
uses longer delay times (around 30ms), a larger number of
voices (more than one) and normally does not contain the
feedback parameter [18, 19]. The VST effect used in the
training set was the TAL-Chorus-LX16 which tries to emu-
late the chorus module present in the Juno 60 synthesizer.
For the test and validation sets, we used Blue Cat’s Cho-
rus17, which replicates a single voice vintage chorus effect.

• Pitch shifting: For this effect, the LibROSA Python pack-
age for musical and audio analysis was used. This library
contains a function which pitch shifts the input audio. As
the dataset used contains recordings of the instruments for
every note in the chromatic scale in successive octaves, our
approach focused on pitch-shifting in steps smaller than
one semitone, similarly to what can occur in a detuned
instrument. The bins_per_octave parameter of the
pitch-shifting function was set to 72 = 12 × 6 while the
n_steps parameter was set to a random value between 1
and 5 for each sound. Neither 0 or 6 were selected as possi-
ble values as it would be the same as not altering the sound

10http://www.shatteredglassaudio.com/product/103
11https://tal-software.com/products/tal-reverb-4
12https://www.kvraudio.com/product/

orilriver-by-denis-tihanov
13https://tal-software.com/products/tal-dub
14http://www.soundhack.com/freeware/
15https://www.bluecataudio.com/Products/Product_

Flanger/
16https://tal-software.com/products/

tal-chorus-lx
17https://www.bluecataudio.com/Products/Product_

Chorus

or pitch-shifting it by one semitone. The intention of the
random assignment in the n_steps is to ensure the size of
this augmented dataset is equal to the size of the datasets of
other effects.

The audio resulting from this augmentation step can be longer
than the original unprocessed audio. In order to keep all examples
with the same length, the processed audio files were trimmed, en-
suring all audio samples had a fixed duration of 4 s, similar to the
sounds presented in the NSynth dataset [14].

The next step in the data processing pipeline is representing
each sound in a log-scaled mel-spectogram. First, a 1024-point
Short-time Fourier transform (STFT) is calculated on the signal,
with a 75% overlap. The magnitude of the STFT result is con-
verted to a mel-spectogram with 80 components, covering a fre-
quency range from 40Hz to 7600Hz. Finally, the logarithm of the
mel-spectogram is calculated, resulting in a 80 × 247 log-scaled
mel-spectogram for the 4 s sounds sampled at 16 kHz present in
the NSynth dataset [14].

3.2. Convolutional Neural Network

The CNN architecture we chose to use in our experiment is the
single-layer architecture proposed by Pons et al. [9] for the musi-
cal instrument classification experiment, which has an implemen-
tation available online18. This architecture uses vertical convolu-
tion filters in order to better model timbral characteristics present
in the spectogram, achieving close to state-of-the-art results [10],
using a much smaller model (23 times less trainable parameters)
and a consequently lower training time.

We chose the single-layer architecture presented in this study
and adapted it to take an input of size 80 × 247. This architec-
ture contains a single but wide convolutional layer with different
filters with various sizes, to capture the timbral characteristics of
the input:

• 128 filters of size 5× 1 and 8× 1;

• 64 filters of size 5× 3 and 80× 3;

• 32 filters of size 5× 5 and 80× 5.

Batch normalisation [20] is used after the convolutional layer
and the activation function used is Exponential Linear Unit [21].
Max pooling is applied in the channel dimension for learning pitch
invariant representations. Finally, 50% dropout is applied to the
output layer, which is a densely connected 11-way layer, with the
softmax activation function. A graph of the model can be seen in
Figure 1. For more information on this architecture and its proper-
ties see [9].

3.3. Evaluation

The training of the models used the Adam optimiser [22], with a
learning rate of 0.001. In the original paper [9] the authors used
Stochastic Gradient Descent (SGD) with a learning rate reduction
every 5 epochs. This was shown to provide good accuracy on the
IRMAS dataset. However, we chose to use Adam as an optimiser
because it does not need significant tuning as SGD. Furthermore,
using a variable learning rate dependent on the number of epochs
could benefit the larger training datasets as is the case of the ones
with augmentation. A batch size of 50 examples was used, as it
was the largest batch size able to fit the memory of the available

18https://github.com/Veleslavia/EUSIPCO2017
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Figure 1: Single-layer CNN architecture proposed in [9]

GPUs. The loss function employed for the training was the cat-
egorical cross-entropy, as used in [9], which can be calculated as
shown in Equation (1), where N represents the number of obser-
vations (examples in the training set) and pmodel[yi ∈ Cyi ] is the
predicted probability of the ith observation belonging to the cor-
rect class Cyi .

loss = − 1

N

N∑
i=1

log pmodel[yi ∈ Cyi ] (1)

To compare the models trained with the different datasets, we
used categorical accuracy as evaluation metric, described in Equa-
tion (2). A prediction is considered correct if the index of the out-
put node with highest value is the same as the correct label.

Categorical Accuracy = Correct predictions/N (2)

All the models were trained until the categorical accuracy did not
improve in the validation set after 10 epochs and the model which
provided the best value for the validation set was evaluated in the
test set.

4. RESULTS

Two experiments were conducted in our study. We firstly evalu-
ated how augmenting the training set of NSynth [14] by applying
audio effects to the sounds can improve the automatic classifica-
tion on the instruments of the unmodified test set. In the second
experiment we evaluated how robust a state of the art model for
instrument classification is when classifying sounds where these
audio effects are applied.

The results of the first experiment are presented in Table 1,
where the classification accuracy between the models trained with

Table 1: Classification accuracy on the unprocessed test set.

Test Effect Train Effect Accuracy

None

None (baseline) 0.7378
Heavy distortion 0.7473

Saturation 0.7349
Reverb 0.7375
Chorus 0.7417
Echo 0.7336

Flanger 0.7412
Pitch Shifting 0.7334

the original NSynth training set augmented with audio effects can
be compared to the baseline (unprocessed dataset). We see that the
increase in accuracy only occurs for chorus, heavy distortion and
flanger effects. The highest classification accuracy was achieved
by the dataset augmented with heavy distortion, where an increase
of 1% was obtained. However, all the accuracy values are in a
small interval (between 0.7334 and 0.7473), which means that the
model was not able to learn from the augmented datasets. Future
experiments are needed in order to understand why this occurs.
In [16], the authors state that the superior performance obtained
was due to an augmentation procedure coupled with an increase in
the model capacity. Experiments with higher capacity models will
be performed to understand if the size of the model used is limiting
its performance on learning from the augmented dataset.

In Table 2, we present the accuracy values obtained when
evaluating the trained model on test sets processed with effects.
The first thing we verify is that the accuracy of the classification
greatly decreases for almost all effects, when compared to the un-

DAFX-4

229



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

Table 2: Classification accuracy on the augmented test set.

Test Effect Train Effect Accuracy

Heavy distortion None 0.3145
Heavy distortion 0.3518

Saturation None 0.4836
Saturation 0.4607

Reverb None 0.3931
Reverb 0.3774

Chorus None 0.6348
Chorus 0.6436

Echo None 0.4719
Echo 0.4319

Flanger None 0.7046
Flanger 0.7002

Pitch Shifting None 0.6980
Pitch Shifting 0.6741

processed sound classification. The model seems to be more ro-
bust to the flanger and to the pitch shifting effect, where the dif-
ference between the accuracy on the unprocessed test set and on
the processed one is smaller than 4%. The effects which caused
the biggest drops in accuracy ( > 20% ) were the heavy distortion,
the saturation, the echo and the reverb. When evaluating if training
with the augmented datasets increased the robustness of the model,
we see that this is only true for the chorus and distortion effect.
While for the heavy distortion effect the accuracy when training
with the augmented set is improved by a significant value (≈ 4%),
the difference in accuracy between training with the augmented
and the unprocessed sets are small. Further experiments will be
performed to understand the bad generalisation of the model. Be-
sides experimenting with a higher capacity model as previously
stated, work will be conducted on further augmenting the datasets.
Although the effects applied were the same in the training, valida-
tion and test sets, the implementations used were different in the
training set. This leads to a different timbre between the sets that
the architecture might not be able to generalise to. In future ex-
periments, we will further augment the dataset using a number of
different settings for each effect, as well as different combinations
of the effects applied.

5. CONCLUSIONS

In this paper we evaluated how a state of the art algorithm for
automatic instrument classification performs when classifying the
NSynth dataset and how augmenting this dataset with audio ef-
fects commonly used in electronic music production influences its
accuracy on both the original and processed versions of the audio.
We identify that the accuracy of this algorithm is greatly decreased
when tested on sounds where audio effects are applied and see that
the augmentation can lead to better classification in unprocessed
sounds. We note that the accuracy results provided are prelimi-
nary, and do not fully exploit the possibilities of using audio ef-
fects for data augmentation in automatic instrument classification.
We are currently evaluating how a deeper architecture performs on
the same task. Further work includes evaluating how using a big-

ger variety of effects, with different combinations of parameters,
further improves the robustness of the classification algorithm.
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ABSTRACT

Nonlinear systems, like e.g. guitar distortion effects, play an im-
portant role in musical signal processing. One major problem
encountered in digital nonlinear systems is aliasing distortion. Con-
sequently, various aliasing reduction methods have been proposed
in the literature. One of these is based on using the antideriva-
tive of the nonlinearity and has proven effective, but is limited
to memoryless systems. In this work, it is extended to a class of
stateful systems which includes but is not limited to systems with
a single one-port nonlinearity. Two examples from the realm of
virtual analog modeling show its applicability to and effectiveness
for commonly encountered guitar distortion effect circuits.

1. INTRODUCTION

Nonlinear systems play an important role in musical signal process-
ing. In particular, there are many effects categorized as overdrive,
distortion, or fuzz, whose primary objective it is to introduce har-
monic distortion to enrich the signal. Usually the nonlinear behavior
is in some way combined with (linear) filtering to spectrally shape
the output signal or to make the amount of distortion introduced
frequency dependent. While many of these systems were origi-
nally designed in the analog domain, naturally, there is interest in
deriving digital models for them, e.g. [1, 2, 3, 4].

One major problem encountered in digital nonlinear systems,
whether designed from scratch or derived by virtual analog model-
ing, is aliasing distortion. Once the additional harmonics introduced
by the nonlinearity exceed the Nyquist frequency, they get folded
back to lower frequencies, just as if the corresponding analog signal
had been sampled without appropriate band-limiting. Contrary to
the desired harmonic distortion, aliasing distortion is usually per-
ceived as unpleasant. Therefore methods to suppress or reduce the
aliasing distortion are needed.

The conceptually simplest aliasing reduction method is over-
sampling. However, if the harmonics decay slowly with frequency,
the oversampling factor has to be high, making the approach un-
attractive due to the rising computational demand. Consequently,
various alternatives have been proposed, e.g. [5, 6, 7, 8]. These
methods, however, usually come with certain limitations, most
commonly the restriction to memoryless systems. In this work,
an extension of [7] is presented that loosens the restriction from
memoryless systems to a certain class of stateful systems.

Copyright: © 2019 Martin Holters et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

2. ANTIDERIVATIVE-BASED ALIASING REDUCTION
FOR MEMORYLESS NONLINEAR SYSTEMS

As the proposed method builds upon the approach from [7], we
shall briefly summarize the latter. Conceptually, the digital signal
is converted to a continuous-time signal using linear interpolation
between consecutive samples, the nonlinearity is applied, and the
result is lowpass-filtered by integrating over one sampling interval
before sampling to obtain the digital output signal. The key insight
is that, as there is a linear relationship between time and input
signal amplitude (within one sampling interval), one can substitute
the integration variable to integrate over amplitude instead of time.
Then, by the fundamental theorem of calculus, one only needs to
evaluate the antiderivative of the nonlinear mapping function at the
input sample amplitudes and does not need to explicitly form the
continuous signal. (For a more detailed explanation, the reader is
referred to [7].)

The result is that the nonlinear system

y(n) = f
(
u(n)

)
, (1)

where f (u) denotes the nonlinear function, mapping input sam-
ple u(n) to output sample y(n), is replaced with

y(n) = f̃
(
u(n),u(n − 1)

)
=

{
F(u(n))−F(u(n−1))

u(n)−u(n−1) if u(n) 0 u(n − 1)
f
( 1
2 u(n) + 1

2 u(n − 1)
)

if u(n) ≈ u(n − 1)
(2)

where F(u) =
∫

f (u)du is the antiderivative of f (u) and the u(n) ≈
u(n − 1) case is treated separately to avoid numerical issues when
dividing by u(n)−u(n−1). In addition to reducing aliasing artifacts,
the approach introduces a half-sample delay and attenuates high
frequencies. This can be readily seen when using the identity
function f (u) = u instead of a true nonlinearity. Straight forward
calculation yields

y(n) = 1
2 u(n) + 1

2 u(n − 1) (3)

in that case, i.e. a first-order FIR low-pass filter with a group delay
of half a sample. The low-pass effect can be countered by a modest
amount of oversampling (e.g. by a factor of two) and the delay
usually is of no concern.

3. EXTENSION TO STATEFUL SYSTEMS

The half-sample delay introduced by the method of [7] becomes
problematic if the nonlinearity is embedded in the feedback loop
of a stateful system. As noted in [7], for the particular case of an
integrator following the nonlinearity and using trapezoidal rule for
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time-discretization, one can simply replace the numerator of the dis-
cretized integrator’s transfer function with the filter introduced by
antialiasing. This fusing of antialiased nonlinearity and integrator
then has no additional delay compared to the nonantialiased system,
hence can be used inside a feedback system without problems.

Here, we consider systems which do not necessarily have an in-
tegrator following the nonlinearity. In particular, we shall consider
the general discrete nonlinear state-space system

x(n) = Ax(n − 1) + bu(n) + fx(px(n)) (4)

y(n) = cT x(n − 1) + du(n) + fy(py(n)) (5)

with

px(n) = cTpx
x(n − 1) + dpx u(n) (6)

py(n) = cTpy
x(n − 1) + dpy u(n), (7)

where x(n) is the state vector, u(n) in the input, y(n) is the output,
A is the state martix, b is the input matrix, cT is the output matrix,
and d is the feedthrough matrix, where the latter three are reduced
to vectors and a scaler, respectively, as we only consider scalar
input and output. The nonlinearity of the system is captured in two
nonlinear functions, fx and fy, influencing state update and output,
respectively. Their arguments px(n) and py(n) are calculated by (6)
and (7) similarly to the linear part of the output equation (5). Some
remarks are in order:

• While we allow multiple states, collected in the vector x(n),
we restrict the presentation to a single input u(n) and a single
output y(n), as that is the most common case. Extension to
multiple inputs and/or outputs is straight-forward.

• The limitation to scalar-valued px(n) and py(n), however,
is necessary, as the method of [7] is restricted to nonlinear
functions with scalar argument. Facilitating this is the reason
why the linear parts Ax(n−1)+bu(n) and cT x(n−1)+du(n)
have not been subsumed in the nonlinear functions in (4)
and (5), respectively.

• If the system is obtained in the context of virtual analog
modeling, usually the nonlinear functions will only be given
implicitly (as the solution of what is sometimes referred to
as a delay-free loop), making solving a nonlinear equation
necessary. However, they are typically based on a common
function, only applying different weighting to its output,
i.e. fx(px(n)) = Wx f (p(n)) and fy(py(n)) = wT

y f (p(n))
with p(n) = px(n) = py(n). While this redundancy should
be kept in mind for optimizing an implementation, we will
derive our method for the more general case of two possibly
independent nonlinear functions for state update and output.

In a first step, we may consider only applying the aliasing
suppression to fy(p), as it is not part of any feedback loop. We have
to be careful though, and may not just replace fy with f̃y in (5), as
that would lead to a misalignment in time of the different summed
terms. Instead, we have to use

y(n) =
1
2
cT

(
x(n − 1) + x(n − 2)

)
+

1
2

d
(
u(n) + u(n − 1)

)
+ f̃y(py(n), py(n − 1)). (8)

However, any aliasing distortion introduced into x(n) by (4) will
not undergo any mitigation (except for the lowpass filtering).

Now, if we naively rewrite (4) as we did with (5), we modify
our system in an unwanted way as we introduce additional delay
in the feedback. But we do that in a very controlled way: The unit
delay in the feedback is replaced by a delay of 1.5 samples. This is
equivalent to reducing the sampling rate by a factor of 1.5, so we
can compensate by designing our system for this reduced sampling
rate, arriving at

x(n) =
1
2
Ã
(
x(n − 1) + x(n − 2)

)
+

1
2
b̃
(
u(n) + u(n − 1)

)
+ f̃x(px(n), px(n − 1)) (9)

y(n) =
1
2
c̃T

(
x(n − 1) + x(n − 2)

)
+

1
2

d̃
(
u(n) + u(n − 1)

)
+ f̃y(py(n), py(n − 1)). (10)

with

px(n) = c̃Tpx
x(n − 1) + d̃px u(n) (11)

py(n) = c̃Tpy
x(n − 1) + d̃py u(n) (12)

where all coefficients are calculated for the reduced sampling
rate f̃s = 2

3 fs. We can only do this because we do not have a
delay-free loop. Or rather, the delay-free loop is hidden inside f (u):
Instead of worrying about a nonlinearity within a delay-free loop,
we treat the solution of the delay-free loop as the nonlinearity to
apply aliasing reduction to. Note that the behavior for frequencies
above 1

2 f̃s = 1
3 fs is ill-defined, but with the mild oversampling

suggested by [7] anyway, we do not have to worry about this.
The increased delay is not the only effect of the modification.

There is also the low-pass filtering. To study this in more detail,
assume fx(px) and fy(py) to be linear so that we have a linear
system, and let H(z) denote the transfer function obtained from (4)–
(7). If we instead use (9)–(12) without adjusting the coefficients,
it is straight forward to verify that the resulting transfer function
fulfills

H̃(z) =
1
2
(1 + z−1) · H

( ( 1
2 (z
−1 + z−2)

)−1
)
. (13)

We may observe two effects: The well-known filtering with a factor
on the outside and the substitution z ←

( 1
2 (z
−1 + z−2)

)−1 in the
argument of H. Evaluating the latter for z = e jω , we note that( 1

2 (e
−jω + e−2jω)

)−1
=

1
cos( 12ω)

e
3
2 jω (14)

depicted in figure 1. While in the original system H(z) is evaluated
on the unit circle e jω (shown dotted) to obtain the frequency re-
sponse, for the modified system, it is evaluated on the trajectory
of (14). We notice that, in addition to the frequency scaling by 3

2 ,
there is an additional scaling away from the unit circle, increasing
with frequency. Importantly, as we only evaluate H(z) for z on or
outside the unit circle, we preserve stability, i.e. if H(z) is stable, so
is H̃(z). Nevertheless, especially for higher frequencies, this may
cause a significant distortion of the frequency response.

An extreme example would be an all-pass filter with high Q-
factor, where the transformation might result in the zero moving
onto the frequency axis, turning a flat frequency response into one
with a deep notch. As the examples will demonstrate, many typical
systems are rather well-behaved under the transformation, but one
has to be aware of this pitfall.
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Figure 2: Schematics of the modeled diode clipper

4. EXAMPLES

4.1. Diode clipper

As a first example, we consider the diode clipper of figure 2. The
circuit is simple enough that we briefly repeat the modeling process
here.

From Kirchhoff’s and Ohm’s laws and iC = C Ûy, we immedi-
ately obtain

y = u − R · (iC + iD) = u − RC Ûy − RiD. (15)

Summing over two subsequent sampling instances, we get

y(n) + y(n − 1) =
u(n) + u(n − 1) − RC( Ûy(n) + Ûy(n − 1)) − R(iD(n) + iD(n − 1)).

(16)

We now use the trapezoidal rule to substitute

Ûy(n) + Ûy(n − 1) = 2 fs(y(n) − y(n − 1)) (17)

and obtain

y(n) + y(n − 1) =
u(n)+ u(n− 1) − 2RC fs(y(n) − y(n− 1)) − R(iD(n)+ iD(n− 1)).

(18)

Collecting all quantities from time step n − 1 into canonical states

x(n − 1) = (2RC fs − 1)y(n − 1) + u(n − 1) − RiD(n − 1) (19)

allows simplification to

y(n) = x(n − 1) + u(n) − 2RC fsy(n) − RiD(n). (20)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1
−0.8
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py in V

f y
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y)
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V

fs = 44.1 kHz

fs = 88.2 kHz

Figure 3: Nonlinear function fy(py) of the diode clipper for two
different sampling rates fs

Using Shockley’s equation for the diodes, we get

iD(n) = IS ·
(
ey(n)/vT − 1

)
− IS ·

(
e−y(n)/vT − 1

)
= 2IS sinh

(
y(n)/vT

)
, (21)

where saturation current and temperature voltage have been chosen
as IS = 1 fA and vT = 25 mV respectively. Inserting (21) into (20)
and introducing

py(n) = x(n − 1) + u(n) (22)

then leads to the implicit equation

y(n) = py(n) − 2RC fsy(n) − 2RIS sinh
(
y(n)/vT

)
(23)

for y(n). Note that we do not treat this as a delay-free loop and apply
the antialiasing to the sinh-function. Instead, we let fy(py(n)) =
y(n) denote the solution of the implicit equation. The resulting
function is depicted in figure 3 (obtained using an iterative solver).

To obtain the state update equation, we rearrange (20) to

(2RC fs − 1)y(n) + u(n) − RiD(n) = −x(n − 1) + 4RC fsy(n) (24)

and note by comparing with (19) that the left-hand side equals x(n).
Thus introducing

fx(px(n)) = 4RC fs fy(py(n)) (25)

with px(n) = py(n), we arrive at

x(n) = −x(n − 1) + fx(px(n)) (26)
y(n) = fy(py(n)) (27)

of the desired form.
Applying the aliasing mitigation only to the output equation is

particularly simple in this case, giving

y(n) = f̃y(py(n), py(n − 1)) (28)

with f̃y defined according to (2). The required antiderivative Fy(py)
of fy(py), depicted in figure 4, has to be determined numerically.
For the results below, it has been precomputed at 1024 uniformly
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Figure 4: Antiderivative Fy(py) of fy(py) of the diode clipper for
two different sampling rates fs

distributed points in the relevant range and stored in a table, using
cubic interpolation during lookup.

To also apply aliasing mitigation to the state update equation,
we have to change it to

x(n) = − 1
2
(
x(n − 1) + x(n − 2)

)
+ f̃x(px(n), px(n − 1)) (29)

and substitute f̃s = 2
3 fs for fs in (23) and (25). Note that this

immediately leads to

f̃x(px(n), px(n − 1)) = 4RC f̃s f̃y(py(n), py(n − 1)). (30)

To study the effectiveness of the method, we consider figure 5,
where the output spectra for a sinusoidal excitation are depicted
for various model configurations. Figures 5(a) and 5(b) give the
baseline, the system without any aliasing mitigation at sampling
rates fs = 44.1 kHz and fs = 88.2 kHz, respectively. Only applying
aliasing mitigation to the output equation according to (28) is of
little benefit, as seen when considering figures 5(c) and 5(d) in
comparison. We do note, however, the low-pass effect in figure 5(c),
where higher harmonics exhibit an attenuation of up to 10 dB.

When also applying the aliasing mitigation to the state up-
date equation according to (29), we observe a significant aliasing
reduction in figures 5(e) and 5(f). As explained, the aliasing mit-
igation should be combined with (modest) oversampling. In this
particular case, as verified in figure 5(e), the model is still a rel-
atively good fit even without oversampling, which however must
be mainly attributed to lucky coincidence. More relevant is the
case of a sampling rate of fs = 88.2 kHz, shown in figure 5(f).
Comparing to oversampling to fs = 220.5 kHz without additional
aliasing mitigation measures, as shown in figure 5(g), we see that
the aliased components at low frequencies, where they are most
easily perceived, are at a comparable level.

4.2. Tube screamer-like distortion circuit

As a second example we consider the distortion circuit of figure 6,
inspired by the Ibanez Tube Screamer TS-808. We shall not go
into details of the modeling procedure (for which we have used
ACME.jl1), but remark that if one allows the three diodes to be

1https://github.com/HSU-ANT/ACME.jl

different, one can no longer derive a closed-form expression for
their combined behavior. Instead, the nonlinear behavior is de-
termined by a system of three equations. Nevertheless, using the
dimensionality reduction approach of [9], the input px(n) = py(n)
to the nonlinearity can be reduced to a scalar value, formed by
linear combination of the input and the capacitor states. Hence, the
proposed method is applicable.

Figure 7 again shows the output spectra for a sinusoidal ex-
citation. As can be seen in figure 7(a), with plain oversampling
to fs = 88.2 kHz, the signal contains strong aliasing components.
Applying aliasing mitigation only to the output equation reduces
the aliasing distortion to a limited extent, as shown in figure 7(b). In
contrast, when also applying aliasing mitigation to the state update
equation, the aliasing is significantly reduced, as seen in figure 7(c).
Again, the aliasing mitigation is most effective at low frequencies,
where it is also perceptually most relevant. As in the diode clipper
example, for low frequencies the system with aliasing mitigation at
fs = 88.2 kHz performs at least as good as an unmodified system
at fs = 220.5 kHz, see figure 7(d).

5. CONCLUSION AND OUTLOOK

The presented approach for aliasing reduction generalizes the ap-
proach of [7] to all nonlinear systems that can be cast in a way
that the nonlinearity takes a scalar input. This includes, but is not
limited to, all models of circuits with a single one-port nonlinear
element. If the system contains a delay-free loop, it has to be re-cast
such that the nonlinearity is defined as the solution of the delay-free
loop. Then, the delay introduced by applying the method of [7]
to the nonlinearity can be compensated by adjusting the system’s
coefficients, even if the nonlinearity is part of a feedback loop.

As is to be expected, the achieved aliasing reduction is com-
parable to that of [7], allowing to significantly reduce the required
oversampling especially for systems which introduce strong distor-
tion, while the additional computational load is modest. Assuming
lookup tables are used for f (u) (in general being implicitly defined)
and its antiderivative F(u), the main price to pay is in terms of
memory used.

It should be noted that the extensions to higher order antideriva-
tives as proposed in [10] or [11] should be straight-forward, follow-
ing the same principle. A more interesting future direction would
be to lift the restriction on the nonlinear function to have only scalar
input. If the method of [7] (or even the higher order extensions
of [10] or [11]) could be generalized to nonlinear functions with
multiple inputs, the method proposed in the present paper would
immediately generalize to all stateful nonlinear systems.
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Figure 7: Output spectra of various model configurations for the
tube screamer distortion circuit when excited with a single sinusoid
of 1 V amplitude at 1244.5 Hz. Crosses mark expected harmonics.
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ABSTRACT

When modelling circuits one has often to deal with equations con-
taining both a linear and an exponential part. If only a single ex-
ponential term is present or predominant, exact or approximate
closed-form solutions can be found in terms of the Lambert W
function. In this paper, we propose reformulating such expressions
in terms of the Wright Omega function when specific conditions
are met that are customary in practical cases of interest. This elimi-
nates the need to compute an exponential term at audio rate. More-
over, we propose simple and real-time suitable approximations of
the Omega function. We apply our approach to a static and a dy-
namic nonlinear system, obtaining digital models that have high
accuracy, low computational cost, and are stable in all conditions,
making the proposed method suitable for virtual analog modelling
of circuits containing semiconductor devices.

1. INTRODUCTION

Typically, circuits are modelled as systems of differential equa-
tions which often contain nonlinearities [1, 2]. This is true of
both state-space methods [3, 4] and wave digital filters [5, 6, 7].
Because of the exponential relation in the Shockley model of p-n
junctions in semiconductors [8], which is also used in the Ebers-
Moll model of bipolar junction transistors (BJT) [9], often one has
to deal with equations containing both a linear and an exponen-
tial part. These equations may be solved numerically by iterative
methods. However, these approaches often result in high compu-
tational load and can be problematic in terms of stability and/or
accuracy [10, 11].

When only a single exponential term is present or predomi-
nant, it is possible to utilize the Lambert W function [12, 13, 14]
to analytically solve these equations [15, 16, 17, 18, 19, 20, 21].
When applicable, such an approach brings remarkable advantages.
In the context of circuit simulation, it is often the case that the so-
lution only involves the main branch of the W function while its
argument contains a time-varying exponential term. Various ap-
proximations [22, 23, 24, 25, 26] as well as algorithms [27, 28]
have been proposed in the literature for the computation of the W
function but, to the best of authors’ knowledge, evaluation meth-
ods have always been preferred, in the context of real-time music
DSP, that trade lower accuracy for higher performance [16, 17, 18,
19, 20].

In this paper, we propose to reformulate expressions involv-
ing the main branch of the Lambert W function in terms of the
Wright Omega function [29] in the context of virtual analog mod-
elling, which eliminates the need to compute the exponential term

usually found in the argument. Moreover, we propose simple ap-
proximations that can be used when algorithms already available
for a precise evaluation of the Omega function (e.g., [30, 31]) are
too demanding from a computational standpoint.

The reminder of the paper is structured as follows. Section 2
describes both the Lambert W and Wright Omega functions. Sec-
tion 3 presents four approximations of the Wright Omega function.
Section 4 reports the application of the proposed approach for two
circuits, whereas Section 5 concludes the paper.

2. THE LAMBERT W AND WRIGHT OMEGA
FUNCTIONS

In this section we introduce very briefly the Lambert W and Wright
Omega functions. Since time-domain circuit simulation most often
only involves real quantities, we will limit ourselves to the R →
R case, that is the argument is real and not less than − 1

e
for the

Lambert W function and just real for the Wright Omega function.

2.1. The Lambert W function

The Lambert W function is a non-injective function, with two
branches in the R→ R case, which is defined as the inverse func-
tion of

f(x) = xex, (1)
where ex is the exponential function and x ≥ − 1

e
. This can be

expressed as
x = f−1 (xex) = W (xex) . (2)

The defining equation for the W function can be derived by substi-
tuting x0 = xex into equation 2,

x0 = W (x0)eW (x0), (3)

for any x0 ≥ − 1
e

.
W (x) is two-valued for x ∈

[
− 1

e
, 0
)
, therefore we will re-

fer to the main branch (W (x) ≥ −1) as W0(x) and to the other
branch (W (x) ≤ −1) as W−1(x).

Now we can express the solution of equation

eax+b = cx+ d, (4)

as

x = −
W
(
−a

c
eb−a d

c

)
a

− d

c
, (5)

with a and c not null. In particular, if a and c have the same sign,
the argument of W () is negative and there are either two (possi-
bly coincident) or no solutions, otherwise the argument is positive,
there is one solution, and W (x) = W0(x).
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In circuit modelling, often a and c have opposite sign and are
either constants or control-rate expressions, while b or d contain
audio-rate components [17, 18, 19, 20, 21]. Therefore, under the
previous formulation, not only one needs to computeW (), but also
the exponential in its argument. In these cases, it is however still
possible to more conveniently reformulate the previous expression
as

x = −
W0

(
eb−a d

c
+log(− a

c
)
)

a
− d

c
. (6)

2.2. The Wright Omega function

The Wright Omega function is defined in terms of the Lambert W
function as

ω(x) = W0(ex), (7)

which can obviously be used to express equation 6 as

x = −
ω
(
b− a d

c
+ log(−a

c
)
)

a
− d

c
. (8)

In practice the logarithm is typically a constant or a control-
rate expression and ω() is the only transcendental function to be
computed at audio-rate.

3. APPROXIMATIONS AND COMPUTATION

High-precision algorithms have been proposed to compute ω()
[30, 31], yet in the context of real-time music DSP it is usually
preferable to trade some accuracy for higher computational effi-
ciency. Indeed, some approximations have been already proposed
in [16, 18], even if ω() was not explicitly mentioned. In this sec-
tion we propose four approximations with different degrees of ac-
curacy and complexity. Moreover, since two of these approxima-
tions presuppose fast computation of logarithm and exponential
functions, we also discuss two commonly used approaches for ap-
proximating them with a focus on the problem at hand, in case
the standard routines supplied for the target platform are not suffi-
ciently efficient.

3.1. Approximations of ω(x)

Several approximations of increasing computational cost are pro-
posed hereby. The plot of ω(x), in Figure 1(a), suggests that a
first, rough approximation can be

ω(x) ≈ ω1(x) = max(0, x). (9)

One could use a cubic spline to smooth the function around 0
as

ω(x) ≈ ω2(x) =


0 for x ≤ x1,
αx3 + βx2 + γx+ ζ for x1 < x < x2,

x for x ≥ x2.
(10)

It is sufficient to set the conditions of continuity C1 to univocally
determine the parameters α, β, γ, ζ from x1 and x2. Optimzing
these last two variables by the least squares method to minimize

the absolute error in the range [−10, 10] leads to

x1 = −3.684303659906469,

x2 = 1.972967391708859,

α = 9.451797158780131 · 10−3,

β = 1.126446405111627 · 10−1,

γ = 4.451353886588814 · 10−1,

ζ = 5.836596684310648 · 10−1.

Such an approximation is non optimal for x ≥ x2. Since
W (x)eW (x) = x, then ω(x)eω(x) = ex, or otherwise ω(x) =
x − log(ω(x)). This last relation can be used as a successive ap-
proximation method (i.e., ωn = x − log(ωn−1)) for x ≥ 1 (the
same approach is used in [17]). Applying it to improve the accu-
racy in the range of interest gives

ω(x) ≈ ω3(x) =


0 for x ≤ x1,
αx3 + βx2 + γx+ ζ for x1 < x < x2,

x− log(x) for x ≥ x2.
(11)

Again, α, β, γ, ζ are univocally determined from x1 and x2 if C1

continuity is imposed. This time we also take into account that fast
approximations for log(x) exist which are exact for x = 2y with
y ∈ Z, hence we also ensure that x2 is a power of 2. Reiterating
the optimization process, one gets

x1 = −3.341459552768620,

x2 = 8,

α = −1.314293149877800 · 10−3,

β = 4.775931364975583 · 10−2,

γ = 3.631952663804445 · 10−1,

ζ = 6.313183464296682 · 10−1.

To further improve the accuracy of such approximation, a Newton-
Raphson iteration can be applied

ω4(x) = ω3(x)− ω3(x)− ex−ω3(x)

ω3(x) + 1
, (12)

even if an approximation is used for the exponential term.
Figure 1(a) shows a plot of the ω(x) function along the four

proposed approximations, while Figure 1(b) shows the distribution
of the absolute errors for each of them.

3.2. Approximation of log(x)

The logarithm function can be efficiently approximated by exploit-
ing the IEEE754 representation of floating point numbers [32].
The memory representation of any such number is functionally
equivalent to

x = S2E(1 +M), (13)

where S is either −1 or +1, E ∈ Z is called the exponent, and
M ∈ [0, 1) is the mantissa.

In our case we can safely assume that S = +1, and by using
basic properties of logarithms

log(x) =
1

log2(e)
(E + log2(1 +M)) . (14)
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Figure 1: Approximations of the Omega function (a) and their ab-
solute errors (b).

E can be easily extracted as an integer from the actual floating
point representation of x by means of a bitshift and an integer sum,
and can be then converted to floating point representation by rou-
tines that are usually hardware-provided. Similarly, 1 +M can be
quickly obtained from x by setting the exponent to 0. Then, 1

log2(e)

is a constant that should just be precomputed and multiplied for the
change of base.

Since 1 ≤ 1+M < 2, we have effectively narrowed the prob-
lem to the computation of log2(x) in this range. We can finally use
a cubic spline and impose C1 continuity on the extremes, thus ob-
taining

log2(x) ≈ αx3 + βx2 + γx+ ζ, (15)

with

α = 0.1640425613334452,

β = −1.098865286222744,

γ = 3.148297929334117,

ζ = −2.213475204444817.

3.3. Approximation of ex

A similar approach can be employed to approximate the exponen-
tial function. First, it is possible to express

ex = 2byc2y−byc (16)

where y = 1
log(2)

x can be computed just by a multiplication with

a precomputed constant. 2byc is also easily obtained in floating

point format by converting y to integer format (usually through
fast hardware-implemented routines) and ensuring down rounding
is used, then using logic and integer operations so that S = 1,
E = byc, and M = 0.

Since 0 ≤ y − byc < 1, we have again narrowed the problem
to the computation of 2x in this range. Now y − byc is obtained
by converting byc to the floating point format and performing a
subtraction, and finally a cubic spline with C1 continuity on the
extremes can be used to get

2x ≈ αx3 + βx2 + γx+ ζ,

α = 0.07944154167983575,

β = 0.2274112777602189,

γ = 0.6931471805599453,

ζ = 1.

4. APPLICATIONS

In this section we apply our approach to model two simple circuits,
namely a common collector voltage buffer and a dynamic diode
clipper, in order to show its suitability for simulating both static
and dynamic nonlinear systems.

4.1. Common collector voltage buffer

The common collector configuration is a basic BJT amplifier topol-
ogy, which is typically used as a voltage buffer. Figure 2 shows the
simplest such circuit.

Vin

V+

Vout

Re

Figure 2: Diagram of the common collector circuit.

By examining the emitter node, according to the Ebers-Moll
model and Ohm’s Law,

Is

eVin−Vout
VT − e

Vin−V+
VT +

e
Vin−Vout

VT − 1

βf

 =
Vout

Re
, (17)

where Is is the saturation current, VT is the thermal voltage, and
βf is the common-emitter current gain. This can be solved analyt-
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ically in terms of ω() as

Vout = VTω

(
Vin + Vx

VT
+ k

)
− Vx, (18)

Vx = IsRe

(
e

Vin−V+
VT +

1

βf

)
, (19)

k = log

(
IsRe

VT

(
1 +

1

βf

))
. (20)

Please note that k is constant and that the exponential in Eq.
(19) is directly and solely input-dependent, therefore needing to be
computed no matter the modelling method adopted. Moreover, the
closed-form solution above is exact, therefore the output error will
in practice only be affected by approximations of the ω() and the
exponential functions.

Figure 3 shows the output signals obtained by feeding the pro-
posed model implemented using different ω(x) approximations
with a 9 Vpp (Volts peak-to-peak) 440 Hz sine with 4.5 V offset.
We have set V+ = 9 V, VT = 26 mV, Is = 0.1 fA, βf = 100,
Re = 1 kΩ.

4.2. Diode clipper

The diode clipper is a circuit that prevents the output from exceed-
ing a predefined voltage level. Figure 4 shows a passive, dynamic
version of the circuit that also incorporates a first-order lowpass
filter. The behavior of the circuit can be fully described by [10]

dVout

dt
=
Vin − Vout

RC
− 2

Is
C

sinh

(
Vout

VT

)
, (21)

where Is is the saturation current and VT is the thermal voltage.
The derivative on the left side of the previous equation can be

discretized using any linear 1-step method (e.g., trapezoidal rule)
as

dVout[n] = B0Vout[n]+B1Vout[n−1]−A1dVout[n−1], (22)

where B0, B1, A1 are the coefficients obtained by applying the
chosen discretization method. We will also approximate the be-
havior of the two antiparallel diodes by assuming that, at any time,
the forward current of one is much higher than the reverse cur-
rent of the other [17, 19, 20], which corresponds to substituting
sinh(x) ≈ 1

2
sgn(x)

(
e|x| − 1

)
. Therefore, we obtain

B0Vout[n] +B1Vout[n− 1]−A1dVout[n− 1] =

Vin[n]− Vout[n]

RC
− Is
C

sgn (Vout[n])

(
e
|Vout[n]|

VT − 1

)
,

(23)

which can be analytically solved as

Vout[n] = w[n]− VTr[n]ω(k4r[n]w[n] + k5), (24)
w[n] = k2q[n] + k3r[n], (25)
r[n] = sign(q[n]), (26)
q[n] = k1Vin[n]− p[n− 1], (27)
p[n] = k6Vout[n]−A1p[n− 1], (28)
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Figure 3: Time domain waveforms (a) and absolute errors (b)
of the output from the proposed common collector voltage buffer
model implemented using the ω(x) approximations described in
Section 3.1. The input is a 9 Vpp 440 Hz sine with 4.5 V offset
sampled at 44.1 kHz.

Vin

R

C

Vout

Figure 4: Diagram of the diode clipper circuit.
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with

k1 =
1

CR
, (29)

k2 =
CR

B0CR+ 1
, (30)

k3 =
IsR

B0CR+ 1
, (31)

k4 =
1

VT
, (32)

k5 = log

(
IsR

(B0CR+ 1)VT

)
, (33)

k6 = B1 −A1B0. (34)

Figure 5 shows the block diagram of the digital implementa-
tion, and Figure 6 shows the output signals obtained by feeding the
proposed model implemented using differentω(x) approximations
and running at a sample rate of 44.1 kHz with the sum of two 2 Vpp

sines of frequencies 110 and 150 Hz. We have set VT = 26 mV,
Is = 0.1 fA, R = 2.2 kΩ, C = 10 nF.

Unlike the approaches outlined in [10], our method appears to
be stable when using common discretization methods for all inputs
of all amplitudes and using any of the approximations of ω() pre-
sented so far. Such a favorable outcome was not unexpected, since
the explicit solution of the implicit model, even if approximate and
in the discrete-time domain, necessarily relaxes the stiffness con-
straints of the problem. Indeed, similar results were obtained when
modelling related circuits by approximate solutions in [17, 19, 20].

The audio-rate computational load consists of 5 sums, 9 multi-
plications, 1 sign function, and 1 ω() evaluation per sample. While
we could not directly compare the computational requirements of
our algorithm to those presented in [10] for the same circuit, its
number of operations is so limited that it can be safely assumed
to be suitable for real-time usage on all but the worst performing
platforms.

5. CONCLUSIONS

This paper proposed the reformulation of expressions involving
the main branch of the Lambert W function in terms of the Wright
Omega function in the context of virtual analog modelling. Such
an approach has the advantage of eliminating the computation of
the exponential term typically found in the argument. Simple ap-
proximations of the Omega function have also been proposed that
are well suited in real-time contexts where lower accuracy can be
traded for lower computational load.

Such an approach was applied to model two example circuits,
namely a common collector voltage buffer and a diode clipper,
resulting in high quality and high performance digital implemen-
tations. In the latter case, the approximate solution of the implicit
model in the discrete-time domain also allowed to greatly improve
the stability of the algorithm w.r.t. previous models [10].

Implementations of the two applications examples (in MAT-
LAB) and of the approximations of ω(x), log(x), and ex (in C) are
available at http://dangelo.audio/dafx2019-omega.
html.
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Figure 6: Time domain waveforms (a) and absolute errors (b) of
the output from the proposed diode clipper model implemented us-
ing the ω(x) approximations described in Section 3.1. The input is
the sum of two 2 Vpp sines of frequencies 110 and 150 Hz sampled
at 44.1 kHz.
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ABSTRACT

This papers stems from the fact that, whereas there are passive
models of transistors and tubes, a minimal passive model of the
operational amplifier does not seem to exist. A new behavioural
model is presented that is memoryless, fully described by its inter-
action ports, with a minimal number of equations, for which a pas-
sive power balance can be defined. The proposed model handles
saturation, asymmetric power supply, and can be used with non-
ideal voltage references. To illustrate the model in audio applica-
tions, the non-inverting voltage amplifier and a saturating Sallen-
Key lowpass filter are considered.

1. INTRODUCTION

Operational Amplifier (OPA) models can be roughly categorized
into a) Controlled Source (CS) models, b) white box macro models
and c) Nullor models .

In CS models (see [1]), the power supplies are lumped within
the OPA and controlled sources can provide an infinite amount
of power. It has the advantage of being simple and hides most
of the internal complexity. This is the method of choice used by
students to study the functional behaviour of OPA circuits. The
main drawback comes from the absence of external supply ports.
This results in non passive models, and forbids simulations with
non-ideal voltage sources (e.g. in low-budget guitar stomboxes).

White box macro models (see references [2] [3] [4]) use dozens
of transistors to accurately reproduce the inner structure and non-
ideal characteristics of particular devices. While this is appropri-
ate for offline simulation and circuit design, the main drawback of
this approach comes from the high number of (implicit) nonlinear
equations which makes it often unsuitable for real-time simulation.

Nullors (see references [5] [6] [7] [8]), are singular two-port
elements where the input flow and effort variables are both zero:
e1 = f1 = 0, while the output flow and effort variables e2, f2
are unconstrained. One drawback is the lack of flow / effort du-
ality. In addition, similar to CS, Nullors have no explicit power
supply ports and thus are not passive devices, inheriting the same
drawbacks mentioned above.

For audio applications, dedicated Wave Digital Filters (WDF)
models of the OPA for specific circuit topologies have been pro-
posed in [9], more recently, using Modified Nodal Analysis to

∗ The author acknowledges the support of the ANR-DFG (French-
German) project INFIDHEM ANR-16-CE92-0028.
Copyright: c© 2019 Rémy Müller et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

WDF adaptors, both Nullor and CS general purpose models of the
OPA and OTA have been proposed in [10] [11] and Sallen-key fil-
ters have been modelled with WDF in [12].

We propose a passive, quasi-ideal, black-box, behavioural model
of the OPA, simple enough for realtime simulation, with explicit
power supply and modelling nonlinear saturation. In particular, a
by-product of this research is to have a model compatible with the
port-Hamiltonian formalism [13].

The paper is structured as follows. First a general purpose pas-
sive model of the OPA is proposed in section 2, then it is illustrated
by treating the non-inverting voltage amplifier circuit in section 3,
finally a detailed study and simulation of a saturating Sallen-Key
lowpass filter is presented in section 4.

2. OPERATIONAL AMPLIFIER MODEL

The objective of this paper is to find the simplest class of Opera-
tional Amplifier models satisfying the following properties:

a) Memoryless: infinite bandwidth, infinite slew rate,

b) Passivity: the power dissipated by the OPA is non-negative
(i.e. hidden sources of energy are forbidden),

c) Quasi-ideal behaviour: infinite input impedance, zero out-
put impedance, infinite common-mode rejection ratio,

d) Finite output voltage range and saturation: explicit non-
constant power-supply ports,

e) Minimal: behavioural model with a minimum number of
equations (i.e. not a white box model containing dozen of
transistors).

−

+
i+

e+

i−
e−

iout
eout

iS+

eS+

iS−

eS−

S

Figure 1: Circuit diagram of an Operational Amplifier (OPA) with
currents drawn in receiver convention. The gaussian surface S
enclosing the component is shown in dashed line.
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2.1. Notations

The OPA shown on figure 1 is modelled as a 5-port device with
node voltages being measured relatively to the ground, node cur-
rents directed toward the element using the receiver convention
and pins labelled P = {+,−, S+, S−, out}. In this paper, we
assume that the ports of the OPA can be partitioned into a voltage-
driven set T , and a current-controlled co-set T ∗

T := {+,−,S+,S−} , T ∗ := {out} , T ∪ T ∗ = P. (1)

The respective inputs and outputs are collected into the vectors

u := [eT , iT ∗ ]T = [e+, e−, eS+, eS−, iout]
T, (2)

y := [iT , eT ∗ ]T = [i+, i−, iS+, iS−, eout]
T, (3)

Finally, the common supply, the differential supply and the differ-
ential input voltages are respectively defined by

Vcm =
eS+ + eS−

2
, Vdm =

eS+ − eS−
2

, ε = e+ − e−. (4)

2.2. Constitutive equations

Since there are 5 ports with dual flow and efforts variables, 5 inde-
pendent equations are required to specify the device:

1-2) Non-energetic input ports: the current entering the pins
{+,−} is zero (infinite input impedance)

i+ = i− = 0, (5)

3) Conservation of charge: Kirchoff Current Law applied
over the gaussian surface1 S enclosing the AOP implies that
the sum of all currents is zero∑

`∈P

i` = 0, (6)

4) Passivity: the power absorbed by the OPA is greater or
equal to zero

Pdiss = yTu =
∑
`∈P

e` · i` ≥ 0, (7)

5) Differential gain and saturation: the tensions are tied by
a continuous relation eout = f(e+, e−, eS+, eS−) such that

∂f

∂ε
≥ 0, monotonicity

max

(
∂f

∂ε

)
= K, differential gain

max(f) = eS+, ε→ +∞ positive saturation
min(f) = eS−, ε→ −∞ negative saturation

(8)

This gives 4 equalities and 1 inequality

i+ = 0 (9)
i− = 0 (10)

iS+ + iS− + iout = 0 (11)
Pdiss = iS+ · eS+ + iS− · eS− + iout · eout ≥ 0 (12)

f(eS+, eS−, e+, e−)− eout = 0 (13)

Since there is an inequality and the relation f is not specified yet,
there is an infinite class of models satisfying these equations. A
particular instance is chosen as follows.

1The Gaussian surface S is shown on figure 1. For more details see [1].

2.3. Toward a unique model

Substituting (4) into the passivity equation (12), using the conser-
vation of charge (11) and simplifying by iout gives the constraint2

Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout −

Pdiss

iout
, (iout 6= 0) (14)

which imposes a lot of structure on the form of the output function.
In order to specify a unique model, the following choices are made.

2.3.1. Differential input transistor pair

First, motivated by the typical structure of an OPA, composed of
a differential pair of transistors, gain stages and a push-pull output
(see [14] p.707), the adimensioned modulation factor 3

ρ(ε) := − iS+
iout

=
exp (x)

exp (x) + exp (−x)
, x =

Kε

Vdm
, (15)

is introduced and shown on figure 2. According to the conservation
of charge (11), this leads to the symmetric current splitting

iS+ = −ρ(ε)iout, iS− = −ρ(−ε)iout. (16)

2.3.2. The conservative OPA choice

Second, among all passive OPA models, the conservative ones are
chosen, neglecting internal dissipation:

Pdiss = 0. (17)

The power supply ports provide the amount of power necessary to
balance the power consumed at the output port. This is an instance
of a nonlinear nonenergic n-port [15].

2.3.3. Final model

Substituting (16) and (17) into (14) uniquely defines the output
function (a similar result was also derived in [16])

eout = Vcm + Vdm tanh

(
Kε

Vdm

)
. (18)

Expressed as a function of eS+, eS− this gives

eout = ρ(+ε)eS+ + ρ(−ε)eS−. (19)

Finally gathering equations (5) (16) (19) in matrix form reveals the
modulated hybrid Dirac structure4 of the conservative OPA model
given by the skew-symmetric matrix J(u):

i+
i−
iS+
iS−
eout


︸ ︷︷ ︸

y

=


. . . . .
. . . . .
. . . . −ρ(+ε)
. . . . −ρ(−ε)
. . ρ(ε) ρ(−ε) .


︸ ︷︷ ︸

J(u)


e+
e−
eS+
eS−
iout


︸ ︷︷ ︸

u

. (20)

The singularity of the structure matrix J encodes the conservation
of the so-called Casimir invariants i+ = i− = 0, in addition to the
conservative power-balance

Pdiss = uTy = uTJ(u)u = 0, (J = −JT). (21)

2see appendix A for a detailed proof.
3Different choices can be made here to adapt to other transistors types.
4Please refer to the references [17] [18] [13] for more details on Dirac

structures and to [1] for hybrid parameters.
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Figure 2: The modulation factor ρ(±ε), for K = 1, Vdm = 1.

3. CASE STUDY

To study the behaviour of the proposed model in practical applica-
tions, the case of the voltage amplifier is examined in section 3.1.
Then as a pedagogical example, the voltage amplifier is driven by
a sinusoidal voltage source and asymmetrically powered by a sin-
gle capacitor to simulate a discharging battery in section 3.2. The
voltage amplifier will be used as a building block of the Sallen-Key
lowpass filter shown in section 4.

3.1. The non-inverting voltage amplifier

−

+e+ iout
eout

eS+

eS−

R2
iRR1

(a)

e+ eout

eS+

eS−

G

(b)

Figure 3: a) a non-inverting voltage amplifier circuit with explicit
alimentation ports and b) its symbol.

A non-inverting voltage amplifier (figure 3) is achieved by
feeding back the output eout to the negative input e− through a
voltage divider

ε = e+ −
eout
G
, G =

R1 +R2

R1
= 1 +

R2

R1
. (22)

The instantaneous feedback makes the circuit act as a proportional
corrector with high proportional gainK in order to satisfy the con-
straint eout ≈ Ge+ within the range eout ∈ [eS+, eS−].

The voltage divider induces an internal current iR = eout/R,
where R = R1 +R2, and the current splitting (16) becomes

iS+ = −ρ(ε)(iout − iR), iS− = −ρ(−ε)(iout − iR). (23)

This results in the following law for the voltage amplifier
i+
iS+
iS−
eout

 =


. . . .
. g+(ε) g±(ε) −ρ(ε)
. g±(ε) g−(ε) −ρ(−ε)
. ρ(ε) ρ(−ε) .



e+
eS+
eS−
iout

 . (24)

with conductances

g+(ε) =
ρ(ε)2

R
, g−(ε) =

ρ(−ε)2

R
, g±(ε) =

ρ(ε)ρ(−ε)
R

. (25)

In the following, it is assumed that R → ∞ such that internal
losses are negligible. In particular, this is the case of the classical
voltage follower circuit for which R2 = 0, and R1 =∞.

3.1.1. Implicit constraint

The relation (24) is still implicitly defined since ε depends on both
input and output variables e+ and eout. To avoid apparent difficul-
ties with discontinuous functions, consider the curve

F =
{

(u, y) ∈ R2 | F (u, y) = 0
}
, (26)

specified by the function

F (u, y) = Vcm + Vdm tanh

(
K

Vdm

(
u− y

G

))
− y, (27)

and given e+, look for eout such that (e+, eout) ∈ F .
Since the output function is monotonous with respect to ε and

bounded in [eS−, eS+], a unique solution exists within that range.
A global method such as the bisection method is guaranteed to
find it, whereas, since K is typically about 106, it is very difficult
to use either fixed-point or derivative-based methods because of
bad numerical conditioning. Numerical simulations are shown on
figure 4.
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Figure 4: Transfer function of the voltage amplifier for G = 1,
K ∈ {1, 2, 5, 50}, eS+ = 10V, eS− = −5V. Smaller values than
the typical OPA gainK ≈ 106 are used for visualisation purposes.

3.1.2. Explicit representation

Taking the limit when K →∞ gives an explicit representation of
F as the piecewise continuous curve

F∞ = lim
K→∞

F :


y = eS+, Gu > y

y = eS−, Gu < y

y ∈ [eS−, eS+], y = Gu

. (28)

One can see on figure 4 that convergence to F∞ is very fast even
for moderate values of K. This justifies the use of this limit pro-
cess in following developments.

For (e+, eout) ∈ F∞ this gives the explicit form

eout = Vcm + Vdm sat

(
Ge+ − Vcm

Vdm

)
, (29)

where
sat(x) = min(max(x,−1), 1). (30)

Alternatively one can represent this function as

eout = µ+(e+, Vcm, Vdm)eS+ + µ−(e+, Vcm, Vdm)eS− (31)

where the implicit modulation factor ρ(±ε) in (24) has been re-
placed by the explicit one

µ±(e+, Vcm, Vdm) =
1± sat(x)

2
, x =

Ge+ − Vcm

Vdm
. (32)
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3.2. A single-rail voltage follower powered by a capacitor

u

1kΩ

iR

vC

50µF

iC

1
y

Figure 5: A single-rail voltage amplifier powered by a capacitor.

To illustrate one of the practical interest of having explicit
power supply ports, the voltage amplifier is used with the nega-
tive supply port grounded, and the positive supply port powered
by a capacitor to simulate a discharging battery (figure 5).

Using (20) with Vcm = Vdm = q/(2C), and iout = −y/R,
yields the algebro-differential equations

q̇ = −η(u, q)
y

R
,

y = η(u, q)
q

C

, η(u, q) = µ+

(
u,

q

2C
,
q

2C

)
. (33)

The energy stored in the capacitor is H(q) = q2/2C. Then its
differential equation is governed by the monotonous discharge

d

dt
H(q) =

∂H

∂q

dq

dt
= − q

C
η(q, u)

y

R
= −y

2

R
. (34)

The circuit acts as a half-wave rectifier with a positive clipping
threshold governed by the discharge of the capacitor as shown on
figure 6.
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Figure 6: Time domain simulation of the capacitor-powered single
rail voltage amplifier with vC(0) = 5V and |u| = 3V . Top plot:
proposed model. Bottom plot: comparison of discharge rate with
LTspice’s Universal OPA level.2 and the LT1366 [19].

Remark (Comparison between models)

As expected, with the proposed model, the capacitor does not dis-
charge during negative saturation (energy-preservation), and has a
monotonous discharge otherwise. Comparison with LTspice’s uni-
versal model shows that the two simulations are very close. Finally
with the LT1366, the discharge is monotonous and qualitatively
similar, but decays faster due to internal dissipation.

4. SALLEN-KEY ANALOG LOWPASS FILTER

The class of Sallen-Key Filters (SKF), introduced in [20], is per-
haps one of the most common analog filter design topology. It
is used for the realization of analog biquadratic filters, for exam-
ple in parametric equalisers. It is also the basis of the multimode
Steiner filter [21], the Korg MS-20 [22] and the Buchla Lowpass-
Gate [23].

A Sallen-Key lowpass filter schematic is shown on figure 8a.
The linear regime and its control parameters are studied in 4.1, the
circuit is then converted into equations in 4.2. Discretization is
performed using the Average Vector Field method in 4.3, finally
simulation results are shown in 4.4.

4.1. Linear behaviour and control parameters
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40
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20

40
Magnitude (dB)

10 1 100 101

 (rad/s)

3

2

1

0
Phase (rad)

Figure 7: Bode plot of the Sallen-Key filter for ω = 1, G ∈ [0, 3]

It is recalled that the Laplace transfer function (shown on fig-
ure 7) of a second order resonant lowpass filters with pulsation ω
and quality factor Q is

HLP(s) =
1

1 + 1
Q

(
s
ω

)
+
(

s
ω

)2 , (35)

In the linear regime, the Laplace transfer function of the lowpass
Sallen-Key filter is

HSK(s) = L
{
ySK
vIN

}
=

1

1 + a1s+ a2s2
, (36)

where

a1 =
(
(1−G)R1C1 + (R1 +R2)C2

)
, (37)

a2 = C1C2R1R2. (38)

Since there are only two target controls (ω,Q), for 5 design pa-
rameters (R1, R2, C1, C2, G), there are many possible design de-
cisions that are often decided according to electronic constraints.

In this paper, the Steiner filter parametrization is used with
R1 = R2 = R, and C1 = C2 = C because of its simplicity. The
transfer function (36) simplifies to

HSK(s) =
1

1 + (3−G)
(

s
ω

)
+
(

s
ω

)2 , (39)

with ω = 1/(RC), and Q = 1/(3 − G). In simulations, capaci-
tances are both set to C = 4.7nF and the resistors are adjusted to
achieve the target cutoff frequencies.
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(c) Skew-symmetric Dirac structure (KCL+KVL)
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1

R


−2 1 1 −2
1 −1 0 1
1 0 −1 1
−2 1 1 −2


︸ ︷︷ ︸
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(d) Reduced model (admittance form)

Figure 8: a) The original Sallen-Key lowpass filter circuit, b) its corresponding bondgraph (see references [24] [25] [26]) with computational
causality assignment. c) the skew-symmetric Dirac structure representing Kirchoff conservation laws. d) the reduced dynamical model.

4.2. Modelling

To model the Sallen-Key filter, the following systematic approach
is used:

• Bondgraph: The circuit 8a is first converted to an equiv-
alent bondgraph 8b using the rules in [25]. A bond be-
tween two ports A B stands for a pair of dual
port-variables (e, f). The half-arrow indicates the power
sign convention P = ef ≥ 0. 0 denotes a parallel junc-
tion where all bonds share the same voltage, and 1 denotes
a serial junction where all bonds share the same current.

• Causality assignment: to convert an acausal bidirectional
bondgraph to a causal, computable, block-diagram, one needs
to partition the flows and efforts into inputs and outputs.
The convention uses a vertical stroke A B next
to ports that are effort-controlled. Computational causali-
ties can be assigned graphically by propagating the follow-
ing rules: voltage sources and capacitors have an effort-out
causality, 0 junctions can only have one input effort, while
the dual 1 junctions can only have one output effort.

• Dirac Structure: given the causality assignment, shown on
8b, into inputs and outputs, it is now straightforward to fill
the Dirac Structure matrix 8c by inspecting circuit 8a and
expressing Kirchoff’s current and voltage laws.

• Reduced model: one can reduce the model by solving triv-
ial equalities like e+ = vC2 , eS+ = V+, eS− = V−, treat-
ing V± as constants and replacing the linear resistive cur-
rents (iR1 , iR2) by their constitutive laws. This results in
the reduced admittance model shown on figure 8d.

4.2.1. Nonlinear feedback

To separate the linear and nonlinear feedback, one can write

êout(v) = Gv −∇N(v) (40)

where the nonlinear law is

∇N(v) := Gv − êout(v)

= min(0, Gv − eS−) + max(0, Gv − eS+). (41)

and its algebraic potential (figure 9) is given by the line integral

N(v) :=

∫ v

0

∇N(s) · ds

=
min(0, Gv − eS−)2

2G
+

max(0, Gv − eS+)2

2G
. (42)

15 10 5 0 5 10 15
v (Volts)

15
10
5
0
5

10
15
20
25

algebraic laws
Gv

N(v)
Gv N(v)

15 10 5 0 5 10 15
v (Volts)

0

20

40

60

80

100

120

140
algebraic potentials (integrated laws)

Gv2/2
N(v)
Gv2/2 N(v)

Figure 9: Algebraic feedback laws and their potentials shown for
G = 2, eS+ = 10V, eS− = −5V.
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4.2.2. State-space model

Finally replacing the flow and effort variables by their constitutive
laws, and only considering the input-state-output, one gets{

ẋ = ω
[
Ax + Bu− F∇N(Cx)

]
y = Cx

, (43)

where u = vIN, y = ySK, x = [vC1 , vC2 ]T, ω = 1/(RC) and

A =

[
−2 1− 2G
1 −1 +G

]
, B =

[
1
0

]
, (44)

C =
[
0 1

]
, F =

[
−2
1

]
. (45)

Using the co-energy variables vC1 , vC2 instead of the energy vari-
ables qC1 , qC2 is justified here by the fact that the capacitors are
linear and time-invariant, i.e. the co-energy H∗(v) = Cv2/2
equals the energy H(q) = q2/(2C) for the linear law v = q/C.

4.3. Discretization using the AVF method

The Average Vector Field (AVF) method is used to discretize (43)
because of its structure-preserving properties: it preserves the en-
ergy (resp. dissipativity) of conservative (resp. dissipative) sys-
tems (see [27]). One can also refer to [28] where it has been shown
that the bilinear transform doesn’t always guarantee the dissipativ-
ity of nonlinear filters (whether time-varying or not).

As an important side-effect, the AVF method can also be inter-
preted as a first-order instance of anti-derivative antialiasing [29].

4.3.1. The Average Vector Field method

Let Ω = [t0, t0 + h] be a time-step, x : Ω → Rn a locally affine
trajectory parametrized by the normalized variable τ ∈ [0, 1]

x(t0 + hτ) = x0 + τ(x1 − x0). (46)

Introduce the averaging operator A, defined for all functions f :
Rn → Rn or operators f : H → H, whereH is a functional space
from Ω→ Rn, by

(A f)(x) :=

∫ 1

0

f(x(t0 + hτ)) dτ. (47)

For the time derivative and identity operators, one gets

ẋ :=
(
A d

dt

)
x =

x1 − x0

h
, x̄ := (AI)x =

x0 + x1

2
. (48)

Using the gradient theorem, this gives the average discrete gradient

∇N(v0, v1) := (A∇N)(v0 + τ(v1 − v0))

=


N(v1)−N(v0)

v1 − v0
v0 6= v1

∇N(v0) v0 = v1

. (49)

Computing its derivative with respect to v1 leads to

∂∇N
∂v1

(v0, v1) =


∇N(v1)−∇N(v0, v1)

v1 − v0
v0 6= v1

1

2
∇2N(v0) v0 = v1

. (50)

One can refer to [30], where the discrete gradient’s derivative is
also used for numerical simulation.

4.3.2. Averaged system

Applying the averaging operator A to (43), leads to the structure-
preserving discrete algebraic systemẋ = ω

[
Ax̄ + Bū− F∇N(Cx0,Cx1)

]
ȳ = Cx̄

. (51)

Solving the linear part for x1 gives the discrete state-space update

x1 = Adx0 + Bdū− Fd∇N(Cx0,Cx1), (52)

with the normalised pulsation ωd = hω and

Ad = D−1

(
I +

ωd

2
A

)
, Bd = D−1(ωdB),

D =

(
I− ωd

2
A

)
, Fd = D−1(ωdF). (53)

4.4. Simulation

Simulation results5 are shown on figures 10 and 11 and exhibit a
very close match with offline simulations performed in LTspice.
To solve (52), one can either use the simple fixed-point iteration,
or Newton’s method.

4.4.1. Fixed-point iteration

A simple numerical scheme is to look for the fixed-point x1 =
φ(x1) of the pre-conditioned fixed-point function

φ(x1) := Adx0 + Bdū− Fd∇N(Cx0,Cx1), (54)

with the fixed-point iteration

xk+1
1 = φ

(
xk
1

)
, x0

1 = x0. (55)

A sufficient convergence condition is detailed in appendix B.
In practice, thanks to the non linear feedback splitting in (40),

when the OPA is in the linear regime, ∇N = 0. Then the it-
eration reduces to an explicit one-step trapezoidal integrator and
converges in only one iteration.

4.4.2. Newton iteration

To accelerate convergence, one can use Newton’s method [31] as
follows: define the auxiliary function

ϕ(x1) = x1 − φ(x1), (56)

and look for the root x∗1 such that ϕ(x∗1) = 0 with the Newton
iteration

xk+1
1 = xk

1 −
(
ϕ′(xk

1)
)−1

ϕ(xk
1), x0

1 = x0. (57)

where the Jacobian of ϕ is given by

ϕ′(x1) = I + FdC
∂∇N
∂v1

(Cx0,Cx1). (58)

5Sound examples and LTspice files are available at the accompanying
website: https://github.com/remymuller/dafx19-opa.

DAFX-6

250

https://github.com/remymuller/dafx19-opa


Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

0 5 10 15 20 25 30
time (ms)

3

2

1

0

1

2

3

(V
)

u
ylin

yNL

(a) f0 = 50Hz

0 1 2 3 4 5 6 7
time (ms)

3

2

1

0

1

2

3

(V
)

u
ylin

yNL

(b) f0 = 250Hz

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (ms)

3

2

1

0

1

2

3

(V
)

u
ylin

yNL

(c) f0 = 1kHz

Figure 10: SKF filter response to a square wave input with sampling frequency fs = 44.1kHz, C = 4.7nF, cutoff fc = 1kHz (R =
33.8kΩ), Q = 10, asymmetric saturation V+ = 15V, V− = 0V and different fundamental frequencies. The non linear SKF response is
shown in solid blue, with the linear SKF response in dashed red for reference.

0 5 10 15 20 25 30
time (ms)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y S
K (

V)

u
model
LT1366
LT universal

(a) f0 = 50Hz

0 1 2 3 4 5 6 7
time (ms)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y S
K (

V)

u
model
LT1366
LT universal

(b) f0 = 250Hz

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
time (ms)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

y S
K (

V)

u
model
LT1366
LT universal

(c) f0 = 1kHz

Figure 11: Comparison between the proposed model, LTspice’s universal OPA level.2 and the LT1366 opamp. The proposed model output
is almost indistinguishable from LTspice’s universal model, whereas the tuning of the LT1366 is slightly different because of dissipation.

5. CONCLUSIONS AND PERSPECTIVES

In this paper, a static, passive, black-box model of the operational
amplifier with explicit power supply has been examined. It is suit-
able for the modelling of audio circuits and simple enough for real-
time simulation. Furthermore the explicit modelling of external
power supply ports allows the use of non-ideal voltage sources.

The choice has been made to ignore internal dissipation to
keep the model minimal. However, non-ideal characteristics such
as input and output impedance or power supply voltage drop can
be achieved by modular composition of the model with other cir-
cuit elements. This will be the topic of further research.

The non inverting amplifier is also derived as a dedicated build-
ing block. Numerical simulations justify the use of an infinite OPA
gain to get an explicit formulation. Having a pre-solved amplifier
model also greatly simplifies its use in electronic circuits, avoiding
numerical stiffness and high index DAE.

Finally, the amplifier is used for audio simulations to model
a saturating Sallen-Key lowpass filter of second order. A reduced
state-space model is derived from the circuit schematic, and a struc-
ture-preserving discretization is performed using the average vec-
tor field method. A comparison with LTspice shows that our re-
sults are very close to those of more complex macro models.

The perspectives of this study are a) modelling other non-ideal
OPA characteristics such as finite slew-rate and bandwidth, cur-
rent and voltage offsets, non-zero common-mode input gain. . . b)
studying the behaviour of the model in other typical circuits (oscil-
lator, rectifier, comparator) and c) experimental comparison with
specific devices such as the common µA741, or TL072 audio OPAs.
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A. STRUCTURE OF THE OUTPUT EQUATION

Using the passivity equation (12), then introducing Vcm, Vdm using
(4), factoring Vcm, Vdm, finally, for iout 6= 0, dividing by iout and
using (11) one gets the general form for the output equation (14).

Proof.

iS+ · eS+ + iS− · eS− = −iout · eout − Pdiss

⇐⇒ iS+(Vcm + Vdm) + iS−(Vcm − Vdm) = −iout · eout − Pdiss

⇐⇒ Vcm(iS+ + iS−) + Vdm(iS+ − iS−) = −iout · eout − Pdiss

iout 6=0⇐⇒ Vcm + Vdm

(
iS+ − iS−
iS+ + iS−

)
= eout −

Pdiss

iout
.

B. FIXED-POINT CONVERGENCE

According to the Banach fixed-point theorem, existence and unique-
ness of the solution are guaranteed if the fixed point (55) is con-
tracting, i.e. there exists a Lipschitz constant α ∈ [0, 1) such that∥∥φ(x1)− φ(x0)

∥∥ ≤ α‖x1 − x0‖ . (59)

A sufficient (but conservative) condition is given by

α = 1.162Gωd < 1. (60)

Proof. Using (54), then the derivative of the discrete gradient (50),
(bounded by G/2), and using the spectral radius of FdC, one gets∥∥φ(x1)− φ(x0)

∥∥
2

=

∥∥∥∥Fd

(
∇N(Cx0,Cx1)−∇N(Cx0)

)∥∥∥∥
2

≤ ρ

(
Fd

∂∇N
∂v1

C

)
‖x1 − x0‖2

≤ ρ(FdC) sup
v1

∣∣∣∣∣∂∇N∂v1
(v0, v1)

∣∣∣∣∣‖x1 − x0‖2

≤
2ωd

√
ω2
d + 8ωd + 20∣∣ω2

d + 2(3−G)ωd + 4
∣∣ G2 ‖x1 − x0‖2

≤ 1.162Gωd‖x1 − x0‖2
where the bound 1.162 is obtained numerically by majorizing over
G ∈ [0, 3] and ωd ≥ 0.
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ABSTRACT

Several digital signal processing approaches, generally referred to
as Virtual Analog (VA) modeling, are currently under development
for the software emulation of analog audio circuitry. The main
purpose of VA modeling is to faithfully reproduce the behavior
of real-world audio gear, e.g., distortion effects, synthesizers or
amplifiers, using efficient algorithms. In this paper, however, we
provide a preliminary discussion about how VA modeling can be
exploited to infer the input signal of an analog audio system, given
the output signal and the parameters of the circuit. In particular, we
show how an inversion theorem known in circuit theory, and based
on nullors, can be used for this purpose. As recent advances in
Wave Digital Filter (WDF) theory allow us to implement circuits
with nullors in a systematic fashion, WDFs prove to be useful tools
for inverse VA modeling. WDF realizations of a nonlinear audio
system and its inverse are presented as an example of application.

1. INTRODUCTION

The term Virtual Analog (VA) modeling generally refers to a va-
riety of approaches for digitally emulating the behavior of linear
or nonlinear analog audio circuits [1, 2]. Such approaches can
be roughly subdivided in two main classes [3]. The first class is
the one of gray box modeling methods, which estimate the system
starting from input-output measurements and a reference generic
model; examples are Volterra-Wiener-Hammerstein models and
modifications thereof [4, 5, 6], neural networks [7] and Legen-
dre nonlinear filters [8]. The second class is the one of white box
modeling techniques, which are based on the solution of the equa-
tions characterizing the actual audio circuit to be emulated; ex-
amples are state-space methods [9, 10], port-Hamiltonian methods
[11] and Wave Digital Filters (WDFs) [12, 13]. Gray box model-
ing approaches are very general and, usually, once the parameters
of the model have been derived, less computationally heavy than
white box approaches. On the other hand, white box approaches
are generally more accurate and do not require any estimation of
the model parameters. The main purpose of VA modeling is to re-
produce the output signal of real-world audio gear, e.g., distortion
effects, synthesizers or amplifiers, finding an algorithm that en-
sures a good compromise between high accuracy and light compu-
tational weight. In this paper, however, we provide a preliminary
discussion about how VA modeling can be exploited to estimate
the input signal of an analog audio system, given the output signal

Copyright: c© 2019 Alberto Bernardini et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

and the parameters of the circuit. The scenario of interest is shown
in Figure 1; assuming to know the parameters of System 1 and
its time-domain output signal y(t), we would like to recover the
input signal u(t) computing the output of System 2 given y(t) as
input. In the optimal case, System 2 is the exact inverse of System
1 and ũ(t) = u(t). The capability of recovering the input sig-
nal u(t) starting from the processed, eventually distorted, output
signal y(t) could be useful in various situations. As an example,
effective techniques of the sort would allow us to perform reamp-
ing of sound signals from electric musical instruments, in order to
change the applied effects or re-record with different amplifiers,
when the “dry signal" is not available, but the originally used ana-
log audio effect or amplifier is known.

u(t) System 1 y(t) System 2 ũ(t)

1

Figure 1: Inverse system approach. If System 2 is the exact inverse
of System 1 and the two systems share the same initial conditions,
the signal ũ(t) is a perfect estimate of the input signal u(t).

A possible strategy to attack this problem would be to use cer-
tain gray box approaches for modeling the system, e.g., Volterra-
Wiener models, and then derive the corresponding inverse system,
e.g., using functional or operatorial techniques [14, 15, 16]. An
alternative idea, discussed in this paper, is to employ white box
modeling approaches and resort to a theorem known in circuit the-
ory [17] which, given a system represented as an electrical net-
work, allows us to design its inverse. The theorem is based on
the use of a theoretical 2-port circuit element called nullor [18].
Since recent theoretical advances in WDF theory allow us to de-
sign WDF models of circuits with nullors in a systematic fashion
[19, 20], in this paper, we discuss how WDF principles can be
exploited to derive digital realization of inverse systems, applying
the theorem presented in [17]. Section 2 discusses the main aspects
of the nullor-based inversion theorem. Section 3 recalls some re-
cently developed techniques in WDF theory, such as a method for
implementing circuits with nullors in the Wave Digital (WD) do-
main. As an example of application, Section 4 describes WDF
realizations of a nonlinear audio clipper and its inverse. Section 5
concludes this paper and proposes possible future developments.

2. INVERSE SYSTEM DESIGN BASED ON NULLORS

2.1. Background on Nullors

A nullor [18], shown in Figure 2, is a theoretical 2-port linear cir-
cuit element composed of two other theoretical one-ports, called
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nullator and norator. A nullator is a circuit element having zero
current passing through it and zero voltage across its terminals,
while a norator is characterized by an arbitrary current passing
through it and an arbitrary voltage across its terminals.

+

−

+

−
v1 = 0 v2

i1 = 0 i2

1

Figure 2: A nullor composed of a nullator (represented with an
ellipse) paired with a norator (represented with two contiguous
circles).

It follows that a nullor is characterized by the constitutive equation[
v1
i1

]
=

[
0 0
0 0

] [
v2
i2

]
, (1)

where v1 is the voltage across the nullator, v2 is the voltage across
the norator, i1 is the current through the nullator and i2 is the cur-
rent through the norator.

Nullators, norators and nullors are often used to build macro-
models of more complex multi-ports, such as 2-ports with con-
trolled sources, operational amplifiers (opamps), transconductance
amplifiers or transistors. For instance, an ideal opamp can be mod-
eled using a nullor as shown in Figure 3, where v1+, v1− and v2+
are the potentials at the two input terminals and the output terminal
of the opamp, respectively.

−

+v1+

v1−

v2+

1

(a)

v1+

v1−

v2+

1

(b)

Figure 3: (a) represents an ideal opamp, while (b) is an equivalent
nullor-based representation of the same ideal opamp in (a).

2.2. Inversion Theorem

Techniques for the analog realization of inverse systems have been
explored in the mid-nineties [21, 22], especially with the purpose
of developing methods for synchronizing chaotic systems [23]. A
generalization of the inverse system approach used in [21, 22] was
developed in [17], where a proven theorem is exploited for design-
ing the inverse of a system that can be represented as an electrical
circuit containing at least one nullor. The theorem presented in
[17] is explained in the following.

Let us call the system to be inverted master and let us as-
sume that it can be represented as in Figure 4(a); the system is
constituted of a generic linear or nonlinear non-autonomous time-
invariant network, and at least one nullator-norator pair connected
to the network. A single input signal u(t) is injected into the sys-
tem using a voltage source, while the output signal y(t) is the volt-
age measured across the norator. Let us then derive the so called
slave referred to the master in Figure 4(a). The slave is obtained
by replacing the input voltage source of the master with the nora-
tor and the norator with a voltage-controlled voltage source, whose
control signal is y(t); the resulting system is shown in Figure 4(b).

Another possible representation of a master system is reported
in Figure 5(a); the system is analogous to the one in Figure 4(a),
except that the output signal y(t) is the current through the nora-
tor. The corresponding slave is represented in Figure 5(b), where
the input voltage source of the master has been replaced with the
norator and the norator with a current-controlled current source,
whose control signal is y(t).

Given the circuits in Figure 4 and in Figure 5, the following
theorem enounced and proved in Section 3 of [17] holds; the theo-
rem is here slightly reworded for the sake of clarity.

Theorem 1. If the two nonlinear dynamical systems in Figure 4
have unique bounded solutions, then, for any pair of signals u(t)
and y(t), the slave in Figure 4(b) is the inverse of the master in
Figure 4(a). This means that for any input signal u(t) and every
initial state vector x(0) for the master, there is an initial state vec-
tor x̃(0) for the slave such that ũ(t) = u(t). The same holds for
the master and the slave in Figure 5.

Similar results can be obtained when the input signal u(t) is
a current source, but they are not discussed here, since current
sources are less common in audio circuits. A very common sce-
nario, instead, is the one in which no nullors are present in the
master system to be inverted, as in Figure 6(a), where the output
signal y(t) is the difference of potentials at two generic terminals
(C and D) of the nonlinear network. It turns out that every circuit
can be augmented with a nullor without altering its behavior [17].
In fact, since the series of a nullator and a norator is equivalent to
an open circuit, the system in Figure 6(b) is characterized by ex-
actly the same behavior of the one in Figure 6(a). It follows that
the same procedure applied to the system in Figure 4(a) to derive
its inverse can now be applied to the master in Figure 6(b), ob-
taining the corresponding slave in Figure 6(c). Hence, according
to Theorem 1, the system in Figure 6(c) is the inverse of the sys-
tem in Figure 6(a). Similarly, let us consider the system without
nullors in Figure 7(a) whose output signal y(t) is a current. Since
the parallel of a nullator and a norator is equivalent to a short cir-
cuit, the system in Figure 7(b) is interchangeable with the system
in Figure 7(a). It follows that the same procedure applied to the
system in Figure 5(a) to derive its inverse can now be applied to
the master in Figure 7(b), obtaining the corresponding slave in Fig-
ure 7(c). Hence, according to Theorem 1, the system in Figure 7(c)
is the inverse of the system in Figure 7(a).

3. BRIEF OVERVIEW ON WDF MODELING

3.1. Basic WDF Principles

The WD modeling of a system is based on a port-wise considera-
tion of the reference equivalent circuit and a linear transformation
of Kirchhoff port variables into WD variables at each port, as the
following [12]

a = v + Zi , b = v − Zi , (2)

where v is the port voltage, i is the port current, a is the incident
wave, b is the reflected wave and Z is a scalar free parameter (port
resistance). Variables defined in (2) are the so called voltage waves
[12], however other kinds of waves with different units of measure
[20] or more than one free parameter [24, 25] can be defined. The
inverse relation of (2) is

v = (a+ b) /2 , i = (a− b) / (2Z) . (3)
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Figure 4: (a) shows a nonlinear non-autonomous system with at least one nullor (the master). The input signal u(t) is a voltage source,
while the output signal y(t) is the voltage across the norator. (b) shows the inverse system (the slave) of the one in (a). Letters A, B, C, D,
E and F indicate the same nodes of the nonlinear network both in (a) and (b).
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Figure 5: (a) shows a nonlinear non-autonomous system with at least one nullor (the master). The input signal u(t) is a voltage source,
while the output signal y(t) is the current through the norator. (b) shows the inverse system (the slave) of the one in (a). Letters A, B, C, D,
E and F indicate the same nodes of the nonlinear network both in (a) and (b).

Substituting (3) in the constitutive equations of circuit elements
and then expressing b as a function of a, WD scattering relations
at each port are found. When modeling most linear one-ports, e.g.,
resistors, resistive sources, capacitors and inductors, in the WD do-
main, it is possible to spend the free parameter Z in order to elim-
inate the instantaneous dependence between a and b; this process
is called adaptation. In WD structures, the connection networks
that connect circuit elements (e.g., in series, in parallel or accord-
ing to more complex constraints) are implemented using N -port
scattering junctions, called adaptors. A scattering junction is char-
acterized by scattering matrices that satisfy the following general
equation

a = Sb , (4)

where a is the vector of waves reflected from the junction (and in-
cident to the elements or the other adaptors of the WD structure
connected to the junction), while b is the vector of waves incident
to the junction (and reflected from the elements or the other adap-
tors connected to the junction). For a detailed description of basic
linear WD elements and adaptors the reader is referred to [12]. In-
stead, a brief discussion on the modeling of WD structures with
nonlinearities, nonreciprocal multi-ports and complex topologies
is provided in the following subsection.

3.2. Recent Advances in WDF Theory

Despite the idea of using WD structures for sound synthesis through
physical modeling and Virtual Analog modeling dates back to the
nineties [1, 26], a considerable effort has been made in the last few
years to enlarge the class of audio circuits that can be modeled in
the WD domain. In particular, WD models of linear and nonlinear
circuit elements, such as operational amplifiers [27, 28, 19, 29, 30],
nonlinear transformers [31], diodes [27, 32, 33, 34], vacuum tubes
[35, 36] and transistors [37, 38, 39, 40, 41], that were not consid-
ered in traditional WDF theory [12] have been discussed. More-
over, novel design strategies for implementing R-type WD adap-
tors describing arbitrary reciprocal [42] or nonreciprocal [20] con-

nection networks have been developed. Dynamic circuits with up
to one nonlinear element can be implemented using WD structures
without Delay-Free-Loops (DFLs), i.e., fully explicit [43, 26, 34].
Although this desirable property is not maintained when we deal
with circuits with multiple nonlinearities, some novel approaches
have been recently presented for solving this kind of circuits using
the K method [44, 38] or iterative techniques [45, 40, 46, 47, 48].

In the context of this article, the modeling of nullors in the WD
domain is of particular interest. Nullators, norators and nullors are
singular elements [18]. It follows that they cannot be modeled as
other circuit elements in the WD domain using separable blocks
characterized by local scattering relations. However, systematic
methods developed in [19, 20] can be adopted to model circuits
with nullors in the WD domain. Such methods are based on the
Modified Nodal Analysis [49] and they allow us to derive WD
realizations of nonreciprocal connection networks embedding both
topological information and nullors; the result are special R-type
WD adaptors which are neither pseudolossless nor reciprocal [20].

In the next Section, as an example, we will show how both
an audio clipper with one nonlinearity and its nullor-based inverse
can be implemented in the WD domain in an explicit fashion.

4. WDF REALIZATIONS OF A NONLINEAR AUDIO
CLIPPER AND ITS INVERSE

4.1. Circuit of the Audio Clipper and Design of its Inverse

The circuit of the nonlinear diode-based audio clipper that we will
consider is shown in Figure 8(a). The input signal u(t) is the volt-
age supplied by the voltage source. The output signal y(t) is the
voltage across the resistor with resistanceRout. The circuit is com-
posed of: five linear resistors with resistancesRp,Rm,Rfl,Rfh and
Rout; two linear capacitors with capacitances Cp and Cm; and two
nonlinear diodes, D1 and D2, in antiparallel. The two diodes are
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Figure 6: (a) shows a nonlinear non-autonomous system without nullors (the master). The input signal u(t) is a voltage source and the
output signal y(t) is a voltage. (b) shows a system equivalent to the one in (a) augmented with a nullator-norator pair. (c) shows the
inverse system (the slave) of the one in (a).
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Figure 7: (a) shows a nonlinear non-autonomous system without nullors (the master). The input signal u(t) is a voltage source, while
the output signal y(t) is a current. (b) shows a system equivalent to the one in (a) augmented with a nullator-norator pair. (c) shows the
inverse system (the slave) of the one in (a).

identical and both characterized by the Shockley diode model

id = Is(e
vd/(ηVth) − 1) , (5)

where id is the current passing through the diode, vd is the volt-
age across the diode, Is is the saturation current, η is the ideality
factor of the exponential junction and Vth is the thermal voltage.
A detailed list of the circuit parameters and the corresponding val-
ues is reported in Table 1. For the purpose of designing an inverse

Table 1: Parameters of the Audio Clipper Circuit.

Param. Value Param. Value Param. Value
(ηVth) 26 mV Cp 1 pF Rp 39 kΩ
Is 2.52 nA Cm 3.9 nF Rm 22 kΩ
Rout 150 kΩ Rf1 50 kΩ Rf2 50 kΩ

audio clipper, given the system in Figure 8(a), we add a nullor to
the circuit. In fact, as explained in Subsection 2.2, a circuit can al-
ways be augmented with a nullator-norator pair obtaining another
circuit equivalent to the original one. Figure 8(b) shows the audio
clipper circuit with a series of a nullator and a norator from node
C to ground which has exactly the same behavior of the one in
Figure 8(a). Starting from the master in Figure 8(b), we get the
corresponding slave in Figure 9(a), according to the Theorem in
Subsection 2.2. Figure 9(b) shows an alternative representation of
the inverse nonlinear audio clipper, where the nullor is replaced by
an opamp. It is worth recalling that, if the opamp is characterized
by the ideal nullor-based model shown in Figure 3, the circuit in
Figure 9(b) is totally equivalent to the circuit in Figure 9(a); if a
non-ideal opamp model is considered, instead, the circuit in Fig-
ure 9(b) is an approximation of the “exact inverse" in Figure 9(a).

4.2. Design of WD Structures and Simulation Results

A possible WD realization with no DFLs of the nonlinear audio
clipper in Figure 8(a) is shown in Figure 10(a). WD blocks (ele-
ments or junctions) including a “T-shaped" symbol at one port are

adapted at that port. As far as the WD modeling of the circuit el-
ements is concerned, linear elements are all adapted according to
traditional WDF principles [12]. In particular, the wave reflected
from a resistor with resistance R at the nth port of an adaptor is
bn = 0 during the whole simulation, provided that the adapta-
tion condition Zn = R is satisfied. The reflected wave from a
capacitor with capacitance C at sampling step k, instead, is given
by bn[k] = an[k − 1], provided that the bilinear transform is ap-
plied to discretize the time derivative and the adaptation constraint
Zn = Ts/(2C) is set, where Fs = 1/Ts is the sampling fre-
quency. The voltage source is augmented with a negligible small
series resistances Re = 1 µΩ; the reflected wave is computed as
b[k] = u(kTs) with Z5 = Re. The pair of antiparallel diodes is
treated as a one-port. Since it is nonlinear, such a one-port cannot
be adapted and, according to [27, 33, 39], its WD mapping can be
expressed as

b = sgn(a)F (|a|, Z, Is, η, Vth) , with (6)

F (a, Z, Is, η, Vth) = a+ 2ZIs − 2ηVthW

(
ZIs

ηVth
e
ZIs+a
ηVth

)
,

where W is the Lambert function. The connection network of
the circuit in Figure 8(a) is reciprocal, hence it is implemented
using an interconnection of two reciprocal WD junctions [42]: the
parallel adaptor P1 and the R-type adaptor R1. The standard 3-
port parallel adaptor is realized as discussed in [12], while the 8-
port R-type adaptor is characterized by a scattering matrix SR1 ,
which can be formed as [42]

SR1 = 2QT
(
QZ−1QT

)−1

QZ−1 − I8 , (7)

where I8 is the 8 × 8 identity matrix, Z = diag[Z1, . . . , Z8] is
the diagonal matrix of port resistances (port numbering follows
the convention in Figure 10(a)) and Q is the fundamental cut-set
matrix characterizing the connection network and given by

Q =

−1 0 0 1 1 0 0 0
1 −1 0 0 0 1 0 0
0 1 1 0 0 0 1 0
0 0 −1 −1 0 0 0 1

 .
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Figure 8: (a) shows the circuit of the nonlinear audio clipper. (b) shows a circuit equivalent to the one in (a) augmented with a nullor.
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Figure 9: (a) shows the circuit of the inverse nonlinear audio clipper. (b) shows an alternative representation of the inverse nonlinear audio
clipper where the nullor is replaced by an opamp. If the opamp is characterized by the ideal nullor-based model in Figure 3, the circuit in
(b) is fully equivalent to the circuit in (a).

Port 6 of R1 is made reflection-free by setting the 6th diagonal
entry of the scattering matrix equal to zero. The expression of the
adaptation constraint on Z6 is not reported here for the sake of
brevity; however, given the circuit parameters in Table 1, we get
the constraint Z6 = 27110 Ω.

As far as the inverse audio clipper in Figure 9(b) is concerned,
a possible WD realization with no DFLs is shown in Figure 10(b).
The elements and the 3-port parallel adaptor P2 are implemented
in a similar fashion to the previous case; the R-type adaptor R2,
instead, differs fromR1, as it is a WD realization of a non-reciprocal
connection network embedding a nullor. According to [20], the
scattering matrix SR2 ofR2 is given by

SR2 = 2ÃT
p [I5 0] X̃−1

0 [I5 0]T ÃpZ
−1 − I8 , (8)

where I5 is the 5 × 5 identity matrix, 0 is a column vector of five
zeros, Z = diag[Z1, . . . , Z8] is a diagonal matrix of port resis-
tances (port numbering follows the convention in Figure 10(b)),
X̃0 is the 6×6 matrix obtained removing the jth row (1 ≤ j ≤ 7)
and the jth column of X0 in Figure 11, while Ãp is the 5× 8 ma-
trix obtained removing the jth column of Ap in Figure 11. Port 1
of R2 is adapted by setting Z1 = (Z3Z5Z7)/(Z3Z5 + Z3Z6 +
Z3Z7 + Z3Z8 + Z6Z8).

The accuracy of the designed WDFs is verified comparing the
output signals with those obtained from a Spice implementation

and noting a good matching. One of such tests is reported in Fig-
ure 12. WD simulations are performed with a sampling frequency
Fs = 44100 Hz. Figures 13, 14 and 15 show some further re-
sults of the WD implementations of the master and the slave in
Figure 10, when the input signal is a sinusoid, a square wave and
a white noise, respectively. Detailed parameters of the input are
specified in the captions. We notice that inversion works pretty
well for each input signal choice, as ũ(t) always closely matches
u(t). More precisely, let us define the absolute value of the estima-
tion error as ε(t) = |ũ(t) − u(t)|, and then derive its mean ε̄ and
its maximum value εmax. We get: ε̄ = 1.5 × 10−11 V and εmax =
2.5×10−11 V in the sinusoidal input case; ε̄ = 2.7×10−11 V and
εmax = 1.1× 10−10 V in the square wave case; ε̄ = 1.4× 10−11

V and εmax = 3.6× 10−11 V in the white noise case.

5. CONCLUSIONS AND FUTURE WORK

We discussed a general approach for the design and the WDF real-
ization of the inverse of any input-output audio system that can be
described using electrical equivalents. It is worth pointing out that
the presented approach works properly only when we deal with
invertible nonlinearities and that numerical problems may occur
when nonlinear functions to be inverted are very steep. Future re-
search work would be desirable for extending such an approach to
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Figure 10: (a) WDF implementing the nonlinear audio clipper; (b) WDF implementing the inverse nonlinear audio clipper.

X0 =




G1 + G2 + G3 + G4 0 − G1 − G2 − G3 −G4 1
0 G7 + G8 − G7 0 − G8 0 −1

− G1 − G7 G1 + G5 + G7 − G5 0 0 0
− G2 0 − G5 G2 + G5 + G6 − G6 0 0
− G3 − G8 0 − G6 G3 + G6 + G8 0 0
− G4 0 0 0 0 G4 0

0 0 0 − 1 0 1 0




Ap =




−1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 1
1 0 0 0 −1 0 1 0
0 1 0 0 1 1 0 0
0 0 1 0 0 −1 0 −1
0 0 0 1 0 0 0 0




Ap =




−1 −1 −1 −1 0 0 0 0
0 0 0 0 0 0 −1 1
1 0 0 0 −1 0 1 0
0 1 0 0 1 1 0 0
0 0 1 0 0 −1 0 −1
0 0 0 1 0 0 0 0




1

Figure 11: Matrices needed for deriving the scattering matrix ofR-type adaptorR2.
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Figure 12: Comparison between WDF in Figure 10(a) and Spice.
Output y(t) given input u(t) =

∑2
j=1 gjsin(2πf0j) with g1 =

0.5 V, f01 = 650 Hz, g2 = 0.35 V and f02 = 1450 Hz.
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Figure 13: Results of WDF implementation of master and slave,
given a sinusoidal input u(t) = sin(2πf0) with f0 = 500 Hz.
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Figure 14: Results of WDF implementation of master and slave,
given a square wave input u(t) = sgn (sin(2πf0)) with f0 = 500
Hz.
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Figure 15: Results of WDF implementation of master and slave,
given a zero-centered white noise with amplitude 1 as input.

MIMO systems and to systems with uncertain parameters.
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ABSTRACT

This paper presents a digital grey box model of a late 1960s era
Shin-ei Uni-Vibe R©1 analog effects foot pedal. As an early phase
shifter, it achieved wide success in popular music as a unique mu-
sical effect, noteworthy for its pulsating and throbbing modula-
tion sounds. The Uni-Vibe is an early series all-pass phaser ef-
fect, where each first-order section is a discrete component phase
splitter (no operational amplifiers). The dynamic sweeping move-
ment of the effect arises from a single LFO-driven incandescent
lamp opto-coupled to the light dependent resistors (LDRs) of each
stage. The proposed method combines digital circuit models with
measured LDR characteristics for the four phase shift stages of
an original Uni-Vibe unit, resulting in an efficient emulation that
preserves the character of the Uni-Vibe. In modeling this iconic
effect, we also aim to offer some historical and technical insight
into the exact nature of its unique sound.

1. INTRODUCTION

The Uni-Vibe was a Shin-ei Companion effects box branded as
the Univox Uni-Vibe and distributed by the Unicord Corporation
in the late 1960s. The Uni-Vibe is thought to be the prominent
guitar effect in popular music recordings such as Jimi Hendrix’s
Woodstock performance in 1969, Robin Trower’s 1974 “Bridge
of Sighs,” and Pink Floyd’s 1973 “Breathe.” The sound of the
Uni-Vibe is characterized by throbbing pulse, “double beat,” and
a lo-fi sweep [1]. It has a simple user interface with potentiometer
controls for Volume and Intensity, a foot pedal for varying rate or
speed, and a switch for Chorus or Vibrato Mode.

While the Uni-Vibe was marketed as a simulation of a rotating
“Leslie” style speaker cabinet [2], in a more recent interview the
inventor, Fumio Saeda, revealed his inspiration drew more from
Radio Moscow broadcasts modulated and distorted by the iono-
sphere as he listened on short wave radio in Japan [3]. In fact, the
Uni-Vibe modulation circuit was largely extracted from his first
effects box, the Psychedelic Machine, which was a combination of
fuzz and modulation (called Mood), both of which were directly
inspired by the combination of fuzzy distortions and pitch modu-
lation of the ionosphere distorted broadcasts.

The Uni-Vibe is considered to be a phaser or phase shifter sim-
ilar to the MXR Phase 90 of the time [4]. A phaser mixes an input
signal with the same signal’s output from a series chain of all-pass
filters to generate a number of notches in the frequency spectra.

∗ For Eventide Inc.
1Uni-Vibe is a registered trademark of Dunlop Manufacturing, Inc.

Copyright: c© 2019 Champ Darabundit et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

Figure 1: A closeup of the reflective housing (left) and lamp-LDR
assembly (right)

Each pair of single order all-passes, when mixed with the original
signal, creates an instantaneous frequency notch where their 180o

phase shifts intersect. For this reason, most phasers match the cen-
ter frequencies in pairs or use 2nd order filters. Notch locations
are modulated by a Low Frequency Oscillator (LFO) sweeping the
all-pass center frequencies. As a phaser, the Uni-Vibe is partic-
ularly unique in two respects: the instantaneous positions of the
notches are determined by the complex interaction between a sin-
gle incandescent lamp and four adjacent LDRs housed in a roughly
cube-shaped reflective chamber (shown in Figure 1), and an almost
arbitrary choice of phasing capacitor values. The capacitor values,
which determine the all-pass center frequencies, result in staggered
or spread notches unlike other phasers which tend to use matched
pairs. In addition to a phasing sound this leads to a band limited
tremolo-like effect. The exact reasoning for the capacitor selection
remains a mystery to Uni-Vibe aficionados [4].

The uniqueness of the Uni-Vibe has thus been the subject of
many attempts to commercially clone the original such as ([5] [6]
[7]) and [8] by Dunlop Manufacturing who now own the Uni-Vibe
trademark, among others. Many of these clones attempt to emulate
the Uni-Vibe by recreating the original circuit, or by attempting to
replicate a similar lamp and LDR combination.

Previous published work on Uni-Vibe analysis was done in [9]
and [10]. Related work in [11] provides a thorough overview for
direct digital implementation of generalized analog phasers con-
structed with operational transconductance amplifiers and field ef-
fect transistors. Whereas, the more specific modeling of the MXR
Phase 90 pedal from [12] tabulates the main nonlinearity from a
JFET used as the notch sweeping variable resistor within a state
space discrete model of the circuit. The authors in [13] describe
an ad-hoc method for modeling a vactrol, a single element pack-
age combining an LED and LDR, in a Buchla low-pass gate. They
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Figure 2: The complete Uni-Vibe circuit schematic

reason that realizing full models of photoconductor transients for
musical signals is a significant task based on the models in [14].

We propose a digital grey box emulation of the Uni-Vibe, sim-
ilar to the phaser modeling work done in [15]. The grey box
model approach combines physical measurement data (a black box
model) and a physically informed model derived from circuit anal-
ysis (a white box model). Our primary motivation for this ap-
proach, over complete physical modeling of the entire system,
arises from the observed complexity in the coupled interaction be-
tween the driving LFO circuit, the single incandescent lamp, the
four adjacent LDRs, and the reflective housing encasing the lamp
and LDRs. We reason that a full model would need to take into
account the complex physical relationship of at least the lamp, the
LDRs, and the additional reflections and shielding provided by the
housing. Since our goal is real-time and efficient implementation
of this model, we opted for the black-box approach to this complex
system. Consequently, our emulation uses measurement data taken
directly from an original Uni-Vibe unit to create three-dimensional
wavetables capturing the behavior of each of the LDRs under the
influence of the LFO driven incandescent lamp.

While the behavior of the LFO and LDRs is complex, a model
of the phasing sections can be derived and discretized via the bi-
linear transform for the white box portion. Additionally, we will
show that the discrete transistor phase splitting does not result in
ideal all-passing, and that this does have a perceivable effect in the
Uni-Vibe’s sound.

This paper will first provide an overview of the Uni-Vibe pedal
and circuit in Section 2. In Section 3 we will examine the phasing
circuit and the derivation of its continuous-time and discrete-time
models, highlighting some of the perceptually relevant aspects yet
to be thoroughly covered in previous works. Section 4 will cover
the measurement procedure for evaluating the LDRs and the sig-
nal analysis done to extract resistance curves from the LDRs. Sec-
tion 5 will discuss the results and real-time implementation of the
preamplifier model of the Uni-Vibe. Section 6 offers conclusions

and suggestions for future work.

2. UNI-VIBE CIRCUIT

The Uni-Vibe can be broken down into five basic blocks (as shown
in Figure 2): the pre-amplification section, the phasing section, the
LFO and lamp section, the output buffer, and the output mixer. The
input signal is buffered by the nonlinearity before being passed to
the phasing section which is a multi-stage phaser with four phase
stages. Each phase stage has its own unique LDR and phasing
capacitor, labeled CP in Figure 2. The LDR and R6 combined
in series forms the resistor-capacitor pair determining the center
frequency of the phase-shift contributed by each section.

After passing through the phasing sections, the signal is passed
to the output buffer which is a bipolar junction transistor (BJT)
buffer, before being passed to the output mixer. Within the output
mixer there is the vibrato/chorus switch, along with the volume
control knob. The vibrato/chorus switch switches between two re-
sistive networks to determine whether the signal from the output
buffer is passed to the output by itself or mixed evenly with a “dry”
signal originating from the first phase stage. The volume control
is a potentiometer adjusting the amplitude of the output. In com-
parison to the phasing section and the LFO, the pre-amplification
section and the output buffer section do not modulate the audio
path in a significant way at low signal levels and their contribu-
tions are ignored in our analysis. The effects of these sections at
high signal levels due to distortion remain for future work. Volume
and the Chorus/Vibrato switch did not need to be extensively mod-
eled as they can be represented by a multiplication and addition,
respectively.

2.1. LFO Section

This section contains the most dominant Uni-Vibe controls, Inten-
sity and Speed, found in the LFO section of Figure 2.The Intensity
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knob, which goes from a value of one to nine, with additional min-
imum and maximum settings, scales the LFO voltage across the
bulb, and thus determines the range of the notches’ frequencies
in the phase-shifted signal.The effect of sweeping over a larger
frequency at the same LFO speed is what causes notches to sound
“deeper.” The Speed, controlled via foot-pedal, determines the rate
of the LFO. From toe-to-heel the Speed traverses approximately 0
Hz to 7.6 Hz. The 0 Hz Speed originates from a cancel switch
located at the heel of the foot pedal that turns off the lamp and
prevents the value of the LDRs from changing.

The LFO is a variation on a phase-shift oscillator [4]. A phase-
shift oscillator uses regenerative feedback from an RC network
from the base ofQO1 to the emitter ofQO2 to produce a sinusoidal
output. The RC network here is the equivalent resistance of the
two RO1, RO2, RO3 legs along with the three CO capacitors. The
foot pedal controls the speed by varying the value of the coupled
potentiometers RO1, which in turn vary the equivalent resistance
of the two resistor legs.

Before the LFO signal is passed to the BJT buffer in the lamp
section, its amplitude is modulated via the Intensity potentiome-
ter. As the rate of the LFO is dependent on regenerative feedback,
coupling the Intensity pot directly to the output of the LFO results
in rate drifting proportionally with intensity and vice-versa, result-
ing in a non-orthogonal relationship between Speed and Intensity.
In order to accurately model this parameter interdependency, our
black box model utilizes a three-dimensional wavetable, with input
phase/sample, speed, and intensity axes.

2.2. Lamp and LDRs

The lamp section of the Uni-Vibe is rather straightforward and
consists of a BJT buffer which supplies the LFO signal to the lamp.
Within this section is the cancel switch and a trim pot which was
not adjusted during our measurements. When the cancel switch is
flipped all power to the bulb is cut. The resistance of an LDR is in-
versely proportional to brightness therefore in complete darkness
an LDR is at its maximum resistance. As the center frequency of
the phase shifter is inversely proportional to the resistance of the
LDR, the cancel switch causes the center frequencies to trend to
DC. The cancel switch thus effectively acts as a bypass.

The lamp and the LDRs were specially sourced for the Uni-
Vibe. The lamp is a fast-switching incandescent bulb (but not as
fast as an LED) and the LDRs are made with cadmium sulfide and
are no longer mass produced [3]. The uniqueness and rarity of
these components is what, in part, is responsible for the unique
tone of the Uni-Vibe.

3. PHASING CIRCUIT ANALYSIS AND MODEL

Figure 3 shows the schematic for phase stages 2, 3, and 4 of the
phasing circuit. Each stage consists of a Darlington emitter fol-
lower that directly drives a phase inverter whose center frequency
is determined by an LDR and phasing capacitor pair, labeled LDR
and Cp, respectively. Due to the nature of the Darlington am-
plifier circuit and C1 acting as a “bootstrap” capacitor the input
impedance of each stage is very high [4]. This allows us to con-
sider each phase stage individually, instead of as a whole. Al-
though phase stage 1 is not driven by a Darlington amplifier, we
assume similar behavior as the other phase stages because of the
preamplifier section . A similar analysis of this circuit has been
done by [9], who modeled the response of each phase stage as

Figure 3: A single stage of the phasing circuit. The inverting side
comes comes off the collector and the non-inverting side comes off
the emitter

an all-pass phaser by representing the Darlington emitter-follower
as an phase inverter with gain ≈ 1 feeding an RC bridge. This
conclusion assumes, incorrectly, that the amplitude of inverting
and non-inverting legs of the transistor originating from the collec-
tor and emitter of Q2 are balanced, and that the block capacitor’s
(CDC ) contribution can be ignored. Through listening, measure-
ment, and simulation of the Uni-Vibe it was determined that these
factors could not be ignored and had to be taken into account, thus
a corrected analysis of the circuit is presented below.

3.1. Phasing Circuit Analysis

Figure 4: A block diagram describing the corrected phasing cir-
cuit. R′ = LDR +R6

Figure 4 represents the incoming signal to each stage as Vs,
the phase inversion as a gain of −1, and the inverting and non-
inverting gains as β and α, respectively. The phasing capacitor
and the block capacitor remain unchanged while the value R′ rep-
resents the series resistance of the LDR and R6.

The transfer functionH(ω) of the phasing circuit can be found
through the superposition of two complex voltage dividers taken
from the inverting and non-inverting legs of the circuit. Analyzing
the phasing circuit in this manner makes a digital implementation
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Figure 5: A further simplification of the phasing block diagram
where the Vs, α, and β have been simplified as an inverting and
non-inverting source

of the filter and application of nonlinearity easier as will be shown
in Sec. 3.2. This simplification is represented in Figure 5, where:

Ve = αVs (1)

and,

Vc = −βVs (2)

Giving us the complete transfer function:

H(ω) = Hc(ω) +He(ω) (3)

Hc(ω) and He(ω) are the transfer functions of the inverting
and non-inverting legs:

Hc(ω) =
κcωo + jω

ωo + jω
(4)

He(ω) =
κeωo

ωo + jω
(5)

Where:

κc =
Cp

Cp + CDC
(6)

κe =
CDC

Cp + CDC
(7)

are constants, and

ωo =
1

R′
CDC + Cp

CpCDC
(8)

is the center frequency of the filter. If we combine equations (1)
(2) (3) (4) (5) we have the transfer function of the entire phasing
circuit:

H(ω) = α

(
κeωo

ωo + jω

)
− β

(
κcωo + jω

ωo + jω

)
(9)

Which has the phase response:

φ(ω) = tan−1

(
−βω

ακeωo − βκcωo

)
− tan−1

(
ω

ωo

)
(10)

If we let β = 1, α = 1 (i.e. the inverting and non-inverting
gains are balanced) and CDC = ∞ (which removes the effect of
the block-capactior) equation (9) takes the form of a standard first-
order all-pass phaser in equation (11), as κc = 0, and κe = 1.

H(ω) =
ωo − jω
ωo + jω

(11)

Which matches the analysis done by [9]. If the same equalities are
applied to equation (10) we obtain the standard phase response of
a first-order all pass:

φ(ω) = −2tan−1

(
ω

ωo

)
(12)

Since the bootstrap capacitor C1 allows us to assume high in-
put impedance at each stage the full cascade of the phasing section
is:

H(ω) =
4∏

n=1

Hcn(ω) +Hen(ω) (13)

Where,

Hcn(ω) =
κcnωon + jω

ωon + jω
(14)

Hen(ω) =
κenωon

ωon + jω
(15)

and,

κcn =
Cpn

Cpn + CDC
(16)

κen =
CDC

Cpn + CDC
(17)

ωon =
1

R′n

CDC + Cpn

CpnCDC
(18)

for each phase-stage (n = 1, 2, 3, 4).

Table 1: Measured capacitance, inverting, and non-inverting
gains, and LDR resistances

Cp (F) α β
LDR (Ω)

avg (M) min. (k) max. (M)
1 .015µ 1.01 1.11 0.405 12.7 2.79
2 .22µ .98 1.09 0.233 6.86 2.59
3 470p .97 1.10 0.29 7.69 3.32
2 .0047µ .95 1.09 0.240 6.22 4.16

Each stage has its own unique Hcn , Hen , κcn , κen , and ωon

as each stage has a unique phasing capacitor, LDR, inverting gain,
and non-inverting gain which were found through measurement of
each phase stage. Table 1 provides these values. We should note
that these values are most likely unique to the particular unit we
measured, and we expect these values are varied among differing
Uni-Vibe units given the tolerances of the components. Different
units most likely have their own particular sound.

The inclusion of the inverting and non-inverting gains as well
as the block capacitor in the analysis of the phasing circuit are a
sonically relevant addition to the analysis and modeling of the Uni-
Vibe. As seen in Figure 6 with R′ fixed at LDR1’s mean value
the block capacitor causes the magnitude of the transfer function
to exhibit a high shelf response rather a unity response all-pass
filter. This high shelf effect is emphasized as the stages stack up.
Additionally dissimilar inverting and non-inverting gains, along
with the block capacitor cause a shift in the phase response of the
filter as seen in equation (10). In chorus mode the sweeping high
shelf causes the low end of the signal to match what the output
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Figure 6: Transfer function of the first phase stage. α = 1.0009,
β = 1.11, R′ = 409.7kΩ

would be in vibrato mode and is responsible for the Uni-Vibe’s
characteristic throbbing pulse.

We reason that the selection of the phasing capacitor values is
such that only two notches can heard at a time, which creates the
Uni-Vibe’s characteristic double beat. As the Uni-Vibe stages are
not matched pairs like other phasers, without the inclusion of the
block capacitor instantaneous notches can “pop” in and out of the
frequency spectra.

3.2. Discrete Model

Figure 7: Block diagram of the applied nonlinearity

From equations (14) (15) a discrete model of each phase stage
circuit was derived using the bilinear transform and pre-warping
the filter around the frequency ωon giving us the discrete transfer
functions for the inverting and non-inverting legs:

Hcn [z] =
(κcn tanωon + 1) + (κcn tanωon − 1)z−1

(tanωon + 1) + (tanωon − 1)z−1
(19)

Hen [z] =
κen(1 + z−1)

(tanωon + 1) + (tanωon − 1)z−1
(20)

in the complete discrete equation:

Hn[z] = Hcn [z] +Hen [z] (21)

for each stage (n = 1, 2, 3, 4).
It is important to note that ωon is dependent on the value of

the LDR and therefore the bilinear transform and frequency pre-
warping must be applied in real-time.

3.2.1. Non-linear elements

It was determined through measurements that the emitter-follower
pair in each phase-stage was clipping the input signal asymmetri-
cally. To approximate this non-linear behavior, a tanh() function
with a heuristically determined bias and scaling factor is applied
in the signal chain before (21). Separating our signal into two sig-
nal paths allows us to apply this nonlinearity. A block-diagram of
how this nonlinearity is incorporated is shown in Figure 7. Includ-
ing these non-linearities was necessary in modeling the Uni-Vibe
as the clipping added audible harmonics and the biasing adjusted
the balance of even and odd harmonics.

The scaling factor g determines the level at which the signal
clips by gaining down the input signal. The biasing factor u offsets
the signal to determine the extent of the asymmetry in the clipping.
The ideal values for g and u were first determined through mea-
surement of the original Uni-Vibe pedal, and then tuned heuristi-
cally to match. After the signal is clipped by the tanh() function
it is passed through a DC-blocking low-pass filter. The inclusion
of this filter is an improvement on the original signal path of the
Uni-Vibe. The biasing factor u, which exists in both the Uni-Vibe
and in our model, pushes DC impulses through to the output when
ωo approaches DC. These impulses are audible as clicking in the
original Uni-Vibe. Our DC-blocking filter removes the DC offset
before equation (19) (20) are applied. Before being outputted the
signal is gained back up by g−1 to return the signal level back to
its original value. The gain values are fairly low, so aliasing dis-
tortion due to clipping is also fairly minimal, thus in order to keep
the model efficient we neglected any oversampling.

4. MEASURING THE UNI-VIBE LDRS

4.1. Physical Measurement

Due to the difficulty in physically modeling the transient resistance
of the LDRs in the phase stage, a decision was made to measure the
behavior instead. Unlike [10] which measures a Uni-Vibe clone,
we directly measure the actual Uni-Vibe unit. Additionally [10]
only measures one LDR, while we found it important to measure
all four as we could not ensure the LDRs would have the same
values based on their make and position respective to the lamp.
This decision is supported by Table 1 which demonstrates that each
LDR differed from one another. To measure the behavior of a
phase stage’s LDR the output of the stage was shorted and the
input was fed with a 1 kHz sine wave. Voltage measurements were
taken across the LDR and R6 and across R6 alone, allowing us
to derive the transient resistance of the LDR as part of a voltage
divider.

RLDR = R6
VLDR

V6
−R6 (22)

Measurement recordings were taken by playing the 1 kHz in-
put signal while in tandem taking the two aforementioned voltage
measurements. These measurements were recorded on a digital
audio workstation using the Expert Sleepers ES-8 USB-audio in-
terface which has DC-coupled inputs and outputs [16]. To model
the full breadth of the pedal these measurements were repeated at
fourteen different LFO frequencies and at eleven different intensi-
ties settings for each of the four LDRs. Consequently an additional
measurement was taken of the LFO signal driving the lamp, as a
method of recording the speed of the LFO in the case of any in-
consistencies in the foot pedal settings during measurement.
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4.2. Measurement Analysis

Figure 8: A complete wavetable for LDR1 at 4 Hz

The process taken to analyze the measurement for each LDR
were as follows. The measurement data was converted to their
nominal RMS values based on the specifications of the USB-audio
interface. The recordings were then upsampled by four so enve-
lope extraction could be performed using a maximum value filter
with a rectangular window with a width of 1 kHz. This allowed
us to extract the effect of the circuitry and remove the 1 kHz in-
put signal. Additional filtering was also done to remove power-
supply hum. A model of the additive noise in the LDR resistances
was found by deriving the transient resistance of an LDR using
equation (22) at a minimum Intensity for each Speed. This noise
model could then be used in conjunction with a Wiener filter, us-
ing Matlab’s wiener function, to remove any noise in transient
resistances at higher Intensity settings.

At this point, single-cycle resistance curves needed to be ex-
tracted from the clean resistance signal. To preserve more percep-
tible information single-cycle curves were extracted by using local
maximums to determine the starting and ending peaks for individ-
ual periods in the resistance signal. Unfortunately information is
lost at the loop point from the start to the end of a cycle. To mini-
mize this local maximums were chosen as the loop point because
ωo values arising from the resistances at local minimums are much
more perceptible than ωo values arising from the local maximums,
which approach DC. Each single-cycle period was averaged to-
gether to further reduce noise in the resistance signal.

To prepare these resistance curves for implementation in the
wavetable each one-period length curve was then downsampled
to 64-samples. Then, using the LFO rate data obtained from an
FFT of the LFO signal, curves of a similar Intensity were inter-
polated to be equally spaced across the entire frequency range of
the LFO. This was done to facilitate indexing across the lookup
table. The first two-samples and last two-samples of each curve
were interpolated together to ensure that the loop point was seam-
less at the expense of data loss. Otherwise, any significant disjoint
would be perceived as an audible click. The result of this analy-
sis is a three-dimensional wavetable containing 640 unique LDR
resistance curves for each LDR representing every combination
of Speed and Intensity settings on the Uni-Vibe, with a sawtooth
phase input providing exact sample accurate rate. Figure 8 shows
a small sample of this wavetable containing the curves for the first

LDR at a speed of 4 Hz. Visual analysis of the resistance curves
shows the curves have increasing asymmetry as intensity increases
due to the LDRs having different turn-on and turn-off times. The
increasing asymmetry is a result of lamp varying its brightness
more rapidly as intensity is increased.

5. RESULTS AND EXPERIMENTS

5.1. Real Time Implementation

Figure 9: Noise Spectrograms. Top: Model, Bottom: Uni-Vibe. A
second notch can be seen in the lower frequencies under the main
notch.

A real-time implementation of the the Uni-Vibe emulation was
implemented in C/C++ both as a VST plugin using the JUCE
framework and as a process running in a single core of an em-
bedded Linux ARM Cortex-A9 commercial audio product. The
real-time emulation consists of four univibe_phaser modules each
of which replicates a single stage of the phasing circuit by us-
ing the measurement derived three-dimensional wavetable and the
discrete-time model of the Uni-Vibe’s phase-stage.

Depending on the selection of which stage to emulate the uni-
vibe_phaser module converts the wavetable of LDR resistances
into a wavetable of center frequencies ωo before implementation
using the known values of each stages’ Cp and CDC . Using a
graphical user interface the desired Intensity and LFO Speed can
be set to linearly interpolate a value of ωo from the wavetable. This
value is then passed to an implementation of equation (13).

Figure 9 shows spectrogram output of our real-time imple-
mentation and the original Uni-Vibe with white noise as the input
source. Upon visual inspection, the model retains the dynamic be-
havior of the original unit. Intensity and Speed settings were 7 and
2.0 Hz respectively.

5.2. Experimental Methodology

MUSHRA style listening tests were conducted to quantitatively
assess the accuracy of our real-time implementation of the Uni-
Vibe running in the ARM Cortex-A9 commercial audio product.
A second original Shin-ei Uni-Vibe, two analog hardware clones,
and two digital emulations in hardware were tested alongside our
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implementation for a total of 6 units under test. The original hard-
ware unit measured for our implementation was chosen as the
MUSHRA reference.

5.2.1. MUSHRA Test Setup

Reference and MUSHRA anchor recordings were generated as
follows: Unaffected electric guitar passages were recorded into
a UAD Apollo 8 interface via Direct Injection, or DI. Reference
recordings were created by feeding recorded passages through the
original Uni-Vibe set at specific Intensity and Speed settings. All
recordings were done in Chorus mode with Volume set at 5. Due
to the relatively low frequency spectral quality of the electric gui-
tar, 1.5 kHz low-passed versions of the reference recordings were
included as anchors instead of the usual 7 kHz and 3.5 kHz low-
passed anchors.

For test unit recordings, Intensity settings were visually matched
to the reference through printed markings or numerically via graph-
ical displays where applicable. Test unit LFO Speed settings were
precisely matched to the reference through waveform inspection of
their phase cancellation cycle or numerically via graphical displays
where applicable. Trial and error was used to ensure LFO phase
alignment between test unit recordings and the reference record-
ing.

5.2.2. Electric Guitar Passage Selection

A total of three electric guitar passages were recorded for the lis-
tening tests. Passages were disparately styled and chosen to reflect
real-world use cases for the Uni-Vibe in addition to test the full
range of Uni-Vibe sounds and settings.

Passage 1 consisted of a 101 BPM Texas Blues styled riff
played with hard plectrum attack intended for a Uni-Vibe set to
approximate a Leslie in tremolo mode. Reference Intensity and
Speed settings were 5 and 4.85 Hz respectively creating a triplet
modulation feel.

Passage 2 consisted of a 4 bar phrase using whole note chords
followed by an arpeggiated version of the same chord progression
played at 110 BPM. Reference Intensity and Speed settings were
7 and 1.89 Hz respectively for a medium depth modulation that
followed the quarter note.

Passage 3 consisted of a 62 BPM, two open-chord arpeggia-
tion. Intensity and Speed settings were set at 10 and 0.99 Hz re-
spectively creating a slow and deeply swept modulation. Settings
were chosen so participants could best judge LFO modulation con-
tours in the test.

5.3. Experimental Results

Listening tests were administered using webMUSHRA software
[17] and a total of 20 participants were included in the test. Fig-
ure 10 shows a box plot of the results of listening test 1 where
our model scored closest to the reference. Of the analog hardware
units tested, scores varied widely with two units averaging below
the digital emulations. The second original Uni-Vibe scored sub-
stantially lower than the reference which seemed to confirm our
initial listening impressions of the high degree of variability be-
tween these specific original units. Given the majority of units
tested closer to the reference, we suspect the second original Uni-
Vibe could be out of factory specification warranting further in-
vestigation. Post-test user feedback for listening test 1 revealed
a wide range of criteria for judging similarity and included pick

Figure 10: Listening test 3 results

Figure 11: Listening test 2 results

Figure 12: Listening test 3 results
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attack, tonal balance (timbre), modulation depth, and noise floor.
The wide range of judgement criteria may explain the large in-
terquartile sizes and low score outliers in these results.

Figure 11 shows a box plot of the results of listening test 2.
These results mirrored listening test 1 however, Digital Clone 1
scored below the anchor. During our own informal comparisons,
Digital Clone 1’s depth of modulation and overall timbre were
markedly different than the reference, both most likely playing
large roles when tests were scored by participants. Anchor scores
averaged higher than listening test 1 indicating low pass frequency
may have been set too high. Post-test user feedback reported lis-
tening test 2 as harder to judge than listening test 1 which could
explain the average score increase for most units.

Figure 12 shows a box plot of the results from listening test 3.
As in test 2, Digital Clone 1 scored lowered than the anchor, most
likely for reasons similar to listening test 2. Our model scored
second closest to the reference with Digital Clone 2 scoring the
highest. Post-test user consensus deemed listening test 3 hard-
est to score of the three tests. From our own qualitative listening
sessions at these settings, our implementation exhibited a slightly
deeper and squarer-edged modulation contour than the reference.
We believe this is related to our choice of wavetable splice point
and interpolation.

6. CONCLUSION

In this work a grey box method was proposed for creation of an
accurate Uni-Vibe model. A white-box model of the Uni-Vibe’s
phasing circuit was created through circuit analysis uncovering as-
pects of the Uni-Vibe circuit that contribute to its iconic sound. A
complementary black-box model was also created through mea-
surement of the Uni-Vibe’s LFO-LDR-lamp interaction. A real-
time implementation of the grey box model of the Uni-Vibe was
implemented on a single core of a Linux ARM Cortex-A9. In
comparison to an original unit and other Uni-Vibe clones our im-
plementation was on-average rated closest to the reference in two
out of three MUSHRA listening tests, scoring second in the third
test.

Further work to improve our model would be deriving and im-
plementing more accurate behavior of the non-linear BJT clipping,
as was done by [18], instead of replicating it heuristically. We
also plan to further investigate the ideal method of splicing at the
wavetable loop point. Conversely, judging from our measurements
of the LFO-LDR-lamp interaction, it may be also possible to create
a simplified parametric model of that interaction.
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ABSTRACT
In this article we investigate how the local Gaussian model

(LGM) can be applied to separate sound sources in the higher-
order ambisonics (HOA) domain. First, we show that in the HOA
domain, the mathematical formalism of the local Gaussian model
remains the same as in the microphone domain. Second, using
an off-the shelf source separation toolbox (FASST) based on the
local Gaussian model, we validate the efficiency of the approach
in the HOA domain by comparing the performance of toolbox in
the HOA domain with its performance in the microphone domain.
To do this we discuss and run some simulations to ensure a fair
comparison. Third, we check the efficiency of the local Gaussian
model compared to other available source separation techniques in
the HOA domain. Simulation results show that separating sources
in the HOA domain results in a 1 to 12 dB increase in signal-to-
distortion ratio, compared to the microphone domain.

Multichannel source separation, local Gaussian model, Wiener
filtering, 3D audio, Higher Order Ambisonics (HOA).

1. INTRODUCTION

There is an increasing interest in new, immersive forms of media,
such as 360-degree videos and Virtual Reality (VR) experiences.
Producing media experiences of this kind requires new techniques
and workflows on both the video and audio sides. In particular, the
feeling of immersion that is sought after by VR spectators highly
depends on the quality of the audio rendering. In order for the ex-
perience to be convincing, sounds must be binauralized according
to the spectator’s location and orientation relative to the different
sound sources.

Among the various 3D-audio technologies available, Higher-
Order Ambisonics (HOA) [1, 2, 3, 4] has become the de facto
standard for 360-degree video soundtracks. This is primarily be-
cause HOA provides a panoramic representation of the sound field,
which can easily be rotated in accordance with the listener’s head
orientation prior to being played back. Another significant ad-
vantage of the HOA representation is that it is straightforward to
record HOA sound scenes using relatively compact Spherical Mi-
crophone Arrays (SMAs). In contrast to 360-degree videos, how-
ever, VR experiences not only allow the spectator to look in any di-
rection, but also to navigate through the virtual environment. This
means that the spectator’s perspective of the scene may change
over time in a manner that cannot be modeled as a simple rota-
tion effect. For instance, the spectator can move toward one of the

sound sources, which should translate in this source being louder
compared to other sources.

One possible approach to simulate a movement through the
scene is to interpolate between several HOA representations cor-
responding to different points of view [5, 6]. However, in prac-
tice this requires to use several SMAs, which may be impossi-
ble. Another possibility consists in decomposing one HOA scene
into directional components, which typically correspond to sound
sources, and changing their directions and gains according to the
listener’s movements [7, 8, 9]. In addition to being more practical
than the interpolation method, this approach was shown to yield a
better listening experience [8]. The quality of the navigation effect
obtained with the decomposition approach ultimately depends on
the accuracy of the sound source separation. In previous work [9],
we showed that sound sources could be separated using a simple
beamforming technique, which relies solely on spatial informa-
tion. In the presence of complex sound scenes, however, the qual-
ity of the separation could be improved using multi-channel source
separation algorithms, such as those based on the so-called local
Gaussian model [10, 11, 12].

In this article, we investigate the ability of the local Gaussian
model to handle the informed source separation problem (knowing
directions of arrival) directly in the HOA domain. In Section. 2, we
recall the model in the microphone domain and derive its equiva-
lent in the HOA domain. This allows us to perform experiments
with an off-the-shelf source separation toolbox, the Flexible Au-
dio Source Separation Toolbox (FASST) [13], presented in Sec-
tion 3. Experimental results are presented and discussed in Sec-
tion 5; First, on a small dataset, we investigate the performance
of FASST with respect to of the number of channels in the HOA
domain and the number of microphones in the microphone do-
main, and select a number of channels/microphones yielding a fair
comparison between the HOA domain and microphone domain.
Second, on a large scale dataset, we measure the performance of
FASST in both domains, and compare them to each other. Third,
we compare the performance of FASST with different types of
beamformers. We conclude in Section 6 on the validity of the lo-
cal Gaussian model and its competitive performance when applied
to HOA signals, including in challenging situations such as highly
reverberating environments or close source positions.
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2. MIXTURE MODELS

2.1. Microphone domain

The source separation problem consists in estimating the contribu-
tion cj,t P R

I of each source j “ 1, ..., J in each microphone
i “ 1, ..., I and at each time instant t “ 1, ..., T . In the absence
of noise, the mixture can be written as:

xt “

J
ÿ

j“1

cj,t , (1)

where xt “ rx1,t, . . . , xI,ts
T
P RI are microphone array sig-

nals. In a reverberant environment, under the hypothesis of point
sources, the source signal sj,t can be related to its contribution cj,t

through:
cj,t “ rαij ˚ sjst , (2)

where ˚ denotes the convolution product, αij is the impulse re-
sponse of the mixing filter between the source j, and the micro-
phone i. Now, under the narrow-band approximation, and assum-
ing the mixing filters are time invariant, the Short-Time Fourier
Transform (STFT) of the microphone signals is given by:

xf,n “

J
ÿ

j“1

Aj,fsj,fn , (3)

where f and n denote the frequency bin and time-frame index, re-
spectively. Af P C

IˆJ contains the frequency responses aij,f of
the filters aijptq, and embeds information on the source directions
of arrival (DOA).

The source separation problem as defined in Eq.(1) can be ad-
dressed using the multichannel Wiener filtering framework, which
will be presented with more details in Sec. 3. This framework re-
quires the selection of a distribution model for the variables to es-
timate. For simplicity we use the local Gaussian model presented
in [14]:

@f P r1, F s , n P r1, N s , cj,f,n „ Ncp0,Σcj,f,nq , (4)

where Σcj,f,n“ E
“

cj,f,n cH
j,f,n

‰

is the covariance matrix of the
contribution of the j-th source to every microphone at frequency
f and time frame n. In line with the literature, this matrix can be
further decomposed as the product of a scalar spectral part, vj,f,n,
with a time-invariant spatial matrix, Rcj,f , as follows: Σcj,f,n “

vj,f,n Rcj,f . Notably, the so-called spatial covariance matrix Rcj,f

respects the relation Rcj,f “ Aj,f AH
j,f when the assumptions of

Eq. (3) hold.

2.2. HOA domain

In the Higher-Order Ambisonic (HOA) framework, the sound field
is decomposed over a basis of spherical harmonic functions. The
HOA signals, zt, are typically obtained by applying a set of finite
impulse response filters, known as encoding filters, to the signals
recorded by a spherical microphone array [15]. Thus, assuming
the encoding filters are short enough, the vector of the HOA signal
STFTs zf,n P CM is given by:

zf,n “ Ef xf,n, (5)

where Ef is the matrix of the encoding filter frequency responses.
Using Eq. (1), we can now model the HOA mixture as follows:

zf,n “

J
ÿ

j“1

Ef cj,f,n, (6)

and identify the contribution of the j-th source to the different
HOA channels as:

bj,f,n “ Ef cj,f,n. (7)

As is the case in the microphone domain, in the ambisonic do-
main source separation consists in estimating the contribution of
every source to every channel bj,f,n, which can be solved using
a Wiener filtering approach. To this aim we assume the following
local Gaussian model:

bj,f,n „ Ncp0,Σbj,f,nq. (8)

Similar to the microphone domain, the covariance Σbj,f,n can be
further decomposed into a spectral part, vj,f,n, and a spatial co-
variance matrix given by:

Rbj,f “ Ef Rcj,f EH
f . (9)

3. SOURCE SEPARATION WITH FASST

The multi-channel source separation problem can be solved by
looking for the filter that minimizes the expected squared error for
every source j and every time frequency bin pf, nq:

@j P r1, Js, f P r1, F s and n P r1, N s,
Wj,f,n “ argmin

W
E
“

}cj,f,n ´Wj,f,n xf,n}
2
2

‰

. (10)

The filter Wj,f,n is known as the multichannel Wiener filter and
is given by:

Wj,f,n “ Σpcj,f,n,xf,nq
Σ´1
pxf,n,xf,nq

, (11)

where the matrices Σpxf,n,xf,nq
and Σpcj,f,n,xf,nq

, represent the
covariance of the mixture xf,n and the cross-correlation between
the vectors cj,f,n and xf,n, respectively.

From Eq. (4), and assuming the sources are statistically inde-
pendent, the Wiener filter can be simplified as:

Wj,f,n “ Σcj,f,n

˜

J
ÿ

j1“1

Σcj1,f,n

¸´1

. (12)

Thus, the source separation problem reduces to the problem of es-
timating the covariance matrices Σcj,f,n or, equivalently in the
HOA domain, Σbj,f,n . Each source contribution is obtained by
applying element-wise its corresponding Wiener filter to the mix-
ture: cj,fn “ Wj,fnxfn, respectively, bj,f,n “ Wj,f,nzj,f,n in
the HOA domain. and finally using overlap-add to reconstruct the
time-domain signal.

In this work we use the flexible audio source separation tool-
box (FASST) [13, 16], a software toolbox which allows the esti-
mation of these parameters and apply the subsequent Wiener filter.
In FASST the parameters are estimated by maximizing the log-
likelihood of the observations with an Expectation-Maximization
(EM) algorithm, and a multi-channel non negative matrix factor-
ization (NMF) model can be enforced on the source covariances
Σcj,f,n [11].
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4. EXPERIMENTAL PROTOCOL

4.1. Dataset

In order to evaluate the source separation performance, we built a
dataset as follows. First, fifty songs were picked randomly from
the Mixing Secret Dataset (MSD100)1. In the MSD100 database,
each song consists of four sound sources (voice, bass, drums and
"others") provided as separate tracks.

In this work, microphone array recordings were then simulated
using MCRoomSim [17], a room acoustics simulation software.
This software calculates impulse responses modeling the acoustic
propagation between acoustic sources and sensors in reverberant
environments. A total of 16 simulations were run, corresponding
to four rooms and four source configurations. The eight rooms had
the same dimensions, 10 m ˆ 8 m ˆ 3 m, but different wall ab-
sorption coefficients, which resulted in the following reverberation
times: 0 s, 0.2 s, 0.4 s and 0.7 s. The four source configurations are
illustrated in Fig. 1. In every simulation the microphone array was
modeled to match the characteristics of the Eigenmike2 and was
located at the same position in the room. In order to calculate the
microphone mixtures, for each song and each of the 32 conditions
the separate source tracks were then convolved with the simulated
impulse responses and summed with each other.

We then built two different inputs for source separation: a mi-
crophone mixture x obtained using every sensor of the Eigenmike
(32 channels), and a fourth order ambisonic mixture b (25 chan-
nels) obtained by applying encoding filters to the microphone mix-
ture x.

90°

10°

10°

90°

90°

A) B)

D)C)
10°

Fig. 1: The four sound source configurations considered in our
simulations. Note: stars represent sound source locations. All the
sources and the spherical microphone array are at the same height.
Across all the examples, the position of sources with similar type
was the same.

4.2. Evaluation criteria

In order to validate the adaptability of FASST in the HOA domain,
we propose to compare its performance to that obtained by apply-
ing FASST in the microphone domain. A fair comparison requires
to compute the chosen performance measures in the same domain.

1https://sisec.inria.fr/sisec-2015/
2015-professionally-produced-music-recordings/

2https://mhacoustics.com/products

However, some information is lost when converting microphone
signals to HOA signals, therefore it is impossible to convert the
separated HOA signals back to the microphone domain for com-
parison. To alleviate this issue, instead of computing the evaluation
measures in terms of the contribution of each source in each chan-
nel/microphone (FASST’s outputs), we propose to compute them
in terms of sound objects.

We obtain sound objects by applying beamforming to the sig-
nals separated by FASST. For simplicity, we use the beamforming
technique known as the matched filter for both the microphone
and HOA domains. For the j-th sound source, the sound object
is calculated by projecting the separated signals onto the steering
vector corresponding to a plane wave incoming from the source
direction,pθj , φjq. In other words, the estimated source object j in
the microphone and HOA domains are calculated as follows:

ŝMic
j,f,n “

aH
j,f

||aj,f ||
2 ĉj,f,n (13)

ŝHOA
j,f,n “

yH
j,f

||yj,f ||
2 b̂j,f,n (14)

where yj corresponds to the spherical harmonic vector evaluated
at the direction of arrival of the source j. We then compare the es-
timated sound object signals to reference signals, which we define
as the sound objects obtained by applying the same beamform-
ing to the actual (i.e. oracle) sound source contributions. In other
words for the source j the reference signal in the microphone and
HOA domains are given by:

sMic
j,f,n “

aH
j,f

||aj,f ||
2 cj,f,n (15)

sHOA
j,f,n “

yH
j,f

||yj,f ||
2 bj,f,n (16)

Lastly, we assess the source separation performance by com-
paring the signals given by Eq. (13), and Eq. (14) to the ones given
by Eq. (15) and Eq. (16), respectively, using the following perfor-
mance measures [18]: Signal to Distortion Ratio (SDR), Signal
to Artifact Ratio (SAR), and Signal to Interference Ratio (SIR).
These measures are then calculated with the BSS-eval toolbox3

[19].

4.3. Evaluated methods

The first method we examine consists in applying FASST to the
HOA mixtures (see Sec. 3.) We compare it to the equivalent microphone-
domain mixtures with the same number of channels. We also com-
pare the performance obtained by using FASST in the HOA do-
main with that of two different beamformers.

The first beamformer has already been introduced in Section. 4.2.
It is the matched filter beamformer(PWD), but this time applied di-
rectly to the HOA mixture, which is given by:

s̄HOA
j,f,n “

yH
j,f

||yj,f ||2
zf,n. (17)

The second beam former, which we refer as the pseudo-inverse
beamfomer, consists in multiplying the HOA signals with the pseudo-
inverse of the matrix containing the steering vectors for the di-
rections of the sources. The resulting beamformer is a particular

3BSS-eval version 3.0 for Matlab, http://bass-db.gforge.
inria.fr/bss_eval/
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case of the Linearly-Constrained Minimum-Variance beamformer
(LCMV). It is given by:

¯̄sHOA
j,f,n “ pY

HYq´1YHzf,n, (18)

where the matrix Y contains the spherical harmonic vectors of the
sources direction of arrivals.

4.4. FASST parametrization and initialization

The FASST toolbox requires choosing configuration parameters,
as well as providing initial values for the covariance matrices Σcj,f,n

in Eq. (12). Tab. 1 summarizes the parameters used for all exper-
iments. Further, in order to match the scene configuration, the
number of sources was fixed to 4 in the anechoic condition and 5
in reverberant conditions, where we observed that it was beneficial
to add a source accounting for diffuse noise or late reverberation.

Transform type STFT

Sampling frequency 44100 Hz

Window length 69 ms (3072 samples)

NMF rank 16

Stopping criterion 150 iterations

Table 1: FASST parameters

In FASST, covariances are decomposed into a spectral part and
a spatial part, and the spectral part further modeled by NMF, as
proposed by [16]. For each of the first 4 sources, the spatial co-
variance was initialized to the rank-1 matrices RHOA

f “ yjy
H
j and

RMic
f “ aj,faH

j,f for the HOA and microphone domain, respec-
tively. In the microphone domain, the steering vectors aj,f were
derived from the microphone array characteristics and source lo-
cations. In the HOA domain, the steering vectors yj were derived
as the vector of the first nine spherical harmonic functions eval-
uated in the source directions. In the reverberant case, the fifth
source was assumed to have a full-rank spatial covariance, which
was was initialized to the identity matrix. Lastly, regarding the
spectral part of the covariance, NMF factors were initialized as
random numbers.

5. VALIDATION OF THE APPROACH

As explained before the main goal is to validate experimentally the
local Gaussian model assumption for source separation in the HOA
domain. To this aim the performances obtained using FASST in
the HOA domain are compared to that obtained in the microphone
domain. However, we first need to select a number of microphone
channels and HOA signals that ensures a fair comparison between
the two methods. Thus, we first investigate the influence of the
number of microphone channels and HOA signals on the source
separation performance for a fraction of the dataset. The results
of this study, presented in Sec. 5.1, indicate that it is fair to com-
pare the results obtained with 9 HOA signals (order 2 HOA sig-
nals) with that obtained using 9 microphone channels. In Sec. 5.2
we present further experimental results obtained using the selected
number of channels for the entire dataset.

5.1. Selection of the number of microphones/channels

The computational cost of FASST depends primarily on the square
of the number of channels of the mixture, and considering the size
of our dataset, it is important to spare time and resources in the
main experiment that will soon be described. A naive approach
would be to adopt a lower HOA order L ă 4, and consider on
the one hand HOA mixtures with M “ pL ` 1q2 channels, and
on the other one, the same mixtures given by a sub-antenna of
the Eigenmike, where the number of the chosen capsules is I “
pL` 1q2.

However, one could argue that while HOA mixtures are ob-
tained by considering all of the capsules of the Eigenmike, the
microphone mixtures are given by only M “ pL ` 1q2 selected
microphones, and therefore, the comparison could be considered
unfair. To clarify this point, we begin our experiments by mea-
suring the source separation performance in both domains when
varying respectively the number of channels and the number of
microphones. This preliminary experiment is done on a small pro-
portion of the created dataset (see below).

First, in the microphone domain we considered different sub
antennas from the Eigenmike where the capsules were selected in
order to be distributed regularly on the sphere. The considered
numbers of microphones are I “ 4, 9, 12, 16, 25, 32 (the numbers
4, 9, 16, 25 were chosen to match the number of possible channels
in the HOA domain, the number 12 is considered because the cho-
sen capsules can be regularly distributed in the best way to cover
the sphere). Second, HOA signals make sense if they are grouped
by order L, each order L corresponding to a number of channels
M “ pL ` 1q2. We have already at our disposal the 4th order
signals (25 channels) by encoding the information provided by the
32 capsules of the Eigenmike. In order to have the first, the sec-
ond, and the third order we have to simply truncate respectively the
25 HOA signals to the first M “ 4, 9, 16 channels. Considering
the selected capsules in the microphone domain and the truncation
of the signals in the HOA domain, from our data set we consid-
ered randomly 160 mixtures, all the listed time reverberations and
sound source configurations were considered.

We applied FASST to the different mixtures, considering the
sources DOA known, the initialization and the parametrization of
the toolbox are given in Sec. 4.4. The results in terms of SDR, SIR
and SAR are given in Fig. 2.

In the microphone domain, we observe that the SIR tends to
improve by 0.07 dB in average when increasing the number of mi-
crophones, the SAR tends to decrease, when it comes to the SDR
we observe that it increases slightly by 0.02 dB in average until
9 microphones and drops after. In the HOA domain, we observe
an improvement of all performance measures when increasing the
number of channels. We can clearly see that adding more micro-
phones doesn’t improve the source separation performance in the
microphone domain. As a conclusion it is unnecessary to add more
microphones in the microphone domain, and therefore the compar-
ison of FASST’s performance between the HOA domain and the
microphone domain is fair if the number of channels/microphones
is equal to I “M “ 9.

5.2. Extensive experiments with 9 microphones/channels

In the following the considered number of channels is equal to
the considered number of microphones I “ M “ 9. In the mi-
crophone domain the selected capsules are given in Table. 2. More
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Fig. 2: Comparing FASST performance in regards of number the used microphones/channels.

information about the angular position of the Eigenmike’s capsules
can be found in [20].

1 2 3 4 5 6 7 8 9

θ 0 35 -58 -31 0 -58 35 69 -32
φ -32 45 0 90 212 180 135 269 -90

Table 2: Elevation (θ) and azimuth (φ), in degrees, of the selected
Eigenmike microphone capsules. The radius of the microphone is
4 cm. The origin of space is the center of the Eigenmike.

In the following, we consider the whole dataset described in
(Sec. 4.1). The results of the comparison are given in Fig. 3. As
expected performance decrease as reverberation and scene com-
plexity increase, regardless of the signal domain. However, in most
configurations, separating the sources in the HOA domain resulted
in better performance measures compared to the microphone do-
main. We can clearly see a gain of 7 to 12 dB for the least chal-
lenging sound source configuration, and a gain of 1 to 6 dB for the
most challenging one. Tab. 3 summarizes the difference in SDR
values between the HOA domain and the microphone domain for
configurations (A) and (D): the SDR is almost always higher in the
HOA domain, regardless of the reverberation or song. As well, the
gap between the performance obtained in the two domains reduces
as the complexity of the scenario increases, with a more prominent
influence of reverberation time. Separating sources in the HOA do-
main results in a 1 to 12 dB increase in signal-to-distortion ratio,
compared to the microphone domain.

RT60psq 0 0.2 0.4 0.7

A
max 21 14.35 11.9 12

median 12.43 7.69 7 6.84
min 4.3 2.52 2.5 2.9

D
max 10.17 6.6 6.7 6.32

median 6.05 0.83 1.52 2.45
min -1.84 -6 -5 -4

Table 3: ∆SDR “ SDRHOA ´ SDRMIC , in dB, for scenarios
A and D.

One reason may explain these results. Indeed, in FASST’s EM
algorithm, the empirical covariance matrix is inverted while esti-
mating the first Wiener filter [13] and the numerical stability of
this inversion differ in the two signal domains. We calculated the

condition number of the empirical covariance matrix in both do-
mains for a random example picked from the dataset. It appeared
that, for frequencies below 2 kHz, the condition number was gen-
erally higher in the microphone domain than in the HOA domain,
and could be about 1000 times greater for some frequency values.
Therefore, the conversion of the microphone signals into HOA sig-
nals seems to act as a pre-conditioning for the EM algorithm.

Having established the interest of performing the source sep-
aration in the HOA domain with FASST, we now compare it with
the reference methods. Results are presented in Fig. 4. FASST
clearly outperforms the reference methods. This is because, con-
trary to the reference methods which are solely based on spatial
cues, FASST also exploits spectral cues. This gives FASST an
advantage when sources are close to each other and spatial infor-
mation is more ambiguous. Although this fact has already been
observed in microphone domain source separation [21], we con-
firm it here also on HOA-domain source separation.

Surprisingly, FASST outperforms the PIV method even in ane-
choic environment where the PIV method could have been ex-
pected to give the best results in terms of performance. Indeed,
9 signals should be enough to form a beam toward one source and
cancel 3 interfering sources at the same time. This can be ex-
plained with the fact that encoded HOA signals don’t match per-
fectly the theoretical signals. This imperfection is mainly caused
by the physical limitations of the microphone array. Indeed, the
capsules of the Eigenmike are relatively close to each other, which
results in spatial aliasing and a loss of lower frequencies [22].

6. CONCLUSION

In this paper we investigated for the first time the ability of the lo-
cal Gaussian model to handle the source separation problem in the
HOA domain. To this aim we have established the model’s equa-
tions in the HOA domain and run numerical experiments. Our sim-
ulation results show that applying a local Gaussian model-based
source separation method in the HOA domain typically results in
the SDR increasing by 1 to 12 dB, compared to the microphone do-
main with the same number of microphones/channels I “M “ 9,
including in challenging situations such as reverberant environ-
ments and complex source configurations. In future work we will
explore using proximity microphones in order to guide the source
separation and improve its performance, and finally employ this
method to allow navigation through HOA sound scenes.
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Fig. 3: Comparing FASST’s performance in the HOA domain to FASST’s performance in the microphone domain, I “M “ 9
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ABSTRACT

This paper proposes a means of simulating directional sources in
Finite Difference Time Domain (FDTD) based acoustic models
for impulse response (IR) calculation which, unlike other currently
available methods, is able to accommodate highly irregular direc-
tivity patterns. Weighted numerical free-field IRs are applied to
the simulation of first-order reflections at the boundaries of a mod-
eled acoustic domain such that the continuing interior wave field is
that which would be produced by a directional sound source. Nu-
merical results demonstrate the application of this approach for a
2-Dimensional wave field, implementing both simple and irregu-
lar (e.g. highly directional, discontinuous) sound source directivity
patterns.

1. INTRODUCTION

Directional sound source modeling is of importance for realistic
wave-based room acoustics simulations. Previous work in this area
has largely focused on emulating source directivity functions via
weighted monopole excitations [1, 2, 3] and spherical harmonic
composition [4, 5]. These strategies are capable of simulating an-
alytical directivity functions but are not well-suited to emulating
realistic source directivities that include large fluctuations in mag-
nitude over small angles. Some of them (e.g. [3, 4]) provide only
first-order spherical harmonic directivity patterns. A method for
frequency-dependent directional source modeling based on empir-
ical directivity functions is presented in [6] by which it is shown
possible to model smooth variances in source directivity in the far-
field. Recent work [7, 8] provides a means of FDTD-based di-
rectional sound source modeling that is capable of incorporating
source movement and rotation for multipole source directivities.
An alternative approach is presented in [9] and is based on the
optimization of initial values within the target acoustic field repre-
sented by a FDTD scheme. While the strategies of [6, 7, 8, 9] have
been shown as capable of representing source directivity patterns
that vary slowly with angle (i.e. well-behaved and continuous), it
has yet to be demonstrated that such approaches are suitable for
representing more challenging patterns such as those which vary
rapidly with small changes in angle.

This paper presents a directional source modeling strategy for
FDTD acoustics simulations which attains the primary goal of rep-
resenting highly directional/complex source directivity patterns for
static source IR capture. To the author’s knowledge, this outcome
is unattainable using existing techniques. It is intended that this
Copyright: c© 2019 Stephen Oxnard et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

strategy be extended to 3D and exploited for numerical room im-
pulse response prediction with representation of realistic sound
sources.

In brief, this approach begins by pre-calculating the free-field
response to a monopole excitation at all boundary locations de-
fined in the target acoustic field. As such, the outgoing direct
sound component from a given monopole sound source location
is captured in its entirety for each discrete boundary node and its
neighbouring nodes in a given FDTD scheme. During simulation
of the target acoustic field, pre-calculated responses are weighted
and summed into the field at corresponding boundary nodes during
run time to cancel a proportion of the outgoing direct sound com-
ponent produced by a monopole sound source. In doing so, the
amplitude of the subsequent first-order reflection may be weighted
around the azimuth with respect to the sound source location and
directivity pattern. The result is a first-order reflection and subse-
quent wave field that would be produced in response to a direc-
tional impulsive sound source. The following contribution details
the formulation of this approach and continues to verify its cor-
rectness via a series of test cases.

2. SCHEME FORMULATION

2.1. The FDTD Model

For the purposes of simple and rapid exposition of this directional
source model, this derivation is limited to the so-called “leap-frog”
explicit FDTD iterative wave equation solution (see e.g. [10]) for
a 2D target acoustic field. This solution solves the 2nd-order wave
equation, ∂

2p
∂t2

= c2∇2p, for a scalar acoustic pressure field, p, and
sound propagation speed, c, using the iterative update equation:

pn+1
l,m = λ2Snl,m + (2− 4λ2)pnl,m − pn−1

l,m (1)

where λ = cT
h

for discrete time step, T = 1/Fs, spatial sam-
pling instance h and temporal sampling rate Fs. The location of a
pressure sample, or ‘node’, pnl,m, in time and space is given by the
integer indexes n, for time nT , and (l,m) for the Cartesian x- and
y-coords (lh,mh) in 2D space. Finally, the term Snl,m refers to the
sum of pressure values neighbouring a given node at current time
n on a rectilinear grid of nodes defined over an enclosed domain:

Snl,m = pnl+1,m + pnl−1,m + pnl,m+1 + pnl,m−1 (2)

Following [11], locally reacting surface (LRS) boundary condi-
tions (after [12]) may be applied in such a model at terminating
edges and corners of the spatial domain. This facilitates the mod-
eling of absorbing surface characteristics within the acoustic sim-
ulation. The so-called “velocity-centered” [13] formulation of the
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LRS condition may be written as follows for a right-hand bound-
ary with frequency independent surface impedance ζ:

pn+1
l,m = αE

(
λ2(pnl−1,m + pnl,m+1 + pnl,m−1) +

(2− 3λ2)pnl,m − βEpn−1
l,m

)
(3)

αE =
1

1 + λ
2ζ

, βE = 1− λ

2ζ

For a top-right-hand corner boundary node, the LRS condition is
given as:

pn+1
l,m = αC

(
λ2(pnl−1,m + pnl,m−1) + (2− 3λ2)pnl,m −

βCp
n−1
l,m

)
; αC =

1

1 + λ
ζ

, βC = 1− λ

ζ
(4)

Similar expressions may be derived for all other boundary orienta-
tions aligned with the rectilinear grid as per [14]. The LRS bound-
ary conditions together with (1) complete the FDTD model used
for this study.

2.2. Derivation of Directional Sound Source Solution

The premise of this work is that it is possible to manipulate the
first-order reflection exiting a boundary node in response to an om-
nidirectional impulsive excitation using pre-computed free-field
responses such that the reflected wave front, and subsequent wave
field, represents that produced by a directional sound source. The
required free-field responses are those which preserve continuity
of the wave equation at the location of each boundary node for all
values of impedance in the range ζ = [1,∞]. These responses
are denoted Enl,m for edges and Cnl,m for corners. The treatment
of right-hand boundaries is the focus of the following derivation,
noting that similar free-field response expressions may be reached
by the same means for all remaining boundary orientations.

The derivation ofEnl,m is presented here for the case of a right-
hand edge boundary with the governing equation (3). Comparing
(3) to the discrete wave equation update (1) it is evident the func-
tion of responses required to preserve wave motion at the edge
boundary, denoted PE , is:

PE =
(
1− αE

)(
λ2(pnl−1,m + pnl,m+1 + pnl,m−1) (5)

+(2− 3λ2)pnl,m − 2pn−1
l,m

)
+ λ2(pnl+1,m − pnl,m)

and that by adding PE to the right hand side of (3), the wave equa-
tion results and anechoic conditions are realized at the boundary.
However, such a result cannot be computed using responses of
the enclosed pressure field p during simulation as these responses
would comprise both direct and reflected wave fronts as opposed to
the free-field direct sound components as required. Furthermore,
the term pnl+1,m refers to a response that lies outside the simulated
domain and is undefined in the numerical solution of the pressure
field p as prescribed by equations (1)-(4). Hence, it is proposed
that all pressure signals contributing to PE be computed in the
free-field in advance of simulating the problem domain p. Denot-
ing the free-field as p̃, the free-field equivalent of PE is then the
desired signal Enl,m:

Enl,m =
(
1− αE

)(
λ2(p̃nl−1,m + p̃nl,m+1 + p̃nl,m−1) (6)

+(2− 3λ2)p̃nl,m − 2p̃n−1
l,m

)
+ λ2(p̃nl+1,m − p̃nl,m)

for a right-hand edge boundary node at location (lh,mh) and time
nT .

A similar procedure is followed for the case of a corner bound-
ary node. In this instance, using a top-right-hand boundary node
(4), the function required to preserve continuity of the wave equa-
tion at the boundary node, PC , is:

PC =
(
1− αC

)(
λ2(pnl−1,m + pnl,m−1) + (2− 2λ2)pnl,m (7)

−2pn−1
l,m

)
+ λ2(pnl+1,m + pnl,m+1 − 2pnl,m)

Again, the required free-field equivalent pressure signals compris-
ing PC are pre-computed to produce the desired signal Cnl,m:

Cnl,m =
(
1− αC

)(
λ2(p̃nl−1,m + p̃nl,m−1) + (2− 2λ2)p̃nl,m (8)

−2p̃n−1
l,m

)
+ λ2(p̃nl+1,m + p̃nl,m+1 − 2p̃nl,m)

Having pre-computed the required signals Enl,m and Cnl,m in
the free-field for all edge and corner boundary nodes that facili-
tate a first-order reflection in the target acoustic field, they may be
weighted based on an arbitrary source directivity function, S(θ),
for θ ∈ [0, 2π] and S(θ) ∈ [−1, 1]. In order to achieve variable
cancellation of the initial sound wave incident on the boundary, ap-
propriate weighting coefficients for Enl,m and Cnl,m are defined as
A(θ) = 1 − S(θ). Hence, the final update expression for a right-
hand edge boundary node of the target domain p during simulation
is:

pn+1
l,m = αE

(
λ2(pnl−1,m + pnl,m+1 + pnl,m−1) +

(2− 3λ2)pnl,m − βEpn−1
l,m

)
+A(θ)Enl,m (9)

αE =
1

1 + λ
2ζ

, βE = 1− λ

2ζ

where θ is taken to be the angle between the look direction of the
sound source and the location of the respective boundary node w.r.t
the source location. For a top-right-hand corner boundary node,
the following update expression is applied during simulation:

pn+1
l,m = αC

(
λ2(pnl−1,m + pnl,m−1) + (2− 3λ2)pnl,m −

βCp
n−1
l,m

)
+A(θ)Cnl,m (10)

αC =
1

1 + λ
ζ

, βC = 1− λ

ζ

The same approach is applied to edge and corner boundary nodes
of all other possible orientations.

Examples of the application of the weighted free-field responses
include full reflection and anechoic conditions. Full reflection re-
sults when S(θ) = 1 and A(θ) = 0 such that the functions Enl,m
andCnl,m do not contribute to the response at the associated bound-
ary node and, therefore, do not cancel or reduce the reflection.
Conversely, for S(θ) = 0 and A(θ) = 1, full cancellation is re-
quired and hence the maximum contribution of the functions Enl,m
and Cnl,m are applied to associated boundary nodes thus nullify-
ing the first-order reflection from these nodes yielding anechoic
conditions in the subsequent simulated wave field.
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Figure 1: The DC-blocked and low pass filtered Kronecker Delta
input excitation function with afterglow removal applied, after
[15]. This source function is implemented as a soft-source in all
simulations of the target acoustic domain documented in this pa-
per.

2.3. Directional Sound Source IR Simulation

Using the solution described, the initial wavefront incident on each
boundary node may be fully or partially cancelled such that a di-
rectional source response is imposed on the target acoustic field
for all time after the first-order reflections. It is important to note
that this approach is valid, in the form described here, for concave
domain geometries (see section 5 for more discussion).

Implementing the directional sound source requires functions
Enl,m and Cnl,m to be pre-computed for every boundary node that
facilitates a first-order reflection as a consequence of the initial ex-
citation. This pre-computation is conducted using a large leap-frog
FDTD scheme that allows capture of node responses for the pas-
sage of the direct sound component only. Note that such free-field
responses need be only recorded until they reach a negligible am-
plitude (e.g. -60 dB relative to the peak amplitude value). This
condition affects the size of the free-field scheme as it must be
large enough to render the free-field IR at all boundary node lo-
cations in absence of any unwanted reflections which may arise
from domain terminations. Next, the recorded functions Enl,m and
Cnl,m are weighted by A(θ), with reference to the source location,
and applied during simulation as per equations (9) and (10). Note
that the free-field responses preserve time alignment with the sim-
ulated pressure field p. The resulting IR/s may then be captured
as required from any point within the modeled space. These IRs
contain the characteristics of the source directivity function S(θ)
for all time after the onset of the first reflection.

A final post-processing step is needed in order to produce an
appropriately weighted direct sound component in the resulting
IR/s. This is conducted by obtaining the free-field responses at
receiver locations during the pre-computation process. These free-
field direct sound components may be weighted by A(θ), where θ
is the angle between the receiver locations and the source look di-
rection, and subtracted from the recorded IRs. This completes the
directional sound source model for IR capture in FDTD acoustic
simulations.

3. EXPERIMENTAL PROCESS

3.1. The FDTD Simulation

The simulated 2D FDTD scheme incorporates an inter-nodal sam-
pling index defined at the Courant limit, yielding the smallest spa-
tial sampling index that preserves numerical stability, h =

√
2cT ,

for a given T = 1
Fs

in accordance with von Neumann stability

analysis as applied to (1)[16]. For the purposes of this work, a sam-
pling rate of Fs = 48 kHz and wave speed c = 344 ms-1 is applied
giving h = 0.0101 m. This provides a usable simulation output
bandwidth of 0.1 Fs = 4.8 kHz providing a maximum deviation
of relative wave phase velocity of ≤ 2 % [17, 18]. The modeled
domain is of side length 101 nodes with a central source location
given by (l,m) = (51,51) and velocity-centered LRS boundary
conditions applied to terminating edges and corners.

The input source excitation is implemented using a soft-source
[19] pre-filtered Kronecker delta function. The Kronecker delta
function is pre-treated with a DC-blocking filter and a low-pass,
3rd-order Butterworth filter with cut-off frequency fc = 0.075 Fs
to minimize the impact of numerical dispersion effects. Finally,
the resulting impulse is treated using afterglow removal to provide
a more transient excitation free from afterglow that is intrinsic to
the Green’s function for the 2D wave equation [15]. Figure 1 de-
picts the first 100 samples of the resulting input source function.
As shown, the filtering applied to the Kronecker delta function
produces a function that is smeared in time and maintains a low
negative amplitude for time n ' [70:100]. These characteristics
are important when interpreting results presented in Section 4.

3.2. Implementation of the Directional Sound Source

Having rendered functionsEnl,m andCnl,m for every corresponding
boundary node, they are then weighted appropriately according to
A(θ) = 1 − S(θ) and summed with the response of the corre-
sponding boundary node during run-time. As the excitation of the
FDTD simulation is a pre-filtered Kronecker delta function applied
to one central source node, the initial wave propagation will be that
of a free-field monopole. The impact of summing Enl,m and Cnl,m
into the corresponding boundary node’s response is that the first-
order reflection, on exit from the boundary, is weighted as required
over the azimuth. A series of five test cases are defined to analyse
particular simulation scenarios.

4. VALIDATION OF THE DIRECTIONAL SOUND
SOURCE

Due to the fact that this approach to directional sound source sim-
ulation relies on weighted first-order reflections within the simu-
lated target acoustic field, it is not possible to take a commonly
employed method of analysis such as the measurement of the di-
rect sound around the azimuth using a circular crux of receiver
locations (see e.g. [3], [6]). Furthermore, measurement of the re-
flected wavefront amplitudes around the azimuth immediately af-
ter the first-order reflection does not provide a sensible representa-
tion of the expected directivity pattern. The reason for this can be
explained using Huygen’s Principle: an outgoing reflection from
a single boundary node will proceed as a half-space monopole
and therefore spread and sum with the reflections from adjacent
boundary nodes thus producing the reflected wavefront in its to-
tality. As a result, the directivity function will become immedi-
ately obscured within the target acoustic domain as directionally
weighted first-order reflections spread and sum together. Hence, a
series of indirect approaches to validating the proposed directional
source method are examined and discussed in the following. All
test cases are performed with boundary impedance ζ = 39 giving
reflection coefficient R = 0.95 in order to ensure correct operation
in conjunction with LRS boundary conditions.
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Figure 2: Results of CASE 1. Top row: Monopole sound source excitation with no directional weighting. Middle row: Monopole sound
source excitation with full cancellation via free field response functions Enl,m and Cnl,m applied at all boundary nodes. Bottom row: Cross-
sectional amplitude values for the monopole (black) and anechoic (red) simulations. Time sample and node indexes are given in the diagram
and all amplitude axes are equal.

CASE 1: Producing Anechoic Boundaries via Full Cancella-
tion of First-Order Reflection

This first test case seeks to verify that the summation of response
functions Enl,m and Cnl,m weighted by A(θ) = 1 for all angles
around the azimuth with the simulated target acoustic field p pro-
duces anechoic conditions after the passage of the direct sound
component. The condition A(θ) = 1 corresponds to a directiv-
ity function S(θ) = 0, i.e. the sound source is nullified in all
directions due to full cancellation of the first-order reflection at
the boundary nodes by Enl,m and Cnl,m. Figure 2 shows the re-
sult of implementing this directivity condition in the simulated tar-
get acoustic field (middle row) alongside the same target acoustic
field excited by the input function only resulting in a monopole
response (top row). Time sample instances of 80, 100 and 120
samples are selected to view the progression of the wavefronts
throughout the simulated domain. It is clear from the monopole
response that strong reflections are present within the domain as
time increases. Conversely, in the case where the directivity func-
tion is applied, the first-reflection is completely cancelled yielding
anechoic conditions as expected. This result is explored further by
examining the cross-sectional amplitude values from both simula-
tions across the middle of the domain (l = [1:100], m = 51). It is
clear that reflections are preserved in the monopole response sim-
ulation (black) and that the same reflections are completely can-
celled in the anechoic case (red). The small deviation from zero
amplitude observed in the anechoic case cross-section is due to
the remaining outgoing samples from the monopole sound source
which maintains non-zero amplitude values up to and beyond n '
100 samples. This crucial result demonstrates that the proposed

directional source strategy may be employed to vary the strength
of first-order reflections on a node-by-node basis hence facilitating
highly directional source characteristics.

CASE 2: Summing Individual Boundary Node Reflections to
Produce a Monopole Response

In order to further demonstrate the ability of the proposed ap-
proach to emulate directional sound source characteristics on a
node-by-node basis over the boundaries of a modelled domain,
the following test case simulates the result of applying Enl,m to
each edge node and Cnl,m to each corner node on an individual
basis. As such, each individual response emulates a source direc-
tivity function for which S(θ) = 1 (A(θ) = 0) in the direction of
a single boundary node and S(θ) = 0 (A(θ) = 1) otherwise. Fig-
ure 3 shows two examples of such cases. As shown, the outgoing
monopole wavefront progresses to the boundary and is cancelled
by all nodes but one located at [l,m] = [1, 51] in one simulation
(top row) and [l,m] = [100, 51] in another (middle row). Examin-
ing both cases, it is demonstrated that a single half-space monopole
reflection spreads from the individual boundary nodes in each sim-
ulation. The low amplitude of the reflections is as expected when
all other boundary nodes are set to the anechoic condition and thus
collectively dissipate a significant amount of energy from the ini-
tial source excitation. Referring to the bottom row of Figure 3,
the single node reflection from the left boundary is displayed by
the cross-section amplitude plots (depicted in black). The reflec-
tion passes back into the domain and sums with the continuing
wavefront produced by the source. Finally, the amplitude of the
reflection from the right boundary (cross-section, depicted in red)
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Figure 3: Results of CASE 2. Top row: Individual node reflection at boundary location l,m = [1,51]. Middle row: Individual node
reflection at boundary location l,m = [100,51]. In both cases, the free-field response function Enl,m is applied with S(θ) = 1 (A(θ) = 0).
Bottom row: Cross-sectional amplitude values for the top row (black) and middle row (red) simulations. Time sample values and nodes are
given in the diagram and all amplitude axes are equal.

is seen to be symmetrical to that of the left boundary reflection
w.r.t. the centre of the modeled domain. To proceed, the wave
field produced by each individual node reflection is simulated and
the result is recorded for all nodes at time n = 120 samples. Recall
that each wave field consists of the superposition of the individ-
ual node reflection and the continuing source excitation. As such,
when all individual wave fields are summed, the source excita-
tion is summed in once for every boundary node. This can be ac-
counted for by subtracting N − 1 copies of the anechoic response
(see Figure 2) at time n = 120 samples where N is the number
of contributing boundary nodes. Note that this subtraction is only
required for the purposes of demonstrating this test case. It may
be stated that the sum of N individual contributions equates to a
monopole when N − 1 anechoic responses are subtracted from
the result. This outcome is verified by subtracting the summed re-
sponses from the monopole response generated in Case 1 at time
sample n = 120 (see Figure 4 below).

Figure 4: Summed individual boundary node reflections (left)
and the difference (right) between the summed responses and the
monopole M(θ). Note, axis scales are not consistent.

As shown in Figure 4, the subtraction of the wave field pro-
duced by the treated sum of responses from that of the monopole
results in a zero pressure field (the cumulative noise floor of the
contributing wave fields). This test case result demonstrates that
the superposition of individual node reflections produces a monopole
directivity function. Hence, the approach has been shown to be
correct and suitable for producing directivity patterns that are highly
directional (for example the arc length of one node relative to the
sound source location).

CASE 3: Summing Opposing Semi-Circular Directivity Pat-
tern Responses to Produce a Monopole Response

This test case is devised to demonstrate that the directional sound
source implementation is capable of reproducing target directiv-
ity functions that incorporate discontinuities. In brief, a left-going
semi-circular source directivity function is modeled by setting S(θ)
= 1 for all boundary nodes with 0< l < 51 and applyingEnl,m and
Cnl,m as prescribed in section 2. A further semi-circular source di-
rectivity is defined as right-going when S(θ) = 1 for all boundary
nodes with 51 < l ≤ 100. Left- and right-going directivities are
denoted SL(θ) and SR(θ) respectively. The corresponding simu-
lated wave fields are shown in Figure 5 for time sample n = 120. As
depicted, the first-order reflected wavefronts for SL(θ) and SR(θ)
are nullified from the right and left boundaries respectively. In ad-
dition, it is clear that the reflected wavefronts in the region of l =
51 exhibit diffraction around the discontinuity imposed by the tar-
get directivity function. This is to be expected from preserving the
continuity of the target pressure field. As a means of verifying the
correctness of the simulated wave fields in response to the two tar-
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Figure 5: Results of CASE 3. (From left to right) The simulated wave fields produced by weighting boundary first-order reflections by
SL(θ), SR(θ), M(θ) and M(θ) − (SL(θ) + SR(θ)) at time sample n = 120. Note, the amplitude axis of the right-most panel is of order
10−20

.

Figure 6: Results of CASE 4. (From left to right) The simulated wave fields produced by weighting boundary first-order reflections by
CL(θ), CR(θ), D(θ) and the result of combining these responses to generate a zero pressure wave field. Note, the amplitude axis of the
right-most panel is of order 10−20

.

get source directivities, their sum is subtracted from a response to
a monopole M(θ). As with CASE 2, it is necessary to account for
the continuing sound source present in both semi-circular source
simulations. The addition of the two wave fields doubles the con-
tribution of the source. As such, a single anechoic response is
subtracted from the sum of the two directional sound source simu-
lations, noting again that this additional process is only necessary
for the purposes of verification. The difference between the result-
ing wave field and the wave field in response to M(θ) is a zero
pressure field (the noise floor of the simulations) as shown in the
right most panel of Figure 5. This completes the empirical proof
that the directional sound source approach is capable of emulating
complex directivity functions.

CASE 4: Summing Opposing Cardioid and Dipole Directiv-
ity Responses to Produce a Zero Pressure Field

Up to this point, test case directivities have incorporated only pos-
itive values for S(θ). In this test case, it is demonstrated that the
directional sound source implementation is suitable for negative
directivity function values. This is achieved by simulating a left-
going cardioid response CL(θ) = 0.5 + 0.5 cos(θ), a right-going
cardioid response CR(θ) = 0.5 + 0.5 cos(θ + π) and a circular
bi-directional response D(θ) = cos(θ). Figure 6 displays the re-
sulting wave fields rendered at time sample n = 120. It is straight-
forward to show that the combination DL(θ) − CL(θ) + CR(θ)
= 0. Following on from this, it is assumed that if the rendered
responses are combined in this way, a zero pressure field should
result. This is indeed the case if a single anechoic response is sub-
tracted to counteract the doubling of the continuing sound source
within the modelled domain from the sum of CR(θ) and D(θ).
The right-most panel of Figure 6 shows the resulting zero-pressure
wave field. As demonstrated here, the directional sound source ap-
proach has been shown as applicable to negative directivity func-

tion weights.
CASE 5: Summing Random Target and Inverse Target Direc-
tivity Responses to Produce a Monopole Response

In this final test case, the directional sound source implementation
is applied to reproduce a highly directional, complex directivity
function. The method is as follows: a target directivity pattern is
generated by assigning a random number in the range [0:1] to S(θ)
(denotedR(θ)) for every contributing boundary node. The correct-
ness of the result is then verified by also simulating the directivity
given by 1 - R(θ) (with some abuse of terminology, referred to
here as the “inverse” of R(θ)). The sum of the two resulting wave
fields after the first reflection should then be equal to that rendered
by the monopoleM(θ). The target directivity functions are shown
in Figure 7 below and the results of simulation in Figure 8 overleaf.
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Figure 7: The complex directivity function R(θ) plotted over the
azimuth against degrees alongside its inverse 1-R(θ).

As shown in Figure 8, the two wave fields rendered in response
to the directivity functions R(θ) and 1-R(θ) sum together to pro-

DAFX-6

281



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

Figure 8: Results of CASE 5. (From left to right) The wave fields rendered in response to directivity functions R(θ), 1− R(θ), their sum
and the difference between the sum and the monopole M(θ).

duce a monopole reflection pattern (third panel from the left). As
per the previous test cases, the addition of more than one rendered
wave field results in an excess of the continuing sound source
within the summed pressure field. Hence, in this case a single ane-
choic response is subtracted from the sum of R(θ) and 1 − R(θ)
prior to rendering the comparison withM(θ) as shown in the right
most panel of Figure 8. Given that a zero pressure field results, it is
clear that the sum of the two responses to the complex directional
source functions equates that of a monopole. As such, this method
has been demonstrated as capable of representing highly complex
source directivities.

5. LIMITATIONS OF CURRENT APPROACH

This research has focused primarily on the derivation and proof-
of-concept work undertaken to establish the basis for future re-
finement of the directive source approach. While the approach is
shown to deliver encouraging results in a simple concave domain,
there are limitations on its usage in acoustic modeling. Firstly,
the source strategy is well suited to modeling scenarios in which
detailed source directivity functions are sought but the source lo-
cation and directivity function must remain static for each simula-
tion. Secondly, the approach is limited to application in concave
domain geometries for directivities that are consistent across the
simulated bandwidth. However, at high frequencies (i.e. those at
which diffraction may be neglected) this model may be extended
to arbitrary domains through manipulation of transfer functions at
boundary nodes that have a direct line of sight to the source loca-
tion.

6. CONCLUSION

A directional sound source excitation method for IR rendering in
FDTD acoustic models has been formulated and shown to pro-
vide correct results for a range of test cases and target directivity
functions. This approach may be used for static source IR render-
ing to produce simulations of increased accuracy when complex
sound source directivity functions are a primary concern (i.e. room
acoustics modeling and virtualization). Future work will focus
on improving validation approaches, addressing known limitations
and extending the method to 3D acoustics modelling, frequency-
dependent source directivity characteristics and multiple simulta-
neous directional source excitations. Futhermore, the computa-
tional overheads of applying the weighting functions during simu-
lation run-time remain to be assessed.
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ABSTRACT

We present a spatial audio coding method which can extend ex-
isting speech/audio codecs, such as EVS or Opus, to represent
first-order ambisonic (FOA) signals at low bit rates. The proposed
method is based on principal component analysis (PCA) to de-
correlate ambisonic components prior to multi-mono coding. The
PCA rotation matrices are quantized in the generalized Euler angle
domain; they are interpolated in quaternion domain to avoid dis-
continuities between successive signal blocks. We also describe
an adaptive bit allocation algorithm for an optimized multi-mono
coding of principal components. A subjective evaluation using the
MUSHRA methodology is presented to compare the performance
of the proposed method with naive multi-mono coding using a
fixed bit allocation. Results show significant quality improvements
at bit rates in the range of 52.8 kbit/s (4 × 13.2) to 97.6 kbit/s
(4× 24.4) using the EVS codec.

1. INTRODUCTION

Conversational applications such as telephony are typically limited
to mono, with no spatial representation of the sound scene. With
the emergence of new applications such as virtual reality (VR) and
extended reality (XR) and the availability of devices supporting
spatial audio capture and playback, there is a need to extend tra-
ditional speech/audio codecs to enable immersive communication.
There are currently different spatial audio codecs developed for
non-conversational applications (streaming, broadcast, etc.), in-
cluding discrete coding of individual audio channels by MPEG
AAC or HE-AAC, MPEG Surround [1], Dolby AC-3 or E-AC-3
[2], and more recently MPEG-H 3D Audio [3], Dolby AC-4 [4] or
DTS-UHD [5]. The most recent spatial audio codecs can handle
various input formats, such as multichannel audio, object-based
audio, ambisonics (also called scene-based audio [3]), and multi-
ple playback formats (e.g. mono, stereo, binaural audio, various
multichannel loudspeaker setups). In this work, we investigate
how spatial audio can be provided in conversational applications
by extending codecs currently used in telephony or voice over IP
(VoIP).

We focus in particular on reusing the Enhanced Voice Services
(EVS) codec [6] which represents the state-of-art audio quality
for mobile telephony applications. The EVS codec supports only
mono input and output signals; a naive approach to extend this
codec to spatial audio is to code each input channel by a sepa-

Copyright: c© 2019 Pierre Mahé et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

rate instance of the mono codec – this approach is later referred
to as multi-mono coding. Note that the Opus codec [7] supports
mono, stereo, multichannel, and recently it has been extended to
code ambisonic signals, using multi-mono coding or fixed channel
matrixing followed by multi-stereo coding [8].

Several methods have been proposed to code ambisonic sig-
nals. One approach is to use a parametric model of the sound field,
with an assumption on the number of audio sources in the scene.
For First-Order Ambisonic (FOA) coding, DirAC [9, Chap.5] as-
sumes that there is a single predominant audio source in each time-
frequency tile. At the encoder side, a mono downmix signal rep-
resenting the predominant source is extracted together with direc-
tional parameters – in terms of direction of arrival (DoA) and dif-
fuseness – in each time/frequency tile. The mono signal and the
parameters are coded and transmitted. At the decoder side, the
sound field is reconstructed by panning the predominant source
(based on the DoA, typically using VBAP); this is signal is com-
bined with an ambiance using decorrelation and the diffuseness
parameters. The DirAC method has been extended to High-Order
Ambisonics (HOA) in the so-called HO-DirAC [9, Chap.6] where
the sound field is divided into angular sectors. For each angular
sector, one source is extracted. More recently, Compass [10] was
proposed as a method inspired by DirAC. This method overcomes
the limitation of the number of sources. The number of sources is
estimated and sources are extracted by Principal Component Anal-
ysis (PCA) and the residual signal is downmixed to obtain an am-
biance signal.

The Compass method is similar to the MPEG-H 3D Audio
codec [3] which supports ambisonic signals as one type of input
format. In MPEG-H 3D Audio, the input ambisonic signal is de-
composed into a number of component signals; these signals rep-
resent a number of predominant sources with an ambiance signal,
they are coded using a core codec derived from MPEG USAC [11].
Predominant sources may be extracted using plane wave decom-
position or Principal Component Analysis (PCA). When PCA is
used – noting that PCA may be equivalently implemented using a
Singular Value Decomposition (SVD) – components may change
dramatically between consecutive frames causing channel permu-
tations and signal discontinuities [12] for complex sound scenes
(with many audio sources, sudden changes, etc.). The MPEG-H
3D audio codec employs channel re-alignment, overlap-add and
linear interpolation to mitigate these problems. Improvements to
the MPEG-H 3D Audio codec were proposed in [12, 13]; the SVD
decomposition is done in the MDCT domain to ensure smooth
transitions across frames.

In this work, we wanted to avoid any assumption on the audio
scene (e.g. presence of predominant sources, number of sources)
based on existing mono and stereo codecs. The most basic ap-
proach is multi-mono coding; at low bit rates, due to the corre-
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lation of ambisonic components, the signal structure is typically
degraded, which creates several spatial artifacts: spatial reduction,
blur, phantom source. Multi-stereo coding with fixed matrixing
was proposed in [8, 14]. The principle consists in combining the
input B-format channels by matrixing, which may be interpreted as
beamforming in configurable directions. This approach has the ad-
vantage to transform the signal into a format which is more suited
to multi-stereo coding, however the fixed matrixing is in general
not optimal. An alternative approach proposed in [15] is based on
predictive coding of 1st-order FOA components based on the 0th-
order component, which is typically efficient when the scene has
few sources. In this paper, we propose an extension of multi-mono
coding approach to represent FOA signals. We make no assump-
tion on the scene content. The proposed method relies on PCA
to obtain an adaptive matrixing of FOA components in time do-
main. To guarantee signal continuity between components across
frames, two mechanisms are implemented: principal component
matching (similar to MPEG-H 3D Audio and [12, 13]) and rota-
tion matrix interpolation in quaternion domain. We also describe
an adaptive bit allocation algorithm for an optimized multi-mono
coding of principal components.

This paper is organized as follows. Section 2 gives a brief
overview of ambisonics. Section 3 provides the relevant back-
ground on quaternions, the representation of 4D rotation matrices
by double quaternions, and the interpolation of rotation matrices
in quaternion domain. Section 4 describes in details the proposed
coding method. Section 5 presents the results of a subjective qual-
ity evaluation comparing the proposed method and naive multi-
mono coding, before concluding in Section 6.

2. AMBISONICS

Ambisonics is based on a decomposition of the sound field into
an orthogonal basis of spherical harmonics. Initially limited to 1st
order by Gerzon [16], the formalism was extended to high orders
by Daniel [17]. The sound field may be expressed by the equation
[18]:

p(t, f, r, θ, φ) =
∞∑
n=0

n∑
m=−n

pnm(t, f)Ynm(θ, φ) (1)

where p(t, f, r, θ, φ) is the sound pressure at time t, frequency f ,
distance r, azimuth θ and elevation φ, Ynm(., .) is the spherical
harmonic function, and pnm(t, f) is the ambisonic coefficients of
order n and degree m. In practice, the sound field representation
is truncated to a finite orderN . The higherN , the better the sound
field representation accuracy. The so-called B-format corresponds
to the ambisonic components pnm(t, f). For a given order N the
number of ambisonic components is (N+1)2 in 3D and 2N+1 in
2D (in horizontal-only ambisonics). From the B-format, rendering
is required to reproduce the sound field to the listener. For loud-
speaker configurations the rendering computes the signal played
by each loudspeaker. For headphone listening binaural rendering
may be performed by decoding over virtual loudspeakers, convolv-
ing and combining the resulting feed signals by Head-Related Im-
pulse Responses (HRIRs) [19] which are filters measured for each
ear.

3. QUATERNIONS AND 4D ROTATION MATRICES

Quaternions (also called hypercomplex numbers or hamiltonians)
were introduced in 1843 by Hamilton [20] to define a vectorial
system generalizing complex numbers. A quaternion q is defined
as q = a + bi + cj + dk, where (a, b, c, d) ∈ R4, with the fol-
lowing rules for i, j, k: i2 = j2 = k2 = ijk = −1. We can
also write q = a+ q, where a is the scalar (or real) part of q and
q = bi + cj + dk is the vector (or imaginary) part of q. Note
that q may be interpreted as a 3D vector by identifying i, j and k
to three orthogonal Cartesian unit vectors. A quaternion q having
zero scalar part is called a pure quaternion. We do not review ba-
sic operations on quaternions (e.g. addition q1 +q2, multiplication
q1q2, dot product q1 ·q2, conjugate q and inverse q−1) – see for in-
stance [20, 21, 22] for more details. We recall that the dot product
between two quaternions q1 = a1+b1i+c1j+d1k and q2 = a2+
b2i+c2j+d2k is q1 ·q2 = a1a2+b1b2+c1c2+d1d2 which corre-
sponds to the usual dot product of 4-dimensional vectors, and the
norm |q| of a quaternion is: |q| = √q · q =

√
a2 + b2 + c2 + d2.

When |q| = 1, q is said to be a unit-norm quaternion.
Quaternions are often used as a representations of 3D rota-

tions. We recall that the set of 3D rotations (called special orthog-
onal group in dimension 3 or SO(3)) can be mapped to the unit
sphere in R4 under a one-to-two mapping [21, 22, 23], namely
each 3D rotation matrix maps to two antipodal unit-norm quater-
nions: q and −q, therefore this mapping is not unique. A 3D rota-
tion of angle θ and normalized axis n (with |n| = 1) is represented
by the unit quaternion q = cos(θ/2) + sin(θ/2)n (or its opposite
−q); the rotation of a 3D vector u to v can be equivalently ob-
tained by quaternion multiplication: v = quq−1 = quq, if u and
u are interpreted as pure quaternions.

Unlike other representations Euler angles or axis-angle, quater-
nions are interesting to interpolate rotations. One common method
is called spherical linear interpolation (slerp) and consists in the
following principle [21]:

slerp(q1, q2, γ) = q1(q−1
1 q2)γ (2)

where q1 and q2 are respectively the starting and ending quater-
nions and 0 ≤ γ ≤ 1 is the interpolation factor. The slerp interpo-
lation may also be formulated as [21]:

slerp(q1, q2, γ) =
sin((1− γ)Ω)

sin(Ω)
q1 +

sin(γΩ)

sin(Ω)
q2 (3)

where Ω = arccos(q1 · q2) is the angle between the two quater-
nions q1 and q2. This interpolation boils down to interpolating
along the grand circle (or geodesics) on the unit 4D sphere with a
constant angular speed as a function of γ. Due to the non-unique
representation of 3D rotations by antipodal unit-norm quaternions,
one has to ensure that the quaternion trajectory follows the short-
est path [23] on the unit sphere in R4 by selecting among the two
possible choices ±q2 for the end point. Alternative interpolation
methods, such as normalized linear interpolation (nlerp) or splines
[21], are not reviewed here.

In this work, we used the representation of 4D rotation ma-
trices as double quaternions. The multiplication of two quater-
nion matrices, an anti-quaternion matrix Q? and a quaternion ma-
trix P, associated to two quaternions q = a + bi + cj + dk and
p = w + xi + yj + zk, is defined as [22]:

R = Q?.P = P.Q? (4)
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where

Q? =


a b c d

−b a −d c

−c d a −b
−d −c b a

 (5)

and

P =


w −x −y −z
x w −z y

y z w −x
z −y x w

 (6)

It is possible [22] to show that the product R has the properties
of a rotation matrix (R.RT = RT .R = I and det(R) = +1);
conversely, given a 4D rotation matrix R, it is possible [22] to
factorize this matrix as in Eq. 4. This factorization (sometimes
called Cayley’s factorization) may be obtained using the method
described in [24] (noting that a factor 1/4 is missing in Eqs. 64
and 65 in [24]); this method is also described in [22] (together
with alternative factorization approaches). The factorization relies
on an intermediate matrix (called associate matrix in [24] or tetrag-
onal transform in [22]) to determine the two quaternions q and p
up to sign (i.e. −q and −p also form a valid solution).

Similar to 3D rotations, two 4D rotation matrices may be inter-
polated by interpolating separately the associated pairs of quater-
nions (for instance using slerp). However, it is important to keep
the sign consistent between double quaternions when constraining
the shortest path.

Note that there are other representations for 4D rotation ma-
trices. In this work, we also used the generalized Euler angles de-
fined in [25]. In general, a n-dimensional rotation matrix is char-
acterized by n(n − 1)/2 generalized Euler angles and for n = 4
we have 6 angles. We refer to [25] for details on the conversion
between an n-dimensional rotation matrix and generalized Euler
angles.

4. PROPOSED CODING METHOD

We describe in this section the proposed coding method. The input
signal is assumed to be a first-order ambisonic signal with the ACN
ordering convention (W,Y,Z,X). The n = 4 ambisonic compo-
nents will be labeled respectively with an index i = 1, · · · , n.
Each ambisonic component is sampled at 32 kHz. The coding
method operates on successive frames of 20 ms. The different
coding and decoding steps are described in the high-level diagram
shown in Figure 1. We describe below the implementation for each
functional blocks.

4.1. High-pass pre-processing (HPF)

The n = 4 channels of the input FOA signal are separately pre-
processed by a 20 Hz high-pass IIR filter from the EVS codec
defined by the transfer function

Hpre(z) =
b0 + b1z

−1 + b2z
−2

1 + a1z−1 + a2z−2
(7)

where filter coefficients (bi, ai) are taken from [26]. This prepro-
cessing is used here to avoid any bias in the subsequent estimation
of the covariance matrix.

4.2. Principal Component Analysis (PCA)

In each frame, the sample covariance matrix CXX is estimated
based on the 4-dimensional input X = [x1, ...,xn] :

CXX =
1

n− 1

n∑
i=1

xix
T
i (8)

where xi is the i-th column of X and corresponds to the current
frame of i-th ambisonic channel. The covariance matrix CXX is
factorized by eigenvalue decomposition as:

CXX = VΛVT (9)

where V is the eigenvector matrix (with eigenvectors as columns)
and Λ = diag(λ1, · · · , λn) is the diagonal matrix whose coeffi-
cients are the eigenvalues.

In general the matrix V is orthogonal and it may be either a
rotation matrix (det(V) = +1) or a reflection matrix (det(V) =
−1). In this work, we ensured that the eigenvector matrix defines
a rotation matrix by inverting the sign of vn if det(V) = −1. In
the following, the resulting rotation matrix in the current frame of
index t will be denoted Vt.

4.3. Re-alignment of eigenvectors

From frame to frame eigenvectors might change significantly.
These modifications might create discontinuities in the signal,
which can degrade audio quality. To improve signal continuity
between successive frames, a signed permutation is applied to the
eigenvector matrix Vt in the current frame of index t based on the
eigenvector matrix Vt−1 in the previous frame.
The signed permutation is obtained in two steps:

1. A permutation is found by matching eigenvectors in frames
t and t − 1 according to the axes (not directions) of each
basis vector. This problem can be seen as an assignment
problem where the goal is to find the closest eigenvector in
frame t for each eigenvector in the previous frame t−1. To
solve this assignment problem, we used the Hungarian al-
gorithm to find the optimal solution in a similar way to [12].
After this step, eigenvectors are permuted. This allows to
maximize similarity between the two basis.
The similarity being defined as:

Jt = tr(|Vt.V
T
t−1|) (10)

where tr(|.|) is the trace of the matrix |Vt.V
T
t−1| whose

coefficients are the absolute values.
After applying the optimal permutation to Vt we obtain a
new matrix of eigenvectors Ṽt.

2. The direction of each eigenvector is determined based on
the permuted eigenvector matrix in the current frame Ṽt

for frame t and the rotation matrix Vt−1 in the previous
frame t− 1

Γt = Ṽt.V
T
t−1 (11)

A negative diagonal value in Γt indicates a direction in-
version between two frames. The sign of the respective
columns of Ṽt is inverted to compensate for this change
of direction.

Note that the resulting matrix Ṽt in the current frame will be saved
for the next frame processing to become Vt−1.
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Figure 1: Overview of proposed coding method.

4.4. Quantization of the 4D PCA rotation matrix

In general a n-dimensional rotation matrix has n(n−1)/2 degrees
of freedom. In [27] 2D and 3D rotation matrices were quantized
with an angle representation: one angle in 2D, three Euler angles
in 3D. In this work we used a similar idea by quantizing 6 gen-
eralized Euler angles. The 6 angles were obtained from the 4D
rotation matrix [25] and coded by scalar quantization with a bud-
get of respectively 8 and 9 bits for angles defined over a support of
length π and 2π, with an overall budget of 51 bits per frame for 6
angles.

4.5. Interpolation of quantized rotation matrices by subframe

The rotation matrices are interpolated by subframes to smooth
variations of PCA rotation matrices and avoid signal discontinu-
ities. The rotation matrix representation is not suitable for in-
terpolation. Instead, we converted 4D rotation matrices to dou-
ble quaternions as explained in Section 3. The current frame of
length L = 640 samples is divided into K sub-frames. We used
K = 128 which gives a subframe length of L/K = 10 samples
(0.3125 ms). For each subframe of index 1 ≤ k ≤ K in the
current frame, the left (qt−1, qt) and right quaternions (pt−1, pt)
are interpolated by the slerp algorithm with an interpolation factor
given by γ = k/K as defined in Eq. 3. The interpolated double
quaternions are converted back to a 4D matrix using Eqs. 4, 5, 6.

4.6. PCA matrixing

The pre-processed FOA signal is transformed into 4 principal com-
ponents by applyinng the interpolated rotation matrix in each sub-
frame.

4.7. Adaptive bit rate allocation to multi-mono EVS coding

After PCA matrixing the n = 4 channels could have been coded
using a fixed bit allocation, as in naive multi-mono coding. De-
pending on the input signals, the signals after PCA matrixing may
vary significantly in importance and it was found experimentally
that an adaptive bit allocation is necessary to optimize quality. We
use a greedy bit allocation algorithm which aims at maximizing
the following score:

S(b1, · · · , bn) =
n∑
i=1

Q(bi).E
β
i (12)

where bi and Ei are respectively the bit allocation and the energy
of the ith channel in the current frame and Q(bi) is a quality score

reflecting the estimated quality of the codec for a bit rate corre-
sponding to bi bits per 20 ms frame. This optimization is subject
to the constraint b1+· · ·+bn ≤ B whereB is the budget allocated
for multi-mono coding. The term Q(bi) is defined here in Table
1 to reflect the fact that the EVS codec quality does not increase
[28] linearly with increasing bit rate and it was found experimen-
tally the theoretical rate-distortion function that would apply for a
usual source model (e.g. Gaussian source) would not be suitable.
The scores Q(bi) correspond here to average MOS (Mean Opin-
ion Score) values found during the performance characterization
of the EVS codec by 3GPP [28]. Note that if another core codec
than EVS was used, the values Q(bi) could be adjusted accord-
ingly; for instance, a quality evaluation of Opus can be found in
[29]. To guarantee maximum compatibility with the EVS codec,
the bit allocation to individual audio channels is restricted to the set
of EVS bit rates: 9.6, 13.2, 16.4, 24.4, 32, 48, 64, 96, 128 kbit/s.
Note that a minimum bit allocation of 9.6 kbit/s was defined to
ensure a super-wideband coded bandwidth. The energy term Eβi
is raised to the power β, where 0 ≤ β ≤ 1 is defined as an extra
tuning parameter: when β is close to 1, channels with more energy
will dominate the bit allocation and when β = 0 channels would
receive an equal allocation. The value of β = 0.5 was selected ex-
perimentally. The bit allocation b1, · · · , bn selected in the current
frame is coded and transmitted to the decoder.

Figure 2: Bit rate allocation example at 4× 24.4 kbit/s.

Figure 2 shows an example of bit rate allocation to compo-
nents (denoted Comp. 1, 2, 3, 4) in successive 20 ms frames for
one test item. The maximum allocated bit rate (94.75 kbit/s) cor-
responds to the difference between 4× 24.4 kbit/s and the bit rate
used for side information (2.85 kbit/s). The overall allocated bit
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Table 1: Bit allocation parameters.

bi 192 264 328 488 640 960 1280 1920 2560
rate kbit/s 9.6 13.2 16.4 24.4 32 48 64 98 128
Q(bi) 3.62 3.79 4.25 4.60 4.53 4.82 4.83 4.85 4.87

rate (corresponding to b1 + b2 + b3 + b4) does not always use the
available budget and in this case padding bits have to be added to
the bitstream.

4.8. Multi-mono EVS coding

The bit rate to code the meta-data (rotation matrices, bit alloca-
tion) is subtracted to the target bit rate and the remaining bit rate
is used for the adaptive bit allocation to multi-mono coding. The
transformed FOA channels are coded by separate instances of the
EVS codec and the associated bitstreams are transmitted to the de-
coding part. In this work we used the fixed-point implementation
of EVS (V14.2.0) with discontinuous transmission disabled.

A bitstream structure example is shown in Figure 3 for the bit
rate of 4 × 24.4 = 97.6 kbit/s; the bitstream is divided in several
sections: bit allocation (6 bits), quantized generalized Euler angles
(51 bits), four coded channels (b1 + b2 + b3 + b4 bits) and padding
(when needed).

4 Coded Signals (1895 bits)

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Padding

Side information (57 bits)

6 Euler Angles
(51 bits)

Bit allocation
(6 bits)

Figure 3: Bitstream structure example at 4× 24.4kbit/s.

4.9. Decoding part

The decoding part is similar to the encoding part. The bit allo-
cation is demultiplexed and the 4 coded channels are decoded by
separate instances of the EVS decoder. In addition, the generalized
Euler angles are decoded and converted into a 4D rotation matrix.
The interpolation in quaternion domain done in each subframe is
performed. The signal in the current frame divided inK subframes
is then transformed by inverse PCA matrixing to retrieve the recon-
structed ambisonic components.

5. EVALUATION

5.1. Test methodology

We conducted subjective tests according to the MUSHRA metho-
dology [30] to compare the perceptual performance of naive multi-
mono coding and the proposed coding method. For each item,
subjects were asked to evaluate the quality of conditions with an
integer grading scale ranging of 0 to 100. This interval is divided
in 5 sections of 20 points: bad (0-20) to excellent (80-100).

The test conditions included three specific items: the hidden
reference (FOA) and two anchors. Traditional MUSHRA tests for
mono signals typically use a low anchor (reference processed by a
3.5kHz low-pass filter) and a medium anchor (reference processed
by a 7kHz low-pass filter). For MUSHRA tests with stereo, it is
suggested to use "reduced stereo image" as degradations in anchors
[30]. There is no clear recommendation on spatial alterations for

Table 2: List of MUSHRA conditions.

Short name Description
HREF FOA hidden reference
LOW_ANCHOR 3.5 kHz LP-filtered and spatially-reduced FOA (α = 0.65)
MED_ANCHOR 7 kHz LP-filtered and spatially-reduced FOA (α = 0.8)
MULTI52 FOA coded by multimono EVS at 4× 13.2 kbit/s
MULTI65 FOA coded by multimono EVS at 4× 16.4 kbit/s
MULTI97 FOA coded by multimono EVS at 4× 24.4 kbit/s
PCA52 FOA coded by proposed method at 52.8 kbit/s
PCA65 FOA coded by proposed method at 65.6 kbit/s
PCA97 FOA coded by proposed method at 97.6 kbit/s

MUSHRA tests with ambisonic signals. In this work we used an-
chors with some spatial deformation. We use the following spatial
reduction defined by:

FOA =


W

αX

αY

αZ

 , α ∈ [0, 1] (13)

with α = 0.65 and α = 0.8 for the low and medium anchors,
respectively.

5.2. Experimental setup

The subjects were placed in an audio listening room. The room
complied with ITU-R recommendations [31] in terms of acous-
tics properties, reverberation time and background noise. All sub-
jects conducted the listening test with the same hardware, which
included an external sound-card (Focusrite Scarlett 6i6) and high-
quality headphones (Sennheiser HD 650) and a test interface run-
ning on a MacBook pro computer.

The test items consisted of 10 challenging ambisonic items: 4
voice items, 4 music items and 2 ambient scenes. Six items were
real recordings made by ambisonic microphones (EigenMike or
SoundField SPS200), others were synthetic items. A description
of these items can be found in Appendix 7. Each item was about 10
s long. All FOA items were binauralized with Resonance Audio
renderer [32] using generic HRTFs corresponding to the KU100
manikin. Original FOA signals were normalized in loudness us-
ing the following procedure: the rerefence FOA signals were bin-
auralized using the Resonance audio renderer; the resulting bin-
aural signal was normalized to -23 dBLUFS according to ITU-R
BS.1770 [33], and after verifying that there was no saturation in
binaural signals, the obtained scale factor was re-applied to the re-
spective coded FOA signal.
In total 11 listeners participated in the test; all of them are expert
or experienced listeners without hearing impairments. Each item
was codec at three bit rates for multi-mono coding: 52.8, 65.6,
97.6 kbit/s which corresponds to a fixed allocation of 13.2, 16.4
and 24.4 kbit/s per channel. For the proposed coding method, as
explained in Section 4, the bit rate was dynamically distributed be-
tween channels; however the target (maximum) bitrate was set to
the same bit rate as multi-mono coding for a fair comparison. All
test conditions are summarized in Table 2.
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5.3. Test results

The subjective evaluation results, including the mean and 95%
confidence intervals, are presented in Figure 4. They show that the
proposed coding method improves quality when compared with
multi-mono coding at the same bit rate. It is particularly noticeable
that multi-mono coding at 65.6 kbit/s is equivalent to the proposed
coding method at 52.8 kbit/s.

These quality improvements are largely due to the suppression
of spatial artifacts. These artifacts are present at every bit rate in
multi-mono coding and they can be classified into three categories:
diffuse blur, spatial centering, phantom source. These three types
of artifacts in multi-mono coding result from the degraded struc-
ture between ambisonic components. With the proposed coding
method, these artifacts are mostly removed because the structure
is less important after PCA matrixing. This explanation was sup-
ported by the feedback from some subjects, after they conducted
the subjective test.

It is possible to analyze MUSHRA scores for different item
categories. Figure 5 shows the scores for recorded and synthetic
scenes. As can be seen, the proposed coding method brings sig-
nificant improvements for synthetic items. The result for each
item is the same whatever the position of sources or the number of
sources. Two assumptions may explain this result. The first one is
that the sources do not interact together, and the PCA can decorre-
late each source, consequently the proposed method avoided spa-
tial artifacts. The second one is that spatialization is more pro-
nounced in synthetic items (wider displacement, more localized
source). This spatialization puts the emphasis for the listener on
spatial artifacts.
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Figure 4: MUSHRA mean scores with 95% confidence intervals.

6. CONCLUSION

This paper presented a spatial extension of a mono speech/audio
codec. The proposing coding method operates in time domain to
avoid extra delay and allow maximum compatibility with existing
codecs (e.g. EVS or Opus) which are used as a black box. The
ambisonic components are transformed by adaptive matrixing de-
pending on the audio scene.

For each frame, a PCA allows to find a new basis where the
components are decorrelated. To guarantee smooth transition be-
tween consecutive frames, rotation matrices are interpolated in
quaternion domain. Subjective test results show that the PCA ma-
trixing together with the adaptive bit allocation give significant
improvements over naive multi-mono coding for bit rates from
4× 13.2 to 4× 24.4 kbit/s. For future work, it will be interesting
to characterize the spatial artifacts for various coding methods and
to apply the proposed method to Opus.
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APPENDIX: DESCRIPTION OF MUSHRA ITEMS

Synthetic items were generated in Orange Labs, recorded items
were captured and mixed by Orange Labs or done jointly with
partners (see details below). HOA items were truncated to FOA
for testing.

• Drums (synthetic) Drum tracks were generated with a MIDI
sequencer. HOA mixing, spatialization and near-field sim-
ulation were done with an internal Matlab library. This item
is a shorterned version of the H_02_Drums1 test item [34]
contributed by Orange Labs to MPEG-H standardization.

•Modern Music (synthetic) Single source (jazz music) crossing
left to right with near-field effect. The mono source is an
except of "The Present" in Laurent de Wilde’s album "Time
for Change". Spatial rendering was done with an internal
Matlab library. This item is a shorterned version of the
H_03_Modern test item [34] contributed by Orange Labs
to MPEG-H standardization.

• Opera (recorded) Italian Opera with female singer, harpsichord
and strings in concert hall from the Ambisonia database
[35]. Players were in front of a SoundField SPS200 mi-
crophone.

• Orchestra (recorded) Orchestra in concert hall. An EigenMike
microphone was placed in middle of the orchestra and spot
microphones were also used for ambisonic mixing.

• Theater (recorded) Theater play with 3 moving talkers (in
French), one in near-field and two in far-field. Recorded
with an EigenMike microphone during the Bili Project [36].

• Kids Playground (synthetic) Two talkers (female and male in
English) mixed with an ambisonic recording of kids play-
ground. The mix was done with Reaper, the mono speech
signals were spatialized with the Ambix framework [37],
the ambisonic kids playground signal came from the Am-
bisonia database [35].

• Little Prince (recorded) Man reading excerpt of "Le Petit
Prince" (in French) at a fixed (left, top) position in a liv-
ing room. Recorded with an EigenMike microphone.

• Talks (recorded) People at different positions talking (in
French) in a large room. Recorded with an EigenMike mi-
crophone during the Bili Project [36].

• Nature (synthetic) Artificial scene with bumblebee sound mov-
ing in space, mixed with an ambisonic brook noise and
a bird singing at fixed position. The mix was done with
Reaper, the mono signals of bumblebee and bird were spa-
tialized with the Ambix framework [37], the bird noise came
from the Ambisonia database [35].

• Applause (recorded) Applause at the end of a concert. A Sound-
Field SPS200 microphone was placed in the middle of the
crowd. The recording came from the Ambisonia database
[35].
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ABSTRACT

For decades, analog magnetic tape recording was the most pop-
ular method for recording music, but has been replaced over the
past 30 years first by DAT tape, then by DAWs and audio inter-
faces [1]. Despite being replaced by higher quality technology,
many have sought to recreate a "tape" sound through digital ef-
fects, despite the distortion, tape “hiss”, and other oddities analog
tape produced. The following paper describes the general process
of creating a physical model of an analog tape machine starting
from basic physical principles, then discusses in-depth a real-time
implementation of a physical model of a Sony TC-260 tape ma-
chine.

"Whatever you now find weird, ugly, uncomfortable, and nasty
about a new medium will surely become its signature. CD distor-
tion, the jitteriness of digital video, the crap sound of 8-bit - all
of these will be cherished and emulated as soon as they can be
avoided." -Brian Eno [2].

1. INTRODUCTION

While analog magnetic tape recording (see fig. 1) is rarely used
in modern recording studios, the sound of analog tape is still of-
ten sought after by mixing and mastering engineers. To that end,
several prominent audio plugin manufacturers including Waves1,
Universal Audio2, and U-He3 have created tape emulating plug-
ins. Unfortunately, the existing literature on analog tape emulation
is somewhat lacking. While Arnadottir et at. [3] and Valimaki et
al. [4] describe the emulation of tape echo/delay devices, and Vali-
maki et al [5] describe the emulation of disk-based audio recording
media, we were unable to locate any existing research directly dis-
cussing digital emulation of the magnetisation process, a gap in
research that this publication intends to fill. That said, Kadis [1]
and Camras [6] discuss musical use of analog tape recorders in a
useful technical manner, and Bertram [7] gives a in-depth techni-
cal description of the physical underpinnings of analog magnetic
recording; this work intends to build on their foundations. While
tape machines also contain electronic circuits that contribute to
the machine’s characteristic sound, this publication only consid-
ers processes that relate directly to tape magnetisation. For read-

1https://www.waves.com/plugins/j37-tape
2https://www.uaudio.com/uad-plugins/

plug-in-bundles/magnetic-tape-bundle.html
3https://u-he.com/products/satin/

Copyright: c© 2019 Jatin Chowdhury et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

ers wishing to emulate tape machine circuits, a good overview of
circuit modelling techniques can be found in [8].

Figure 1: An analog tape recorder (Sony TC 260)

2. CONTINUOUS TIME SYSTEM

Audio recorded to and played back from a tape machine can be
thought of as going through three distinct processors: the record
head, tape magnetisation, and the play head.

2.1. The Record Head

For an instantaneous input current I(t), the magnetic field output
of the record head is given as a function of distance along the tape
(x), and depth into the tape (y). Using the Karlqvist medium field
approximation, we find [7]:

Hx(x, y) =
1

π
H0

(
tan−1

( (g/2) + x

y

)
+ tan−1

( (g/2)− x
y

))
(1)

Hy(x, y) =
1

2π
H0 ln

( ((g/2)− x)2 + y2

((g/2) + x)2 + y2

)
(2)

where Hx and Hy are components of the magnetic field ~H , g is
the head gap, and H0 is the deep gap field, given by:

H0 =
NEI

g
(3)
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where N is the number of turns of wire around the head, and E is
the head efficiency which can be calculated by:

E =
1

1 +
lAg

µrg

∫
core

d~l
A(l)

(4)

where Ag is the gap area, µr is the core permeability relative to
free space (µ0), and A(l) is the cross-sectional area at a point l
along its circumferential length.

2.2. Tape Magnetisation

The magnetisation recorded to tape from a magnetic field can be
described using a hysteresis loop, as follows [7]:

~M(x, y) = FLoop( ~H(x, y)) (5)

where FLoop is a generalized hysteresis function.

Using the Jiles-Atherton magnetisation model, the following dif-
ferential equation describes magnetisation in some direction (M )
as a function of the magnetic field in that direction (H) [9]:

dM

dH
=

(1− c)δM (Man −M)

(1− c)δSk − α(Man −M)
+ c

dMan

dH
(6)

where c is the ratio of normal and anhysteric initial susceptibilities,
k is a measure of the width of the hysteresis loop, α is a mean field
parameter, representing inter-domain coupling, and δS and δM are
given by:

δS =

{
1 if H is increasing
−1 if H is decreasing

(7)

δM =

{
1 if δS and Man −M have the same sign
0 otherwise

(8)

Man is the anisotropic magnetisation given by:

Man =MsL
(H + αM

a

)
(9)

whereMs is the magnetisation saturation, a characterizes the shape
of the anhysteric magnetisation and L is the Langevin function:

L(x) = coth(x)− 1

x
(10)

2.3. Play Head

2.3.1. Ideal Playback Voltage

The ideal playback voltage as a function of tape magnetisation at
a point x along the tape is given by [7]:

V (x) = NWEvµ0

∫ ∞
−∞

dx′
∫ δ/2

−δ/2
dy′~h(x′+x, y′) ·

~M(x′, y′)

dx
(11)

where N is the number of turns of wire, W is the width of the
playhead, E is the playhead efficiency, v is the tape speed, δ is
the thickness of the tape, and µ0 is the permeability of free space.
Note that V (x) = V (vt) for constant v. ~h(x, y) is defined as:

~h(x, y) ≡
~H(x, y)

NIE
(12)

where ~H(x, y) can be calculated by eqs. (1) and (2).

2.3.2. Loss Effects

There are several frequency-dependent loss effects associated with
playback, described as follows [1]:

V (t) = V0(t)[e
−kd]

[1− e−kδ
kδ

][ sin(kg/2)
kg/2

]
(13)

for sinusoidal input V0(t), where k is the wave number, d is the
distance between the tape and the playhead, g is the gap width of
the play head, and again δ is the thickness of the tape. The wave
number is given by:

k =
2πf

v
(14)

where f is the frequency and v is the tape speed.

3. DIGITIZING THE SYSTEM

3.1. Record Head

For simplicity, let us assume,

~H(x, y, t) = ~H(0, 0, t) (15)

In this case Hy ≡ 0, and Hx ≡ H0. Thus,

H(t) =
NEI(t)

g
(16)

or,

Ĥ(n) =
NEÎ(n)

g
(17)

3.2. Hysteresis

Beginning from eq. (6), we can find the derivative ofM w.r.t. time,
as in [9]:

dM

dt
=

(1−c)δM (MsL(Q)−M)
(1−c)δSk−α(MsL(Q)−M)

Ḣ + cMs
a
ḢL′(Q)

1− cαMs
a
L′(Q)

(18)

where Q = H+αM
a

, and

L′(x) =
1

x2
− coth2(x) + 1 (19)

Note that eq. (18) can also be written in the general form for non-
linear Ordinary Differential Equations:

dM

dt
= f(t,M, ~u) (20)

where ~u =

[
H

Ḣ

]
.

Using the trapezoidal rule for derivative approximation, we find:

˙̂
H(n) = 2

Ĥ(n)− Ĥ(n− 1)

T
− ˙̂
H(n− 1) (21)
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We can use the Runge-Kutta 4th-order method [8] to find an ex-
plicit solution for M̂(n):

k1 = Tf
(
n− 1, M̂(n− 1), ~̂u(n− 1)

)
k2 = Tf

(
n− 1

2
, M̂(n− 1) +

k1
2
, ~̂u
(
n− 1

2

))
k3 = Tf

(
n− 1

2
, M̂(n− 1) +

k2
2
, ~̂u
(
n− 1

2

))
k4 = Tf

(
n, M̂(n− 1) + k3, ~̂u(n)

)
M̂(n) = M̂(n− 1) +

k1
6

+
k2
3

+
k3
3

+
k4
6

(22)

We use linear interpolation to find the half-sample values used
to calculate k2 and k3. Note that many audio DSP systems pre-
fer lower-order implicit methods such as the trapezoidal rule to
solve differential equations rather than a higher-order method like
the Runge-Kutta method [8]. However in this case, it was found
that the lower-order methods quickly became unstable for high-
frequency input, particularly when the input is modulated by a bias
signal (see Section 4.3).

3.2.1. Numerical Considerations

To account for rounding errors in the Langevin function for values
close to zero, we use the following approximation about zero, as
in [9]:

L(x) =

{
coth(x)− 1

x
for |x| > 10−4

x
3

otherwise
(23)

L′(x) =

{
1
x2
− coth2(x) + 1 for |x| > 10−4

1
3

otherwise
(24)

Additionally, tanh(x), and by extension coth(x) is a rather com-
putationally expensive operation. With this in mind, for real-time
implementation, we approximate coth(x) as the reciprocal of a
Gaussian continued fraction for tanh(x) [10], namely

tanh(x) =
x

1 + x2

3+ x2

5+ x2
7

(25)

Figure 2: Digitized Hysteresis Loop Simulation

3.2.2. Simulation

The digitized hysteresis loop was implemented and tested offline
in Python, using the constants Ms, a, α, k, and c from [11].
For a sinusoidal input signal with frequency 2kHz, and varying
amplitude from 800 - 2000 Amperes per meter, fig. 2 shows the
Magnetisation output.

3.3. Play Head

By combining eq. (11) with eqs. (12) and (16), we get:

V (t) = NWEvµ0gM(t) (26)

or,
V̂ (n) = NWEvµ0gM̂(n) (27)

3.3.1. Loss Effects

In the real-time system, we model the playhead loss effects with
an FIR filter, derived by taking the inverse DFT of the loss effects
described in eq. (13). It is worth noting that as in eq. (14), the
loss effects, and therefore the FIR filter are dependent on the tape
speed.

The loss effects filter was implemented and tested offline in Python
with tape-head spacing of 20 microns, head gap width of 5 mi-
crons, tape thickness of 35 microns, and tape speed of 15 ips. The
following plot shows the results of the simulation, with a filter or-
der of 100.

Figure 3: Frequency Response of Playhead Loss Effects

4. TAPE AND TAPE MACHINE PARAMETERS

In the following sections, we describe the implementation of a
real-time model of a Sony TC-260 tape machine, while attempt-
ing to preserve generality so that the process can be repeated for
any similar reel-to-reel tape machine.

4.1. Tape Parameters

A typical reel-to-reel tape machine such as the Sony TC-260 uses
Ferric Oxide (γF2O3) magnetic tape. The following properties of
the tape are necessary for the tape hysteresis process eq. (18):
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• Magnetic Saturation (Ms): For Ferric Oxide tape the mag-
netic saturation is 3.5e5 (A/m) [12].

• Hysteresis Loop Width (k): For soft materials, k can be
approximated as the coercivity, Hc [13]. For Ferric Oxide,
Hc is approximately 27 kA/m [12].

• Anhysteric magnetisataion (a): Knowing the coercivity and
remnance magnetism of Ferric Oxide [12], we can calculate
a = 22 kA/m by the method described in [13].

• Ratio of normal and hysteris initial susceptibilities (c): From
[13], c = 1.7e-1.

• Mean field parameter (α): From [13], α = 1.6e-3.

4.2. Tape Machine Parameters

4.2.1. Record Head

To determine the magnetic field output of the record head using
eq. (17), the following parameters are necessary:

• Input Current (Î(n)): For the Sony TC-260 the input cur-
rent to the record head is approximately 0.1 mA peak-to-
peak [14].

• Gap Width (g): The gap width for recording heads can
range from 2.5 to 12 microns [1].

• Turns of wire (N ): The number of turns of wire is typically
on the order of 100 [7].

• Head Efficiency (E): The head efficiency is typically on the
order of 0.1 [7].

These values result in a peak-to-peak magnetic field of approxi-
mately 5e5 A/m.

4.2.2. Play Head

Similar to the record head, the following parameters are needed
to calculate the output voltage using eqs. (13) and (27) (note that
values are only included here if notably different from the record
head):

• Gap Width (g): The play head gap width ranges from 1.5 to
6 microns[1].

• Head Width (W ): For the Sony TC-260, the play head
width is 0.125 inches (note that this is the same as the width
of one track on the quarter-inch tape used by the machine)
[14].

• Tape Speed (v): The Sony TC-260 can run at 3.75 inches
per second (ips), or 7.5 ips [14]. Note that many tape ma-
chines can run at 15 or 32 ips [1].

• Tape Thickness (δ): Typical tape that would be used with
the TC-260 is on the order of 35 microns thick [14].

• Spacing (d): The spacing between the tape and the play
head is highly variable between tape machines. For a typi-
cal tape machine spacing can be as high as 20 microns [1].

Figure 4: Example of a biased signal

4.3. Tape Bias

A typical analog recorder adds a high-frequency "bias" current to
the signal to avoid the "deadzone" effect when the input signal
crosses zero, as well as to linearize the output. The input current
to the record head can be given by [6]:

Îhead(n) = Îin(n) +B cos(2πfbiasnT ) (28)

Where the amplitude of the bias current B is usually about one or-
der of magnitude larger than the input, and the bias frequency fbias
is well above the audible range. Figure 4 shows a unit-amplitude, 2
kHz sine wave biased by a 50 kHz sine wave with amplitude 5. To
recover the correct output signal, tape machines use a lowpass fil-
ter, with a cutoff frequency well below the bias frequency, though
still above the audible range [1].

For the Sony TC-260, the bias frequency is 55 kHz, with a gain
of 5 relative to the input signal. The lowpass filter used to recover
the audible signal has a cutoff at 24 kHz, though note that due to
the frequency response of the playhead loss effects, the effects of
this filter may be essentially neglible to the real time system. [14]

4.4. Wow and Flutter

Each tape machine has characteristic timing imperfections known
as “wow” and/or “flutter.” These imperfections are caused by mi-
nor changes in speed from the motors driving the tape reels, and
can cause fluctuations in the pitch of the output signal. To charac-
terize these timing imperfections, we use a method similar to [3]:
We recorded a pulse train of 1000 pulses through a TC-260, then
recorded the pulses back from the tape. Figure 5 shows a section
of a superimposed plot of the original pulse train against the pulse
train recorded from the tape machine. From this data, we were able
to generate a periodic function that accurately models the timing
imperfections of the TC-260. The process was performed at both
7.5 ips and 3.75 ips. In the real-time system, the timing imperfec-
tion model is used to inform a modulating delay line, to achieve
the signature "wow" effect of an analog tape machine.
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Figure 5: Input pulse train superimposed with pulse train recorded
from TC-260

Record Head Constants
Turns of wire (N) 100

Head Efficiency (E) 0.1
Record Head Gap (g) 6 (microns)

Tape Constants
Magnetic Saturation (Ms) 3.5e5 (A/m)
Hysteresis Loop Width (k) 27 (kA/m)

Anhysteric Magnetisation (a) 22 (kA/m)
Ratio of magnetic susceptibilities (c) 1.7e-1

Play Head Constants
Play Head Width (W) 0.125 (in)

Figure 6: Constant values for model implementation

5. REAL-TIME IMPLEMENTATION

We implemented our physical model of the Sony TC-260 as a VST
audio plugin using the JUCE framework. Figure 7 shows the signal
flow of the system in detail. We allow the user to control param-
eters in real-time including the tape speed, bias gain, gap width,
tape thickness, tape spacing, and flutter depth.

Bias modulation is implemeted using eq. (28), where bias gain B
and bias frequency fbias are controlled by the user.

The record head transfer function calculates the record head mag-
netic field H from the input current I , and is implemented using
eq. (17), with constant values shown in fig. 6.

The hysteresis process calculates the tape magnetisation M from
the record head magnetic field H , and is implementated using the
Runge-Kutta method described in eq. (22), with constant value de-
fined in fig. 6.

The flutter process is implemented using a modulated delay line
as described in section 4.4, with user controlled modulation depth.

The play head transfer calculates the play head voltage V from
the tape magnetisation M , using eq. (27) and the loss effects filter

described in section 3.3.1. The gap width g, tape speed v, tape
thickness δ, and spacing d are controlled by the user, and other
constant values are shown in fig. 6.

C/C++ code for the full real-time implementation is open-source
and is available on GitHub.4

5.1. Oversampling

If no oversampling is used, the system will be unstable for input
signal at the Nyquist frequency, due to limitations of the trape-
zoid rule derivate approximation used in eq. (21). To avoid this
instability, early versions of the real-time implementation used a
lowpass filter with cutoff frequency just below Nyquist. However,
due to aliasing caused by the nonlinearity of the tape hysteresis
model, oversampling is necessary to mitigate aliasing artifacts [8].
Further, the system must be able to faithfully recreate not only the
frequencies in the audible range but the bias frequency as well.
Since the TC-260 uses a bias frequency of 55 kHz [14] and the
minimum standard audio sampling rate is 44.1 kHz, a minimum
oversampling factor of 3x is required. However, since the biased
signal is then fed into the hystersis model, even more oversam-
pling is required to avoid aliasing. With these considerations in
mind, our system uses an oversampling factor of 16x.

5.2. Results

In subjective testing, our physical model sounds quite convincing,
with warm, tape-like distortion, and realistic sounding flutter. The
high-frequency loss and low-frequency “head bump” change cor-
rectly at different tape speeds, and are approximately within the
frequency response specifications of the TC-260 service manual
[14]. When the input to the plugin is silent, the hysteresis process-
ing of the bias signal produces a very accurate “tape hiss” sound.
The distortion and frequency response characteristics of our model
are subjectively very close when compared to the output of an ac-
tual TC-260, though not nearly close enough to “fool” the listener.
Additionally, as the bias gain is lowered, the “deadzone” effect
appears exactly as expected [6]. The largest difference between
the model and the physical machine is the subtle electrical and
mechanical noises and dropouts present in the physical machine,
presumably caused by the age and wear-and-tear of the machine,
which we did not attempt to characterize in our model. Figure 8
shows the results of tests performed on the real-time system, in-
cluding an example of the “deadzone” effect, and the timing irreg-
ularities or “flutter”. Figure 9 shows a comparison of hysteresis
characteristics between the real-time software model and a phys-
ical Sony TC-260 tape machine. Note that some differences be-
tween the two hysteresis loops may be due to the circuitry of the
tape machine that we did not attempt to model in the real-time
system. Audio examples from the real-time system can be found
online.5

5.3. Evaluation

While there is an audible difference between the real-time soft-
ware model and a physical Sony TC-260, the most fundamental
aspects of the tape machine sound including tape saturation, tape

4https://github.com/jatinchowdhury18/
AnalogTapeModel

5https://ccrma.stanford.edu/~jatin/420/tape/
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Bias Signal Flutter (τ ) Tape Speed (v)

x[n]
xM Hrecord Hysteresis

yM z−τ Hplay(v) y[n]

Figure 7: Flowchart of realtime system: M is the oversampling factor, Hrecord is the transfer function of the record head, and Hplay is the
play head transfer function including loss effects, and a de-biasing filter.

Figure 8: Testing results for real-time system: sine wave output
with no biasing (above), input vs. output pulse train comparison
(below).

hiss, flutter/wow, and frequency response, are clearly audible and
sound very accurate. The main distinctions between the two sys-
tems can be attributed to the tape machine circuitry (in particular
the TC-260 contains two shelving filters), as well as mechanical
wear of the system, both elements that were not considered in our
model.

In our opinion, the strongest proof of the efficacy of our model
is that the model responds accurately to the adjustement of model
parameters. In particular, the hysteresis process reacted correctly
to changes in input gain (saturating for overdriven input, or fading
into tape hiss for underdriven input), as well as bias gain (satura-
tion for overbiasing, or “deadzone” effect for underbiasing). Ad-
ditionally, adjusting the loss effect parameters correctly demon-
strated known tape machine phenomena including head “bump”

Figure 9: Test results comparing real-time system to Sony TC-260
physical unit: hysteresis loop for real-time system (above), hys-
teresis loop for TC-260 (below).

(a resonance at the wavelength of the play head gap width), and
spacing loss (filtering due to the spacing between the the play head
and tape). The reader is invited to download the plugin (available
with the source code) and evaluate the model for themselves. In
conclusion, we believe that our model successfully approximates
the physical tape recording process, however for those wishing to
model a full tape machine, we suggest using this model in combi-
nation with a model of the tape machine’s circuits.

6. FUTURE IMPROVEMENTS

6.1. Spatial Magnetic Effects

The most obvious improvement to be made for the physical model
is the inclusion of spatial effects of the tape. In particular, the ap-
proximations made in eq. (15), negate any effects caused by mag-
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netisation along the longitudinal length of the tape, and into the
depth of the tape. Including spatial effects would involve deriv-
ing digital analogues for eqs. (1), (2) and (11), and re-deriving
eq. (22) to take an 2-dimensional magnetic field input at every
timestep, rather than the zero-dimensional input it currently takes.
This change would greatly increase the computational complexity
of the system. At an oversampling rate of 16x, using just 100 spa-
tial samples would be 1600x more computationally complex than
the current system.
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ABSTRACT
Artificial reverberation algorithms generally imitate the frequency-
dependent decay of sound in a room quite inaccurately. Previous
research suggests that a 5% error in the reverberation time (T60)
can be audible. In this work, we propose to use an accurate graphic
equalizer as the attenuation filter in a Feedback Delay Network re-
verberator. We use a modified octave graphic equalizer with a cas-
cade structure and insert a high-shelf filter to control the gain at the
high end of the audio range. One such equalizer is placed at the
end of each delay line of the Feedback Delay Network. The gains
of the equalizer are optimized using a new weighting function that
acknowledges nonlinear error propagation from filter magnitude
response to reverberation time values. Our experiments show that
in real-world cases, the target T60 curve can be reproduced in a
perceptually accurate manner at standard octave center frequen-
cies. However, for an extreme test case in which the T60 varies
dramatically between neighboring octave bands, the error still ex-
ceeds the limit of the just noticeable difference but is smaller than
that obtained with previous methods. This work leads to more re-
alistic artificial reverberation.

1. INTRODUCTION

Reverberation time is one of the most important parameter used to
determine the acoustic quality of physical spaces. Multiple stud-
ies have been conducted to evaluate the accuracy of perceiving
the changes in the reverberation time for various types of signals.
Seraphim [1] determined the just noticeable difference (JND) of
the reverberation time to be 5%. However, more recent studies
showed that for bandlimited noise the difference is perceivable
only when it exceeds 24% of the target value [2], compared to 5%
to 7% for impulse signals and 3% to 9% for reverberated speech
[3]. The JND of 5% is used in this work to comply with the current
ISO standard [4].

Various algorithms are used to produce artificial reverberation,
with the Feedback Delay Network (FDN) being currently among
the most popular ones [5–7]. The first objective in designing an
FDN is to make it lossless. Attenuation filters are introduced to
achieve target energy decay. Over time, various types of atten-
uation filters have been proposed. Initially, a first-order lowpass

∗ This work was supported by the “Nordic Sound and Music Computing
Network—NordicSMC”, NordForsk project number 86892.
† The International Audio Laboratories Erlangen are a joint institu-

tion of the Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and
Fraunhofer Institut für Integrierte Schaltungen IIS.
Copyright: c© 2019 Karolina Prawda, Vesa Välimäki et al. This is an open-access

article distributed under the terms of the Creative Commons Attribution 3.0 Un-

ported License, which permits unrestricted use, distribution, and reproduction in any

medium, provided the original author and source are credited.

infinite impulse response (IIR) filter was used because of its low
computational cost and ease of design [5, 8]. Later, biquadratic
filters were introduced allowing to control the decay time in three
independent frequency bands with adjustable crossover frequen-
cies [9]. In [10], a 13th-order filter comprising single bandpass
filters as described in [11] and a second-order Butterworth band-
pass filter was proposed.

The most advanced method of controlling decay time in arti-
ficial reverberation in several frequency bands uses a proportional
graphic equalizer [12]. This method was recently improved by
Schlecht and Habets, who determined the filter parameters by solv-
ing the nonlinear least-squares problem with linear constraints ap-
proximating the target reverberation-time response directly [13].
This approach offered very accurate control of decay time and en-
sured that the FDN remained stable. However, the computation
of filter parameters proved to be inefficient, especially in real-time
applications [13].

The present work proposes an accurate method to control re-
verberation time in octave bands utilizing attenuation filters that
produce small approximation errors. It is an extension to previous
work done by Schlecht and Habets [13]. This paper introduces a
novel graphic equalizer (GEQ) with an additional high-shelf filter
as an attenuation filter inside the FDN and presents a weighted-
gain optimization method that acknowledges nonlinear error prop-
agation from filter magnitude response to reverberation time val-
ues. The paper is organized as follows. Section 2 discusses attenu-
ation filters and proposes a new design as well as a weighted-gain
optimization method. Section 3 presents case studies in which we
test the proposed method and compare the proposed design to other
solutions in terms of the approximation error as well as computa-
tional cost. Section 4 summarizes the work presented in the paper,
gives conclusions about the results, and proposes ideas for future
research.

2. ATTENUATION FILTER

An FDN is a comb filter structure with multiple delay lines inter-
connected by a feedback matrix [5]. When designing FDNs, the
first step is to make it lossless, ensuring that the energy will not
decay for any possible type of delay [7]. The frequency-dependent
reverberation time can then be implemented by inserting an atten-
uation filter at the beginning or at the end of each delay line. As
the filters do not work in relation to one another and are only de-
pendent on their corresponding delay line, they can be analyzed
separately. Instead of the FDN, we can analyze the simpler single-
delay-line absorptive feedback comb filter, i.e.,

H(z) =
1

1−A(z)z−L
, (1)
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Figure 1: Relationship between (top) gain-per-sample and (bot-
tom) resulting reverberation time for the delay-line length of L =
1000 samples. Red markers indicate the octave bands. The hori-
zontal dashed line in the top figure is the unit-gain limit, reaching
which would lead to an infinite reverberation time.

where L is the delay length in samples and A(z) is the transfer
function of the attenuation filter. For further analysis of the mag-
nitude in dB, the attenuation filter is given by

AdB(ω) = 20 log10 |A(e
jω)|, (2)

where ω = 2πf/fs is the normalized frequency, f is the frequency
in Hz, and fs is the sampling rate in Hz. Such a filter should be
designed to approximate the gain-per-sample necessary to obtain
the desired frequency-dependent reverberation time, T60(ω). This
gain in dB is expressed as

γdB(ω) =
−60

fsT60(ω)
, (3)

where T60(ω) is in seconds. The gain is dependent on the delay-
line length, growing proportionally to the number of delay samples
L. As a result, longer delay lines decay faster than short ones. To
obtain the target gain and, as a consequence, the desired frequency-
dependent reverberation time, the following condition should be
met:

AdB(ω) = LγdB(ω). (4)
Fig. 1 illustrates the relation between the gain-per-sample val-

ues of the single-delay-line absorptive feedback comb filter as pre-
sented in Eq. (1) with the attenuation filter designed according to
Eq. (2-4) and the resulting T60(ω) values. The delay-line length
was set toL = 1000 samples and the target reverberation time was
set to decrease linearly in octave bands from 7 s at 31.5 Hz to 1 s at
16 kHz.

2.1. Graphic equalizer design

The attenuation filter in the present work is realized with the cas-
cade GEQ, composed of second-order IIR peak-notch filters pro-
posed by Orfanidis [14] and designed using a method proposed by

Figure 2: Comparison of magnitude responses of the proposed
GEQ with a high-shelf filter to the proportional graphic equalizer
used in [13]. Top: magnitude responses for individual biquadratic
filters and a prototype gain of 1 dB for ten frequency bands. Bot-
tom: Single-band proportional gain behavior of the magnitude re-
sponse.

Välimäki and Liski [15], where extra frequency points are added
and one iteration step is used to obtain a highly accurate magnitude
response. The GEQ is also composed of only peak-notch filters,
as opposed to the usual approach in which shelf filters are applied
to the highest and lowest frequency bands. Using only peak-notch
filters improves the symmetry of the magnitude responses of in-
dividual filters and the accuracy of the equalizer. This results in
the proposed design producing approximation errors of less than
±1 dB for command gains within a range of −12 to +12 dB [15].
The top plot of Fig. 2 depicts the magnitude responses of the indi-
vidual biquadratic filters of the proposed GEQ, with an additional
high-shelf filter as described in Sec. 2.2., compared to the pro-
portional graphic equalizer from [13]. The approach adopted in
the present paper displays more symmetrical magnitude responses
even for high frequencies. The bottom plot of Fig. 2 presents the
magnitude response of peak-notch filters for command gains be-
tween −30 and +30 dB.

The transfer function of a GEQ with M bands is given by

H(ejω) = G0

M∏
m=1

Hm(e
jω), (5)

where G0 is the overall broadband gain factor and Hm(e
jω) are
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the frequency responses of equalizing filters (m = 1, 2, 3...,M).
The corresponding response in dB can be written as

HdB(e
jω) = g0 +

M∑
m=1

HdB,m(e
jω). (6)

For the accurate approximation of the reverberation time T60

over a broad frequency range, the command gains are defined for
ten octave bands, having center frequencies ranging from 31.5 Hz
to 16 kHz. This results, however, in the magnitude approaching
0 dB quite dramatically outside the considered frequency range.
The reverberation time approximated for the octave bands below
31.5 Hz and above 16 kHz can appear to be very long, which may
affect whole decay, preventing it from ever reaching −60 dB. To
avoid this situation, we propose that the command gains be first
shifted up to decrease their distance from zero and after the gain
optimization, the entire magnitude response be scaled down by
the same amount as for scaling up. This is depicted in the top
and middle panes of Fig. 3. This yields the following changes to
Eq. (6):

H̃dB(e
jω) = g0 +

M∑
m=1

(HdB,m(e
jω)− g0

M
). (7)

In this way, the rise in magnitude at frequencies below 31.5 Hz and
above 16 kHz are less steep. The shifting and scaling value can be
set to the median of all command gains, as suggested in [16]. This
also smooths the frequency response, causing very little ripple, as
seen in the filter response comparison with and without scaling in
Fig. 4.

2.2. High-shelf filter

In physical room acoustics, the decay time at high frequencies
is usually shorter than at low frequencies, thus making the cor-
responding command gains considerably lower at high frequen-
cies. Therefore, the operation of scaling and shifting the gains by
the median may not be sufficient to prevent the magnitude from
quickly approaching large values for frequencies above 16 kHz.
For this reason, we use a first-order high-shelf filter implemented
as suggested in [17] to equalize the problematic high frequencies.
The gain of the shelf filter is set to the gain of the highest consid-
ered octave band, and the crossover frequency is set to 20.2 kHz.
The latter value was experimentally found to introduce the small-
est error in the reverberation time at 16 kHz.

The shelf filter introduces considerable ripple in the equalizer
response above the frequency range of interest, but since it oc-
curs at very high frequencies and the resulting reverberation time
is much shorter than at lower frequencies, it is assumed to be in-
audible. The response of the GEQ with the shelf filter is shown in
the bottom pane of Fig. 3.

2.3. Filter-gain optimization

A common flaw in graphic equalizers is the interaction occurring
between neighboring peak-notch filters, causing the response of
each filter leak to other center frequencies [15–17]. AK-by-N in-
teraction matrix B that shows this effect and stores the normalized
amplitude response in dB of all M filters at K control frequency
points is given by:

Bk,m = HdB,m(ejωk )/gp,m, (8)

Figure 3: Stages of obtaining the final frequency response of the
GEQ for a delay length of 100 ms. (Top) Gains shifted up by their
median value. (Middle) Gains scaled by a constant value. (Bot-
tom) A high-shelf filter inserted to attenuate frequencies above
16 kHz.

Figure 4: Frequency response of the GEQ for a delay length of
100 ms, shifted and scaled by the median of gains compared to the
response without scaling.

where k = 1, 2, ...K are control frequency points, m = 1, 2, ...M

are filter indices, and gp =
[
gp,1, gp,2, ..., gp,m,

]T , where
(
.
)T de-

notes the transpose, is the vector of prototype dB gains common to
all equalizing filters. The interaction matrix of the proposed GEQ
forK = 100 andN = 11 is shown in Fig. 5. As a consequence of
leakage, the magnitude response of the equalizer depends on the
values stored in the interaction matrix. Considering that the GEQ
is used as the attenuation filter in the FDN, Eq. (4) can now be
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Figure 5: A 100-by-11 interaction matrix of the proposed GEQ
that stores the normalized amplitude of each filter that leaks to
neighboring frequency points.

expressed as
AdB(ω) = Bgp, (9)

where ω is a K × 1 vector of control frequencies.

2.4. Weighted-gain optimization

The GEQ used in the present work approximates the command
gains strictly within 1 dB. However, in some instances of the rever-
beration time changing dramatically for neighboring octave bands,
the differences in the command gains may be too high for the
resulting filter magnitude response to follow without producing
much error. Therefore, a method for gain optimization is intro-
duced.

The approximation of the target magnitude response can be
done on the dB scale by minimizing the error norm based on Eq. (4):

‖AdB(ω)− LγdB(ω)‖22. (10)

This approach assumes that the error propagates to the resulting
reverberation time linearly. In reality, the reverberation time is
affected in a nonlinear fashion: a small error in the filter magnitude
response, when the attenuation is weak and the gain close to 0 dB,
causes much greater changes in the resulting reverberation time
than the same error, when the attenuation is strong and the gain
much smaller than 0 dB [13].

This problem can be overcome by directly minimizing the
squared error in the resulting reverberation time, as suggested ear-
lier in [13]:

E =

∥∥∥∥ 1

AdB(ω)
− 1

LγdB(ω)

∥∥∥∥2
2

. (11)

Alternatively, we can minimize the relative error between the filter
and the target reverberation time:

Ẽ =

∥∥∥∥1− AdB(ω)

LγdB(ω)

∥∥∥∥2
2

. (12)

When the weighting matrix W is defined as

W = diag
(

1

LγdB(ω)

)
, (13)

the relative error from Eq. (12) becomes

Ẽ =

∥∥∥∥1−WAdB(ω)

∥∥∥∥2
2

, (14)

where the role of the weighting matrix W is to mimic the nonlin-
ear behavior with a linear approximation in the sense of emphasiz-
ing the approximation error occurring close to 0 dB.

Error minimization was also performed by solving the linear
problem using the Taylor-series approximation presented in [18].
However, since the method operates on a linear scale, as opposed
to the suggested design which operates on the dB scale, no relevant
improvement was observed. Therefore the method utilizing the
Taylor-series approximation was not implemented further in the
present work.

3. EVALUATION

The present work proposes to perform reverberation time approx-
imation using a GEQ with weighted-gain optimization that min-
imizes the relative error between filter response and target rever-
beration time values. In order to evaluate that algorithm, two case
studies were conducted. The first was aimed to reproduce the re-
verberation time of Promenadi Hall, a multipurpose hall located
in Promenadikeskus in Pori. The second was conducted using
a predefined reverberation time that differs considerably between
neighboring octave bands to reveal potential weak spots of the al-
gorithm and provide a valid comparison to the previous work. For
both cases, the algorithm was tested with three lengths of delay
lines: 10 ms, 50 ms, and 100 ms. The performance of the proposed
algorithm was compared to the previous method of reverberation-
time control in FDN presented in [13]. The computational cost
measured in the number of operations per output sample with re-
lation to other graphic equalizers was also examined.

3.1. Promenadi Hall

In the first case, the aim was to approximate the reverberation time
of an existing architectural object. The target values were defined
for octave bands and are presented in Table 1. The command gains
for the GEQ were calculated based on these values. Fig. 6 com-
pares the target magnitude response needed to obtain the desired
reverberation time and the response of the GEQ for the delay-line
lengths of 10, 50, and 100 ms.

The target magnitude response is followed by the response of
the filter very accurately in every octave band it was specified in.
The magnitude response below 31.5 Hz approaches the median
value for the command gains, which was set as the equalizer’s
broadband gain. The only visible ripple of 0.02 dB, 0.11 dB and
0.23 dB for delay-line lengths of 10 ms, 50 ms and 100 ms, respec-
tively, occur at very high frequencies, above 16 kHz, and is caused
by the high-shelf filter.

The resulting reverberation time was calculated based on the
magnitude response of the GEQ by converting it to dB using Eq. (2),
and then using the condition from Eq. (4) to obtain the gain-per-
sample in dB. The values of T60(ω) were acquired based on Eq. (3)
and are depicted in the top plot of Fig. 7 together with target values
from Promenadi Hall. The obtained reverberation follows the be-
havior of the filter response, approximating the desired values very
closely not only in the octave frequencies, but also in the entire fre-
quency range. Although the values were calculated for three dif-
ferent delay-line lengths, the results do not vary visibly from each
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Table 1: Reverberation time values and error percentage for octave frequencies for Promenadi Hall. DL stands for delay length.

Center frequency 31.5 Hz 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz
Reverberation time 3.00 s 2.80 s 2.68 s 2.55 s 2.47 s 2.50 s 2.30 s 1.89 s 1.40 s 1.20 s
Error for DL of 10 ms 0.12% 0.03% 0.09% 0.05% 0.02% 0.35% 0.79% 1.00% 1.51% 4.43%
Error for DL of 50 ms 0.12% 0.03% 0.09% 0.05% 0.02% 0.35% 0.79% 1.00% 1.53% 4.44%
Error for DL of 100 ms 0.12% 0.03% 0.09% 0.05% 0.02% 0.35% 0.79% 0.99% 1.56% 4.50%

Figure 6: Target magnitude response and response of the GEQ
with first-order high-shelf filter for the case of Promenadi Hall in
Pori.

other, with the biggest difference between them reaching 0.07%.
This proves that the proposed method works well regardless of the
delay chosen when designing the FDN. This is also confirmed by
the error values shown in Table 1, none of which exceed 5%, mak-
ing the difference unnoticeable. Further evidence for the method’s
efficiency to accurately approximate reverberation time is in the
bottom plot of Fig. 7, which shows the difference between the tar-
get and the obtained reverberation time for the whole frequency
range.

The results obtained with the GEQ introduce deviations no
bigger than 5% from the target value and therefore we refrained
from trying to minimize the error.

Figure 7: (Top) Target reverberation time from Promenadi Hall
and the values approximated by the GEQ. (Bottom) The difference
expressed as percent of obtained reverberation time deviation from
target values. RT is reverberation time.

3.2. Artificial extreme case

The second case was tested with predefined reverberation time val-
ues, which were aimed at being similar to those in [13]. Although
in [13] the reverberation time values for octave bands were gen-
erated randomly, we decided to specify them manually in order to
ensure the same tendency, which provides a good reference point
for comparison of the two methods and is able to reveal shortcom-
ings of the proposed design. The values of the reverberation time
for octave frequencies are shown in Table 2.

The filters’ magnitude responses obtained based on the desired
decay are presented in Fig. 8. The target response is generally fol-
lowed accurately. However, large differences in the reverberation
between 2 kHz and 4 kHz cause a slight overshoot in magnitude for
frequencies between 1 kHz and 2 kHz, which at its highest point

DAFX-5

303



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

Table 2: Reverberation time and error on octave frequencies for the artificial extreme case. Errors exceeding JND of 5.0% are highlighted.

Center frequency 31.5 Hz 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz
Reverberation time 1.00 s 1.00 s 1.00 s 1.00 s 1.00 s 3.00 s 3.00 s 0.25 s 1.00 s 1.00 s
Error for DL of 10 ms 0.12% 0.09% 0.17% 0.07% 3.66% 12.59% 11.47% 0.38% 2.96% 5.80%
Error for DL of 50 ms 0.13% 0.07% 0.22% 0.12% 3.11% 8.79% 15.59% 2.62% 5.42% 4.42%
Errorfor DL of 100 ms 0.15% 0.02% 0.39% 0.50% 1.52% 0.35% 24.41% 6.03% 11.12% 0.77%

Figure 8: Target magnitude response and response of the GEQ for
three different delay-line lengths for the artificial extreme case.

lies very close to zero. This causes a huge increase in the rever-
beration time for those frequencies, which is seen in the top plot
in Fig. 9. When the difference between the target and the approxi-
mated reverberation time is expressed as a percentage into percent-
age, as shown in the bottom plot in Fig. 9, the 5% JND threshold
is exceeded everywhere except for the low frequencies, where the
target decay is the same in neighboring octave bands.

The results in Fig. 9 show the effect of the delay-line length on
the approximation error. The attenuation for the shortest delay line
is the weakest, making all deviations from the target magnitude to
cause much error in the resulting reverberation time values. For
the longest delay-line length, the overshoots between 1 kHz and
2 kHz, as well as around 8 kHz, are the smallest.

In order to improve the resulting reverberation time, we ap-
plied the gain-optimization method proposed in Sec. 2.3 by mini-
mizing the error norm in Eq. (14) and using the weighting matrix
in Eq. (13). The magnitude response of the GEQ is presented in

Figure 9: (Top) Target reverberation time and reverberation time
obtained with the GEQ for three different delay-line lengths for
the artificial extreme case. (Bottom) The difference expressed as
a percent of the obtained reverberation time deviation from target
values.

Fig. 10. Overshoots between 1 kHz and 2 kHz were decreased at
the cost of lower accuracy in approximating the target at 4 kHz.
Additionally, some ripple was introduced in the frequency range
between 250 Hz and 500 Hz.

The corresponding reverberation time values are shown in
Fig. 11. The values that exceed the target the most were success-
fully reduced. The improvement was made without an unreason-
able increase in error in the reverberation time for less problematic
frequencies. Fig. 11 shows that the deviation in percent from the
target values was the same or less for frequencies over 500 Hz. The
error for low frequencies increased slightly, in most octave bands
not exceeding the 5% JND.

The error-minimization method worked well for every delay-
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Figure 10: Target magnitude response and response of the GEQ
for three different delay-line lengths for the artificial extreme case.
The command gains were weighted according to Eq. (9).

line length. In the end, all delay lines displayed similar differences
from target values, which is a huge improvement from before the
optimization.

3.3. Comparison with previous method

The proposed method was compared with the design presented in
[13], which solves the nonlinear least-squares problem based on
the T60 least-squares problem, as given in Eq. (11), with additional
constraints on the command gains. The abbreviation TLSCon in
Tables 3 and 4 refers to the results obtained with this method. To
allow direct comparison, the same reverberation time and delay-
line length were chosen. The error percentage in T60 for each
method are presented in Table 3.

The proposed method produces a smaller approximation error
than the solution suggested in [13]. The largest deviation from the
target value occurs at 4 kHz, where an attenuation of −60 dB is
needed. However, the obtained 62.69% error is a huge improve-
ment compared to the TLSCon solution error of 280% for the same
frequency.

3.4. Computational complexity of the proposed design

The GEQ with the first-order high-shelf filter used in the present
work was compared in terms of computational cost with three
other graphic equalizers: the proportional graphic equalizer

Figure 11: (Top) Target reverberation time and reverberation time
obtained with the GEQ for three different delay-line lengths for
the artificial extreme case after gain weighting. (Bottom) Differ-
ence expressed as a percentage of the obtained reverberation time
deviation from target values. Cf. Fig. 9.

(TLSCon) [13,16], the cascaded fourth-order equalizer (EQ4) [19],
and the high-precision parallel equalizer (PGE) [17, 20]. The val-
ues are given for filter configurations as stated in [15] and are pre-
sented together with the number of operations for the proposed
design in Table 4.

The design proposed in the present work requires less compu-
tation than the cascaded fourth-order equalizer and the high pre-
cision parallel equalizer. It needs a few more operations than the
proportional graphic equalizer because the first-order high-shelf
filter has been inserted to process frequencies above 16 kHz.

4. CONCLUSIONS

The present work investigated the effect of using a cascaded GEQ
with a first-order high-shelf filter as the attenuation filter in the
FDN. In order to evaluate the performance of the proposed de-
sign, two cases, a real-life case of an existing concert hall’s rever-
beration time T60 and an artificially created extreme case, were
tested. Additionally, weighted-gain optimization was performed
to improve the results. The new weighting matrix emphasizes the
approximation error occurring close to 0 dB. The gains are then de-
termined by minimizing relative error between the filter response
and the target reverberation time.
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Table 3: Error percentage for T60 approximated using the previous method (TLSCon) and the proposed method.

Center frequency 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz 16 kHz
TLSCon [13] 1.00% 0.00% 3.00% 2.00% 9.00% 32.00% 280.00% 31.00% 5.00%
Proposed method 3.39% 1.44% 8.15% 2.54% 16.98% 49.24% 62.59% 20.69% 4.98%

Table 4: Number of operations per output sample for octave band
equalizers.

Design ADD MUL TOTAL
TLSCon 40 50 90

EQ4 140 150 290
PGE 80 81 161

Proposed 42 52 94

The proposed method was shown to perform an excellent ap-
proximation of the real-life reverberation time values, resulting in
an error between the target and obtained values that is lower than
the JND. When the desired values change dramatically between
neighboring frequency bands, the presented algorithm causes greater
errors in the reverberation time, which can be then considerably re-
duced by the weighted-gain optimization. The study showed that
the proposed method produces a smaller approximation error in
the reverberation time than previous methods, and its computa-
tional cost is low or about the same compared to other designs.

The plans for further development of this work include pro-
viding subjective evaluation of the results as well as incorporating
the proposed attenuation filter and the weighted-gain optimization
method in other tools for creating artificial reverberation.
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ABSTRACT

Dispersive delay and comb filters, implemented as a parallel sum
of high-Q mode filters tuned to provide a desired frequency-de-
pendent delay characteristic, have advantages over dispersive fil-
ters that are implemented using cascade or frequency-domain ar-
chitectures. Here we present techniques for designing the modal
filter parameters for music and audio applications. Through exam-
ples, we show that this parallel structure is conducive to interac-
tive and time-varying modifications, and we introduce extensions
to the basic model.

1. INTRODUCTION

Dispersion filters, in which the various frequency components of
an input signal are delayed by different amounts, find widespread
use in audio processing. Often they are used to emulate the disper-
sive characteristic of physical systems. For example, [1] proposes
a method for designing high-order allpass filters which were ap-
plied in [2] to model spring reverberators where low frequencies
propagate faster than high frequencies and in [3] to model the dis-
persion of stiff strings where the high frequencies travel faster.

Other times, dispersive filters are designed to compensate for
unwanted frequency-dependent delay. For example, [4–6] propose
methods for designing allpass filters to equalize the group delay
of elliptic filters. Recently, [7–9] and others have shown applica-
tions of dispersive filters for delay compensation between multiple
drivers in a loudspeaker.

Rather than compensating for unwanted delay, some situa-
tions call for dispersive systems that add frequency-dependent de-
lay with specific characteristics. For example, [10, 11] propose
methods for decorrelating audio signals using high-order allpass
sytems. Additionally, [12,13] have proposed using high-order dis-
persive systems for abstract sound synthesis and processing.

In many applications, the dispersion filters are of very high
order, having dozens to hundreds of poles. They are often im-
plemented as high-order difference equations or biquad cascades.
In the case of dispersion filters having thousands of poles, DFT-
based convolution with the associated impulse response has been
used [10]. A drawback to both high-order difference equations
and biquad cascades is that they are prone to numerical difficul-
ties. While biquad cascades are robust compared with high-order
difference equation implementations, numerical errors accumulate
through the cascade. DFT-based convolution techniques can pro-
duce high-order systems with large amount of dispersive delay,
however they add latency.

Copyright: c© 2019 Elliot K. Canfield-Dafilou and Jonathan S. Abel. This is an

open-access article distributed under the terms of the Creative Commons Attribution

3.0 Unported License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

Another drawback to both high-order difference equations and
biquad cascades is that it is difficult to interactively change the de-
sired group delay, τ(ω). First, designing new filter coefficients to
produce the new desired dispersive delay may be computationally
costly. Second, substituting the new coefficients in the IIR filters
is difficult, as the substitution interacts with the filter state, likely
producing unwanted artifacts while the change ripples through the
system. Third, certain changes, such as increasing or decreasing
the number of coils in a simulated spring reverberator or modifying
the length of a modeled string, change the number of poles needed
to implement the desired dispersion—something that is difficult
to do without artifacts. Frequency-domain implementations also
present real-time interaction difficulties. Since frequency-domain
methods process data in blocks, they produce computational la-
tency precluding sample-by-sample processing and real-time in-
teraction.

We recently proposed a modal approach for designing and im-
plementing dispersive systems [14] that uses the modal architec-
ture described in [15]. Two modal dispersion filters were intro-
duced: a modal comb filter with multiple dispersive arrivals, and
a modal delay filter with a single dispersive arrival. As will be
shown in this work, the parallel structure is conducive to interac-
tive modification of the dispersive characteristics and avoiding nu-
merical issues associated with other methods. This paper will fo-
cus on time-varying dispersive audio effects and other extensions
for modal dispersive filters.

2. DISPERSION FILTER DESIGN

We use a modal architecture, as shown in Fig. 1b to implement
dispersive delay and comb filters. Its system impulse response,
denoted by h(t), is the sum of M parallel resonant filters with
mode responses hm(t), m = 1, 2, . . . ,M ,

h(t) =
M∑
m=1

hm(t) . (1)

The resonant mode responses hm(t) are complex exponentials,
each characterized by a mode frequency ωm, mode damping αm,
and complex mode amplitude γm,

hm(t) = γme
(jωm−αm)t . (2)

The system output y(t) in response to an input x(t) is then
seen to be the sum of mode outputs

y(t) =
M∑
m=1

ym(t), ym(t) = hm(t) ∗ x(t) , (3)

where the mth mode output ym(t) is the mth mode response con-
volved with the input.
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x(t) h1(t)

h2(t)

hM(t)

y(t)+

y1(t)

y2(t)

yM(t)

Figure 1: Modal filter architecture consisting of a parallel combi-
nation of resonant mode filters.

In the remainder of this section, we will show how to set the
modal parameters to implement a desired dispersive filter. The
desired delay τ(ω) is used to specify the number of modes M
and the mode frequencies ωm. The desired decay time T60(ω)
and desired magnitude equalization q(ω) are used to fix the mode
dampings αm and mode amplitudes γm.

We begin by developing the formulation for dispersive comb
and delay filters through Fourier theory.

2.1. Derivahrough Fourier Transform

Consider the M -point Inverse Discrete Fourier Transform

x(n) =
1

M

M/2−1∑
m=−M/2

X(m)e
j2πmn
M , (4)

where X(m) represents the coefficients of M basis frequencies,
indexed by m, and where n is the discrete time index. In the case
where the coefficients X(m) are independent of frequency (e.g.,
X(m) = M ),

x(t) =

M/2−1∑
m=−M/2

e
j2πmfs
M

n
fs =

M/2−1∑
m=−M/2

ejωmt . (5)

The time domain signal is a band-limited, sampled, periodic sinc
function with peaks every M samples as seen in Fig. 2a. We have
introduced a sampling rate fs which allows us to write angular
frequency in radians per second, ωm = j2πmfs/M , and time in
seconds, t = n/fs.

If we double M while maintaining the same sampling rate,
meaning we double the frequency density of sinusoidal basis func-
tions, the sinc has twice the period in the time domain as seen in
Fig. 2b. Following this logic, the delay at each frequency is pro-
portional to the frequency density of sinusoidal basis functions.
Instead of a pure delay, a dispersive system can be formed by set-
ting the frequencies of the sinusoidal bases according to the desired
frequency-dependent delay τ(ω).

To further unite this derivation of dispersive delay filters with
our modal implementation, we introduce two more concepts. First,
we introduce a damping factor α that causes the signal to subside
over time,

x(t) =

 M/2−1∑
m=−M/2

ejωmt

 e−αt , (6)

0 M 2M 3M 4M 5M 6M 7M 8M

d

c

b

a

Figure 2: An upsampled sinc function showing the periodicity of
the DFT (a). When the length of the DFT is doubled, the delay
doubles (b). (c) shows the inclusion of the damping filter and (d)
shows the effect of the shift theorem.

as seen in Fig. 2c. This damping can also be frequency-dependent
αm and factored inside the sum,

x(t) =

M/2−1∑
m=−M/2

e(jωm−αm)t . (7)

Additionally, we can use the shift theorem,

x(t−∆)←→ e−jωm∆X(m) , (8)

to modify the time of the initial delay arrival. For example, we can
achieve an odd integer set of arrivals by introducing a phase term
of ejπm = (−1)m into (5), as seen in Fig. 2d.

2.2. Dispersive Comb Filter Design

Following [14], the number of modes M is the number of samples
of delay, averaged across the band from DC to the Nyquist limit,
fs/2,

M =
N∑
n=0

τnfs
2N

, (9)

where τn, n = 0, 1, . . . , N , represents the desired delay τ(ω)
evaluated at the N discrete frequencies τ(2πnfs/2), and where
M can be rounded or otherwise adjusted to be an integer.

The mode frequencies ωm are chosen to be those frequencies
at which the cumulative delay ϕ(ωm) hits integer multiples of 2π,

ϕ(ωm) =

∫ ωm

0

τ(ν)dν = 2πm . (10)

The mode dampings αm may be set according to a desired
60 dB decay time as a function of frequency T60(ω),

αm =
ln(0.001)

T60(ωm)
. (11)

Alternatively, αm may be set to have a 60 dB decay after a given
number of arrivals, N60(ω). We then have

αm =
ln(0.001)

(2N60(ωm)− 1) · τ(ωm)
, (12)
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where the factor 2N60(ωm) − 1 is used assuming arrivals at odd
integer multiples of the designed arrival time τ(ωm).

Since the energy in a given mode is proportional to its decay
time, we set the mode gains according to

γm =
ejθmαm
τ(ωm)

· q(ωm) , θ ∈ [0, 2π) , (13)

where θ controls the initial time delay according to the shift the-
orem (8), the denominator τ(ω) performs an allpass equalization,
and q(ω) provides the desired frequency equalization. Unless oth-
erwise stated, we use θ = π for odd integer multiples of the de-
signed delay in this paper.

An example dispersive comb filter designed to have regions
consisting of both smooth and staircase dispersion is shown in
Fig. 3. The first arrival of the desired frequency-dependent spec-
tral delay is shown as a dotted line overlayed on the spectrogram.
Note that the impulse response’s first arrival closely tracks the tar-
get time delay, and the subsequent arrivals are seen to have the
anticipated odd integer multiples of the designed dispersive time
delay. Fig. 4 shows the same dispersive characteristic as Fig. 3,
but designed to decay 60 dB after eight arrivals.

2.3. Dispersive Delay Filter Design

There are two approaches for converting a dispersive comb filter
into a dispersive delay filter that has only one arrival. First, the
mode decay rates could be set to achieve a significant amount of
attenuation between arrivals. For a system with odd integer multi-
ples of the desired delay, we design the dampings to produce λ dB
of decay between successive arrivals,

αm =
ln(10−λ/20)

2τ(ωm)
, (14)

and scale the mode gains by λ/2 dB. This means the first disper-
sive arrival will have a roughly unit level and subsequent arrivals
will be attenuated by at least λ dB. For audio applications, λ in the
range 60–80 dB would render the unwanted subsequent arrivals
inaudible. For instance, an attenuation of λ = 60 dB was used to
design the dispersive delay shown in Fig. 5.

Since the λ/2 dB gain could create numerical difficulties, an
alternative approach is to use a truncated IIR (TIIR) filter [16] to
eliminate the unwanted subsequent echos as described in [14].

3. EXTENSIONS

In addition to the dispersive delay and comb filters shown above,
the parameters exposed by the modal framework provide a power-
ful resource additional modification. Throughout this section, we
will show the powerful effects of some simple modifications to the
modal parameters and show some time-varying examples.1

When implementing time-varying filters it is important that
the filters remain stable and avoid irritating artifacts that may arise
from changing parameters quickly. We use Max Mathews’s pha-
sor filter [17] to implement these modal dispersion filters as seen
in (3). This filter uses the property that when complex numbers
are multiplied together, the magnitude is the product of their mag-
nitudes and the phases sum [18]. With this implementation and

1Audio examples associated with the figures in the paper can be
found at https://ccrma.stanford.edu/~kermit/website/
ddf.html

Figure 3: Impulse response (top) and spectrogram (bottom) of an
example dispersive comb filter. The desired dispersive delay τ(ω)
is shown as a dotted line overlaid on the spectrogram.

Figure 4: Impulse response (top) and spectrogram (bottom) of the
dispersive comb filter from Fig. 3, set to decay 60 dB after eight
arrivals.

Figure 5: Impulse response (top) and spectrogram (bottom) of a
dispersive delay filter constructed using decay time approach and
the same designed delay as Figs. 3 and 4.
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the parallel structure, the dampings, frequencies, amplitudes, and
input level can all be functions of time without introducing tran-
sients or other artifacts when the filter state is changed since the
state of each filter does not depend on the state of the others.

3.1. Modifying the Number of Necessary Modes

The number of modes necessary to implement a dispersive filter
is equivalent to the average delay as described by (9). In certain
situations, it could be desirable to implement one of these filters
with a specific number of modes (e.g., running with limited com-
putational resources). Modifying the number of modes, however,
comes at the expense of distorting the amount of delay at each fre-
quency. A target group delay implemented with a desired number
of modes τM (ω) can be found by normalizing the old group delay
by the average delay and scaling the result by the desired number
of modes M ,

τM (ω) = M
τ(ω) + k∑N
n=0

(τn+k)fs
2N

, k > −min
t
τ(ω) , (15)

where τn, n = 0, 1, . . . , N , represents the desired delay τ(ω)
evaluated at the N discrete frequencies τ(2πnfs/2) and k rep-
resents added delay that is independent of frequency. This ad-
ditional delay controls how the M modes are distributed in fre-
quency. When k = 0, the entire group delay curve is scaled by
the amount necessary to have M samples of average delay. As
k approaches −mint τ(ω), any constant delay in τ(ω) will be
eliminated and the frequency regions with the most delay will ex-
aggerated. As k becomes large, the detail of the group delay will
be reduced until it is constant across frequency. Fig. 6 shows an
example group delay curve warped with different values of k.

3.2. Transitioning Between Delay Characteristics

The amount of delay in a local frequency neighborhood is propor-
tional to the density of modes in that neighborhood.

If we want to transition between two delay characteristics that
have the same average delay, τa(ω) and τb(ω), we can interpolate
between their mode frequencies over time. Because the mode fre-
quencies will move, causing the delay to change, we will observe
some Doppler shift during the transition. This may or may not be
desirable. An example can be seen in Fig. 7

Another scheme for transitioning between delay characteris-
tics can be accomplished by computing the output of the mode
filters of both delay trajectories simultaneously, and crossfading
the mode amplitudes. Here there will be no pitch shift, however
during the transition, both dispersive characteristics will be audi-
ble simultaneously. Fig. 8 shows an example amplitude crossfade
using the same dispersion filters and transition time as compared
to Fig. 7. Fig. 9 shows a guitar track processed by dispersive comb
filters with time-varying mode frequencies.

If the average delay is different (i.e., the number of modes
is not the same), or we want to prevent mode frequencies from
moving beyond a prescribed amount, we need a scheme for “birth
and death” of mode filters [19]. This can be accomplished by using
the mode amplitudes to fade “new” modes in and fade out “dead”
modes in combination with amplitude and/or frequency morphing.

3.3. Damping Modifications

It is trivial to lengthen or shorten the decay time associated with
each mode. The number of echos in each frequency band can be
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Figure 6: A set of group delays τ(ω) that have the same average
delay (i.e. the same number of modes) using (15) and different
values of k—black: k = 0; red: k > 0; blue: k < 0.

Figure 7: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter with time-varying
mode frequencies. Note that the dispersive characteristic changes
with the local mode density and some pitch shifting occurs.

Figure 8: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by two dispersive comb filters using ampli-
tude modifications to cross-fade between the dispersive character-
istics. Note that during the transition, both dispersive characteris-
tics are audible and visible in the spectrogram.
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Figure 9: Time domain (top) and spectrogram (bottom) of a gui-
tar track processed with dispersive comb filters with time-varying
mode frequencies.

Figure 10: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter set to have time-
varying scaling applied to the damping coefficients.

Figure 11: Time domain (top) and spectrogram (bottom) of a gui-
tar track processed by a dispersive comb filter set to have damping
coefficients that vary according to the input level of the guitar sig-
nal. The dispersion filter models a spring reverb where the reverb
lasts longer when the input signal is louder.

Figure 12: Time domain (top) and spectrogram (bottom) of a dis-
persive comb filter set to have a constant repeat rate and piecewise
linear phase shift as a function of frequency.

Figure 13: Time domain (top) and spectrogram (bottom) of a dis-
persive comb filter set to have a piecewise frequency-dependent
delay to match the second reflection of Fig. 12. Notice that the
lowest frequencies repeat on the same time interval in both fig-
ures while short initial delay time of the high frequencies causes a
shorter period between subsequent arrivals.

frequency-dependent or be allowed to vary over time. For exam-
ple, a dispersive comb filter could be designed that decays more
quickly in the high frequencies than the low frequencies. Fig. 10
shows an example dispersive filter where the damping factors are
frequency-dependent and time-varying.

Alternatively, a level tracker could be employed to modulate
the number of echos that appear in the output based on the ampli-
tude of the input signal. Fig. 11 shows a guitar track processed by
a dispersive filter that reacts to its tracked level.

3.4. Phase Modifications

At each mode frequency a pulse is observed at repeated intervals
that depend on the the desired delay τ(ω) and the phase angle θ.
We can have multiple frequency-dependent initial time offsets by
allowing the phase angle to also be a function of frequency θ(ω).
As an example, Fig. 12 shows a filter constructed to have piecewise
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constant phase on the interval [0, 2π) such that all frequencies have
the same repeat rate in time but a different initial phase. As a
comparison, Fig. 13 models the same second dispersive arrival as
frequency-dependent delay rather than with phase modifications.
As a result, the periodicity of the subsequent arrivals is frequency-
dependent.

If the phase of each mode is randomized, the result is a noisy
signal constrained in time by the decay rates. This signal is akin
to the description of late-field reverberation synthesis described
in [15]. By allowing the phase to vary with time, and smoothly
change between a coherent phase (where θ is constant) and a ran-
dom phase (where each mode output is rotated by an independent,
unit magnitude complex number), we can morph between disper-
sive delay and reverberant effects, such as seen in Fig. 14.

3.5. Echos Subsiding to Noise

Instead of a dispersive comb with clear, decaying echos, it is some-
times desirable to have a comb filter where each subsequent echo
is a little more diffuse. After some number of echos, the signal
is a noise-like wash where individual reflections are no longer de-
tectable. The idea here is to perturb the frequencies of the modes
by an amount small enough to be initially inaudible but cause the
succeeding echos to be more spread out in time. The bandwidth
of the perturbation is proportional to the number of desired audi-
ble echos. To have p distinct arrivals audible above the noise-like
wash, the mode frequencies ωm should be perturbed by noise with
standard deviation of 1/p of the local frequency difference,

ω̃m =
ωm+1 − ωm−1

2p
νm + ωm, (16)

where νm is a sample of zero-mean unit-variance noise, e.g. hav-
ing a Gaussian or triangular distribution. The small perturbations
are amplified with each subsequent arrival creating the desired ef-
fect. Fig. 15 shows an example dispersion filter, compared to
Fig. 16 where the frequencies were perturbed to cause the echos
to turn into noise after five reflections. This processing has appli-
cations for reverberation type effects.

4. CONCLUSION

Dispersive filters have music and audio applications ranging from
physical modeling of dispersive systems to abstract sound synthe-
sis. In this work, we explored extensions and applications of the
modal dispersive delay and comb filters introduced in [14].

We began by showing how the modal formulation of these dis-
persion filters can be interpreted through Fourier theory. We then
described how to set the modal parameters to achieve a desired dis-
persion characteristic based on the modal frequency density. Fol-
lowing that, we showed how the parallel structure of the modal
architecture and the numerical properties of the phasor filter make
it possible to efficiently and interactively modify the properties of
these dispersion filters. Unlike frequency-domain or cascade ar-
chitectures, it is simple to implement time-varying dispersion ef-
fects using the modal approach.

We showed a range of simple modifications for the modal pa-
rameters, and backed with examples, demonstrated an assortment
of musical uses of dispersive comb and delay filters. Even so,
there are certainly many more ways to extend this flexible struc-
ture, such as incorporating the pitch, time, and distortion process-
ing described in [20] with the approaches presented here.

Figure 14: Time domain (top) and spectrogram (bottom) of an im-
pulse train processed by a dispersive comb filter set to have peri-
odic phase synchronization/desynchronization.

Figure 15: Time domain (top) and spectrogram (bottom) a disper-
sive comb filter without frequency perturbation.

Figure 16: Time domain (top) and spectrogram (bottom) a disper-
sive comb filter with frequency perturbation designed to transition
to noise after 4 arrivals.
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ABSTRACT

This paper proposes a new method to interpolate between two au-
dio signals. As an interpolation parameter is changed, the pitches
in one signal slide to the pitches in the other, producing a porta-
mento, or musical glide. The assignment of pitches in one sound
to pitches in the other is accomplished by solving a 1-dimensional
optimal transport problem. In addition, we introduce several tech-
niques that preserve the audio fidelity over this highly nonlinear
transformation.

A portamento is a natural way for a musician to transition be-
tween notes, but traditionally it has only been possible for instru-
ments with a continuously variable pitch like the human voice or
the violin. Audio transport extends the portamento to any instru-
ment, even polyphonic ones. Moreover, the effect can be used to
transition between different instruments, groups of instruments, or
any other pair of audio signals. The audio transport effect oper-
ates in real-time; we provide an open-source implementation. In
experiments with sinusoidal inputs, the interpolating effect is in-
distinguishable from ideal sine sweeps. More generally, the effect
produces clear, musical results for a wide variety of inputs.

1. INTRODUCTION

A portamento, or musical glide, has been a significant expressive
device in music for at least the past 200 years [1, 2]. Short por-
tamenti can connect notes to make a passage sound more fluid,
while long portamenti can draw out a transition with anticipation
before finally arriving at the destination. The author in [1] claims
that “portamento draws on innate emotional responses to human
sound, as well as on our earliest memories of secure, loving com-
munication, in order to bring to performances a sense of comfort,
sincerity, and deep emotion.” Regardless of whether this text de-
scribes a universal experience, portamenti have a decidedly unique
sound and musical significance.

Due to the nature of the sound, the only instruments that can
produce portamenti are instruments that, like the human voice, can
vary their pitch continuously. Certain electronic systems described
in §1.1 are capable of producing the effect, but they are limited to
particular situations (e.g. monophonic glide, offline processing).
In this work, we present an audio effect titled, “audio transport,”
which interpolates between any two audio streams in a way that
sounds like a portamento, automatically and in real-time.

The audio transport effect relies on solving a 1-dimensional
optimal transport problem. The solution to this problem deter-
mines how the pitches in one signal will move to pitches in the
Copyright: c© 2019 Trevor Henderson et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

other. We find that the effect works best on pairs of sounds that
do not have sharp attacks or strong tremolo and have comparable
brightness.

The paper is organized as follows. §2 gives a brief introduc-
tion to the optimal transport problem and its relevance to the rest
of the paper. §3 presents the audio transport effect, including a
number of techniques necessary to produce artifact-free audio. §4
details our implementation of the audio transport effect and pro-
vides perceptual results. Finally, §5 concludes with discussion of
potential applications and future work.

1.1. Previous Work

Portamenti have existed in electronic music since its inception.
One of the earliest electronic instruments, the theremin, is famed
for the sweeping sounds it can produce from its continuous pitch
control. Today, a pitch wheel can be found on almost all synthe-
sizers as a way to bend a note’s pitch.

In addition to manually-controlled portamenti, many synthe-
sizers have a “glide” parameter which automatically introduces
portamenti between sequential notes. Typically this effect is mono-
phonic, but some synthesizers support polyphonic glide using rule
based systems [3].

As for sample-based instruments, the pitch of a sample can
be changed by varying its playback speed. Alternatively, phase
vocoders allow for a sample’s pitch to be changed independently
of its speed [4, 5]. Both of these methods, like a pitch wheel, can
produce a polyphonic portamento but they necessarily move all
the pitches in the same direction at the same rate. As such, these
techniques can not be used to slide between chords with different
harmonies or instruments with different timbre.

Techniques involving phase vocoders [6], modulation vocoders
[7], and popular but unpublished commercial products like Melo-
dyne [8] allow for artists to vary pitches within a sample inde-
pendently, which could conceivably be used to create polyphonic
portamenti. This type of pitch manipulation, however, is not suited
for real-time use because without manual input, the pitches have
no destination.

While not related to portamenti, optimal transport has been
applied to audio problems before. The authors in [9] describe how
optimal transport can be used to perform spectral unmixing with
application to musical transcription. The authors in [10] apply
optimal transport to the problem of fundamental pitch estimation.
Both of these papers focus on analysis rather than synthesis.

1.2. Contributions

We present audio transport, an audio effect that produces a porta-
mento between arbitrary audio sources. The effect works by in-
terpolating between the spectra of the two input signals according
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to an optimal transport map. To our knowledge, this is the first
work to apply optimal transport to audio generation and also the
first that can achieve this type of portamento effect automatically
and in real-time. In addition to the novel application of optimal
transport, we present a technique based on time-frequency reas-
signment [11] that divides the audio spectrum prior to transport
and we extend the phase accumulation technique from [5] to pre-
vent phasing between windows.

2. OPTIMAL TRANSPORT OVERVIEW

The optimal transport problem asks how to move probability mass
from one configuration to another in a way that minimizes the
amount of work (mass times distance) performed on each infinites-
imal piece of mass. More formally [12], the problem seeks an
optimal plan π∗(x, y) that describes how much mass should be
transferred from position x to y satisfying:

π∗ = arg min
π

∫∫
R2

‖x− y‖p dπ(x, y), (1)

subject to nonnegativity as well as conservation of mass for source
and target distributions ρv and ρw:∫

R
π(x, y) dy = ρv(x) and

∫
R
π(x, y) dx = ρw(y). (2)

The p-th root of the optimal value provides an intuitive way to
measure the similarity between two distributions known as the p-
Wasserstein distance. In the rest of this paper, we will use p = 2.
The corresponding “least squares” Wasserstein distance satisfies
all metric axioms among other attractive properties [13, 12].

We use the optimal plan to perform displacement interpolation
between two distributions [14]. This interpolation animates the
mass assignment computed in Equation (1) by sliding each particle
of mass between its two assignments. In computer graphics, this
interpolation technique can be used to naturally transition between
histograms, images, or meshes [15, 13, 16, 17, 18].

Consider Figure 1, which demonstrates two different ways to
interpolate between distributions. On top, the distributions are in-
terpolated linearly. If we imagine the distributions as audio spec-
tra, then this transformation is simply fading one set of pitches
out and another set in. On the bottom, the same distributions are
transformed using displacement interpolation. The mass physi-
cally slides from one location to another. If these were audio spec-
tra, this sliding would sound like a portamento.

It should be noted that solving the optimal transport problem is
known to be computationally challenging for any dimension d >
1. Fortunately, solving the problem on the real line can be done in
linear time [18].

3. AUDIO TRANSPORT

The audio transport effect works by performing displacement in-
terpolation on input audio spectra, so that pitches in one signal
slide to pitches in the other as an interpolation parameter is changed.
To modify the spectra over time, the audio transport algorithm fol-
lows the phase-vocoder paradigm [4, 5, 6]. In detail, a sliding
short-time Fourier transform (STFT) is applied to both input audio
streams, producing complex spectra. These spectra are interpo-
lated according to the optimal transport map and fed through an
inverse STFT to form the output audio stream.

(a) A linear interpolation or “fade”

(b) Displacement interpolation via optimal transport or a “portamento”

Figure 1: The distribution on the left is transformed into the distri-
bution on the right with two different interpolation methods.

§3.1 describes an efficient way to interpolate between spectra
using optimal transport. Alone, this method produces two arti-
facts which, borrowing from phase-vocoder literature, are known
as vertical incoherence and horizontal incoherence [5]. Solutions
to these two phenomena are described in §3.2 and §3.3, respec-
tively.

3.1. Optimal Transport Between Spectra

Consider discrete spectra represented by complex vectors X , Y
and corresponding frequency vectors ωX , ωY . Analogously to the
continuous optimal transport plan given in Equation (1), we can
write the optimal transport plan between these discrete spectra as
the plan π∗ ∈ R|X|×|Y | minimizing:

π∗ = arg min
π≥0

∑
i,j

∣∣∣ωXi − ωYj ∣∣∣2 πij (3)

subject to the conservation of mass constraint∑
j

πij = |Xi| and
∑
i

πij = |Yj |. (4)

This problem assumes that
∑
i |Xi| =

∑
j |Yj |. To treat spec-

tra with different total magnitudes, the plan can be computed on
normalized spectra; then, scaling is interpolated linearly over the
interpolation.

Once an optimal plan is computed, the spectra can be interpo-
lated with parameter k ∈ [0, 1] by placing each mass π∗ij at the
displaced frequency:

(1− k)ωXi + kωYj (5)

If multiple masses are placed at the same frequency, they are added
together. The phase attributed to the mass is considered in §3.3.

In one dimension, the optimal transport plan is monotone or, in
other words, no mass crosses over any other mass [19]. This allows
for Equations (3) and (4) to be solved using the greedy strategy
presented in Algorithm 1.

The algorithm begins with the initial bins of the two spec-
tra. Since no mass can cross over any other, all of the mass in
the smaller bin must be assigned to the larger. With this assign-
ment done, one can imagine virtually removing the smaller bin and
shrinking the mass of the larger by the mass assignment. The algo-
rithm then continues inductively on the smaller problem. At every
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Algorithm 1 Computing The Optimal Transport Matrix, π∗

π∗i,j ← 0
ρX , ρY ← |X0|, |Y0| . ρ is the mass left in a bin

loop
if ρX < ρY then

π∗ij ← ρX . Assign as much mass as possible

i← i+ 1 . Refill the emptied bin
if i ≥ |X| then break
ρX ← |Xi|

ρY ← ρY − ρX . Decrease the capacity of the other

else
Symmetric to the case above

return π∗

iteration, all of the mass in one bin becomes completely assigned.
Therefore, the complexity of the algorithm is O(|X|+ |Y |). This
runtime is efficient relative to the super-linear runtime of the fast
Fourier transform.

3.2. Resolving Vertical Incoherence: Slicing the Spectrogram

One unfortunate effect of using an STFT is the necessary trade-
off between time and frequency resolution. As the time resolution
increases, the frequency domain becomes “smeared.”

The relation between a peak frequency and its smeared com-
ponents is known to be important for perceptual quality. Treat-
ing these independently leads to phasing artifacts within a window
known as vertical incoherence [5]. One method to solve this prob-
lem in phase vocoder literature is to “lock” regions surrounding a
peak frequency so that the relative phase between bins within these
regions remains unchanged [20, 5].

If Algorithm 1 were applied directly to audio spectra, it would
introduce vertical incoherence by translating smeared components
independently. So, applying the locking strategy, we will treat
smeared regions as single units with collective magnitude in the
transportation map.

It now remains to determine how exactly to choose the bound-
aries between smeared spectral regions. A common strategy is to
use a heuristic to find local peaks and then assign the boundaries
to be the midpoints of the peaks. Since displacement interpola-
tion makes extreme changes to the spectra, however, this some-
what naïve plan [5, 6] is not sufficiently robust to produce a clean
signal. We propose a more principled segmentation method based
on frequency reassignment.

Frequency reassignment uses information in a signal’s phase
to enhance its frequency resolution. Each spectral component with
frequency ωi is mapped to the reassigned frequency ω̂i that better
reflects the true energy distribution [11]. Sinusoids that have been
smeared across multiple bins become mapped to the same central
frequency, which produces the plateaus shown in Figure 2.

With this view, an intuitive way to define sinusoidal regions is
by the zero crossings of ω̂i − ωi. Falling crossings indicate the
center bin of a region while rising crossings indicate the bound-
aries. These can be computed at the cost of an additional STFT
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Figure 2: Dividing the spectrum of a sinusoidal A major chord
consisting of the notes A4, C]5, E5 and A5. The spectrum is dis-
played on top. On the bottom, the reassigned frequency ω̂ (solid
line) is plotted against the frequency ω (dashed line). The intersec-
tions of these lines indicate the boundaries between groups (verti-
cal lines) and their pitch centers (dots).

with the following formula [11]:

ω̂i − ωi = =
{
XT hi ·X∗i
|X2

i |

}
. (6)

XT h is the STFT computed using a time-weighted analysis win-
dow.

3.3. Resolving Horizontal Incoherence: Phase Accumulation

Finally, we reintroduce phase to the spectra. In doing so, we
will be concerned with the phase relations between consecutive
windows rather than the phase relations within a window. Inter-
window phase relations carry information about short-time events
like transients and hence ignoring these relations can create a blurry
sound in some cases as discussed in § 4.2.

When a particular spectral region is transposed, its phase ro-
tates at a different rate. Thus, applying the phases of consecutive
windows in the original signal to the corresponding windows of
the transposed signal causes interference known as horizontal in-
coherence [5].

In phase vocoders, this is resolved by integrating the reas-
signed frequency over the window difference. In other words, the
phase ϕti in bin i and window t can be estimated from the phase
ϕt−1
i in window t− 1 as follows:

ϕti = ϕt−1
i + ω̂t−1

i ·∆, (7)

where ∆ is the delay between the windows in seconds. This update
is applied to center bin of a region as described in §3.2. The other
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Figure 3: A (reassigned [11]) spectrogram of the audio transport
effect being used to interpolate between sinusoids at A4 and C]5.
The “stair-stepping” effect is due to the frequency resolution of ≈
5 Hz, but this can be reduced arbitrarily by padding each window
with additional zeros.

phases in each region are modified accordingly to maintain the
same relative phase with respect to the center bin.

Some small modifications must be made to apply Equation (7)
to the audio transport effect. First of all, it is possible that many
spectral regions overlap on a particular bin, which makes the terms
ω̂t−1
i and ϕt−1

i ambiguous. To resolve this we simply choose the
frequency and phase of the loudest overlapping region. Addition-
ally, since the audio transport effect consists of rapidly-moving
pitches, we can minimize phasing by averaging the current reas-
signed frequency and the previous reassigned frequency:

ϕti = ϕt−1
i +

ω̂ti + ω̂t−1
i

2
·∆. (8)

4. RESULTS

We implemented the audio transport effect described in §3 for real-
time audio interpolation. We tested our implementation on syn-
thetic sounds described in §4.1 as well as on a variety of complex
and natural sounds described in §4.2.

All of our results are performed on 44.1 kHz audio with a win-
dow size of 0.05 s or 2206 samples. We use a Hann analysis win-
dow with 50% overlap and no synthesis window. Additionally, the
windows are padded with zeros to increase the frequency resolu-
tion of the FFT to ≈ 5 Hz.

Our implementation is open source and available at https:
//github.com/sportdeath/audio_transport.

4.1. Interpolating Sinusoids

We used the audio transport effect to interpolate between single
sinusoids. Intuitively, this should sound exactly like a sine sweep
between the input pitches. We performed listening experiments
for interpolations at a variety of speeds and with inputs spanning
the entire perceptive range. The spectrogram of one such interpo-
lation is shown in Figure 3. Almost all of the interpolations were
indistinguishable from real sine sweeps. In extreme cases where
the interpolations were faster than 2000 Hz s−1 we perceived some
phase distortion, but these situations would be rare in normal use.

The audio does exhibit “stair-stepping” between frequencies
due to the frequency resolution of the FFT and the time resolution
of the windows as demonstrated in Figure 3. Due to the small
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Figure 4: Interpolating between a sine wave (k = 0) and a saw
wave (k = 1) leads to a drop in volume for values of k close to but
not equal to zero as shown in the audio signal on top. The spec-
trogram shows how the sine’s single peak splits into many peaks,
which interfere when they are close together.

time-frequency resolution of the steps, however, we were unable
to perceive them in the listening experiments.

4.2. Interpolating Natural Sounds

We tested the audio transport effect on a variety of sounds, some of
which are available at https://soundcloud.com/audio_
transport. The effect intuitively sounds like a portamento,
even when applied to unnatural cases like a piano note gliding into
a human voice. It is applicable to monophonic and polyphonic
sounds. We even had success using it to transition between entire
songs. The audio typically sounds artifact-free for many classes of
audio signals, with a few exceptions noted below.

The audio transport effect does not guarantee temporal con-
sistency between transport maps. So interpolating between sounds
with dynamic spectra, like a pair of wavering orchestral chords,
can produce a fluctuating pitch.

Another artifact that can occur is a sudden drop in volume
when the interpolation parameter is close to but not equal to either
zero or one as shown in Figure 4. This happens when one single
frequency is mapped to a large range of frequencies. As the sin-
gle frequency separates, its components interfere with each other,
reducing the volume. This artifact is most prevalent when interpo-
lating between sounds with vastly different spectral complexity as
is the case with pairs of bright and dark sounds.

It is also worth reminding the reader that this method is in-
tended for static sounds and will blur transients, as mentioned in
§3.3. This artifact can be subtle, but when we directly compared
the output of the audio transport effect with an interpolation fac-
tor of 0 to the corresponding input we consistently picked out the
original audio when it had sharp transients like hi-hats. We suspect
that this could be fixed using phase reinitialization techniques [5],
but this exploration is left to future work.
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5. CONCLUSION

In this paper, we introduced the audio transport effect which can
create a portamento-like transition between any two audio signals.
The effect produces a novel but intuitive sound and it is controlled
by a single interpolation parameter. As a result, it is accessible for
musicians to incorporate into both live performances and studio
recordings.

In our live experiments, we controlled the interpolation pa-
rameter using a MIDI pitch fader, but really it can come from any
source. For example, an instrument could be constructed where
the velocity of a note controls the interpolation parameter. As
much as we have described the effect as a portamento, the input
pitches do not need to have a different fundamental. The effect
also produces interesting interpolations between signals with the
same fundamental pitch but different timbre.

Our work on audio transport suggests several other use cases
beyond those explored in our experiments. For example, consider
a single audio source that is fed as one input of the audio transport
effect, and the output of the effect is fed back into the other input.
By keeping the interpolation parameter constant, the pitches in the
output should lag behind the input pitches similar to synthesizer
“glide.” This setup leads to several questions: What would happen
if other effects were added to the feedback chain? Is it interest-
ing to use multiple audio transport effects at the same time? The
latter may be supported by the notion of barycenters in optimal
transport [21].

The audio transport effect as described still produces artifacts
for certain classes of sounds. Future work to resolve these could
investigate ways to sharpen transients, make transport maps tem-
porally consistent, and reduce the effects of energy cancellation.
For a wide variety of inputs, however, our effect sounds smooth,
musical and inspiring.
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ABSTRACT

Early analog synthesizer designs are very popular nowadays, and
the discrete-time emulation of voltage-controlled oscillator (VCO)
circuits is covered by a large number of virtual analog (VA) text-
books, papers and tutorials. One of the issues of well-known VCOs
is their tuning instability and sensitivity to environmental condi-
tions. For this reason, digitally-controlled oscillators were later
introduced to provide stable tuning. Up to now, such designs have
gained much less attention in the music processing literature. In
this paper, we examine one of such designs, which is based on
the Walsh-Hadamard transform. The concept was employed in
the ARP Pro Soloist and in the Welson Syntex, among others.
Some historical background is provided, along with a discussion
on the principle, the actual implementation and a band-limited vir-
tual analog derivation.

1. INTRODUCTION

Voltage-controlled oscillators (VCO) are considered among the
fundamental building blocks in subtractive synthesis, together with
voltage-controlled filters and amplifiers. Before the inception of
transistor technology, sound sources in electronic music were very
disparate: from heterodyne mixers (e.g., the Theremin), to fixed-
frequency electromechanical oscillators (e.g., the Hammond or-
gan), from neon tube oscillators (e.g., the Trautonium) to magnetic
tapes. The inception of transistor technology, however, induced
early electronic music pioneers to investigate new solutions. Be-
tween 1959 and 1960, Harald Bode, a German Engineer that had
previously worked for the Cologne studio with Stockhausen, de-
veloped a novel concept of modular synthesizer, employing tran-
sistor technology [1] and the voltage control paradigm. This sys-
tem was only meant for sound processing and had no oscillator.
Robert Moog later adopted this modular concept to develop what
would arguably be the most well-known brand of synthesizers [2].
For his oscillators he considered the 1V per octave paradigm [3],
which has later become one of the industry standards. At the be-
ginning of the 1970s many synthesizers were produced, which
were based on VCOs.

One of the issues with VCOs is tuning stability. During the
1970s, solutions were proposed for VCOs with better stability, one
of which is the shift to Digitally Controlled Oscillators (DCO).
Early synthesizer DCO designs were adapted from transistor or-
gans, where usually, a master clock source is divided to obtain the
12 notes of the equal temperament, and from these, a top-octave
circuit divides the frequency by multiples of 2 to obtain the lower
octaves, all perfectly tuned. These were found on early polyphonic
instruments such as string machines and the like.

DCOs became widespread with the growth of the polyphonic
synthesizers market, replacing VCOs to reduce pitch drift. With
the advent of novel synthesis techniques such as frequency mod-
ulation, wavetable, sampling, and physical modelling, the interest
in analog VCOs and DCOs was lost. In the 1990s a novel class of
digital synthesizers brought back the interest for subtractive syn-
thesis. Research work on virtual analog models for oscillators and
filter were devised [4, 5], which mostly dealt with alias suppres-
sion or faithful recreation of the behavior of analog circuits. From
that moment upwards, a great attention has been devoted to such a
topic by the research community [6, 7].

Up to now, the literature has dealt mainly with two issues in
virtual analog oscillators: aliasing in the generation of geometri-
cal waveforms (e.g., sawtooth or square), as well as analysis and
emulation of specific circuits. Since the inception of virtual ana-
log, several techniques have established to generate geometrical
waveforms, namely BLIT [4], BLEP [8] (and variations thereof),
BLAMP [9], DPW [10] and wavetable synthesis. Other studies ad-
dressed the peculiar behavior of analog circuits and their departure
from the ideal behavior. This is true for filters, often exhibiting
a nonlinear behavior [11, 12], as well as for oscillators departing
from the ideal waveform, as it is the case of the Moog sawtooth
[13]. Investigating the specificity of existing oscillator designs al-
lows the community to obtain useful information on the timbre of
a known instrument, improve its emulation, and verify the appli-
cability of existing aliasing suppression techniques on novel prob-
lems.

To the best of authors’ knowledge, to date, the virtual ana-
log community has overlooked the study of musical synthesizers’
DCOs. DCOs are generally considered less appealing to the mu-
sician and the sound designer, because of their supposed preci-
sion. For the same reason, they are expected to be of less interest
to the researcher as well, as they cause fewer issues in the mod-
elling. Nonetheless, investigating DCO-based synthesizers may
bring new insights on the character of these synthesizers, may im-
prove our engineering knowledge, help understand its historical
development and revamp some ideas.

This work is concerned with a class of DCO designs based on
the Walsh-Hadamard transform. The use of such a transform was
appealing for commercial products due to the tuning stability of
digital integrated circuits. In the academic literature, the use of
this transform for musical purposes was first proposed in a 1973
paper from Bernard Hutchins [14], who described a synthesizer
system based on Walsh functions for generating waveforms and
envelopes. In his work, Hutchins briefly hinted at its suitability
to subtractive synthesis, but focused on additive generation of har-
monic and nonharmonic tones. He also acknowledges a colleague,
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C. Frederick, for suggesting the very idea of using the Walsh func-
tions for music synthesis. Later works discuss waveform genera-
tion, circuit designs, frequency shifting and other purposes of this
technique [15, 16].

The remainder of the paper is organized as follows. Section 2
provides a broad definition of DCO and discusses a class of DCOs
based on the Walsh-Hadamard transform. Section 3 discusses the
peculiar implementation of this method in the Welson Syntex syn-
thesizer and a band-limited virtual analog implementation is pro-
posed in Section 4. Finally, conclusions are drawn in Section 5.

2. DIGITALLY CONTROLLED OSCILLATORS

The definition of a DCO is rather fuzzy. In principle, any oscilla-
tor with pitch control acted by digital circuits is a DCO. The term
“digital” should not bear confusion with a discrete-time domain
oscillator, usually called numerically controlled oscillator (NCO).
A NCO is directly implemented in the discrete-time domain, typ-
ically to generate a sine wave, and then fed to a Digital to Analog
Converter (DAC). The term NCO is generally used in the electron-
ics and telecommunications jargon, but any virtual analog oscilla-
tor conforms to that term, since the generation is all numerical.

The term Direct Digital Synthesis is somewhat related to NCO.
This technique employs a NCO, often reading an arbitrary wave-
form from a RAM and generates an analog signal by a DAC. A
DCO, instead, is not based on discrete-time algorithms or process-
ing units, but simply works with digital electronics in the continu-
ous-time domain. As an example, whereas a sawtooth VCO accu-
mulates an electric charge into a capacitor and suddenly discharges
when a threshold related to an electrical value is reached, a saw-
tooth DCO discharges at the reaching of a threshold of a digital
counter integrated circuit (IC). The sound is, thus, still generated
in the continuous-time domain, but the timing is controlled digi-
tally by stable clocks and glue logic. Until digital signal proces-
sors, DACs and the production of custom digital VLSI chips be-
came widespread in consumer electronics, the DCO approach was
easier and more economical to implement into a synthesizer.

2.1. Walsh-Hadamard DCOs

Synthesizer waveforms based on the Walsh-Hadamard transform
can be generated using digital electronics. Although, in princi-
ple, other waveforms such as sine waves can be synthesized [14],
vintage synthesizers circuits focused on the sawtooth waveform
relying on the assumption that it can be decomposed into a sum
of square wave signals (with 50% duty cycle) weighted by Walsh-
Hadamard transform (WHT) coefficients [17]. This transform re-
duces a real discrete signal to a weighted sum of orthogonal basis
functions. These are the so-called Walsh functions, or Hadamard
functions, depending on their ordering. In the following we con-
sider the Walsh ordering.

TheM×M matrix of Walsh functions up to order M is defined
as

W (M) =
1

M − 1
· (−1)

∑M
m=0 kmxm+1 (1)

where
k =

∑
m=0

km2m ∈ N0, x =
∑
m=1

xm2−m (2)

and both km, xm ∈ [0, 1].
As an example, the Walsh matrix of order 16 is shown in Fig-

ure 1. The WHT of a real-valued row vector x of lengthM is then
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Figure 1: Walsh matrix of order M = 16, plotted row-wise. The
signals constitute orthogonal bases that are employed in the Walsh
transform. The first line corresponds to Walsh function of order 0
(DC), or W0, while the last has index M − 1.

defined as
X = x ·W (M) (3)

The coefficients X correspond to the weights of the orthogonal
bases, that allow, thus, resynthesis of the original signal as

x̂ = X ·W (M). (4)

The WHT of a ramp of length M , i.e., a sawtooth of period
M, has non-zero coefficients only for odd Walsh functions. For
M = 16, e.g., only Walsh functions 1, 3, 7 and 15 are non-zero
and have coefficients 1, 1/2, 1/4, 1/8. Digital electronics allows
to generate stable square wave signals at a low cost, making this
solution viable to generate a sawtooth wave approximation.

3. THE WELSON SYNTEX AND THE ARP PRO SOLOIST

3.1. Historical Background

The Welson Syntex (1976) and the ARP Pro Soloist (1972) were
monophonic preset synthesizers of the analog era, similar to the
Moog Satellite (1973), the Thomas Synti 1055 and the ARP Soloist
(1970). This breed of synthesizers was devised for easy operation
on top of other polyphonic instruments such as organs and pianos
and generally had limited flexibility. The presets were generally
factory hardwired patches made of resistor networks that replaced
potentiometers to provide fixed values to the synthesizer oscilla-
tors, filters, envelope generators, etc. A manual mode was also
available where the user could tweak a few parameters regulated
by potentiometers on the front panel.

The first successful preset synthesizer was the ARP Pro Soloist
(1972), replacing the earlier ARP Soloist that had a limited suc-
cess, mainly due to tuning stability issues. The ARP Pro Soloist
developers devised stable oscillators based on digital electronics.
This preset synthesizer had a good success, due to its price, making
established brands like Moog eager to add similar products to their
product catalogue. The Farfisa Syntorchestra, the Elka Soloist, the
Korg 900PS, the Thomas Synti and the Moog Satellite are all sim-
ilar from a user experience point of view. Many of these were
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Figure 2: Overview of the Welson Syntex sawtooth generation mechanism.

produced in the Marche region, in Italy. The Farfisa had its main
facilities in Camerano, Ancona province, while the Moog Satellite
and the Thomas Synti were produced by EME (Elettronica Mu-
sicale Europea), a venture of musical instrument manufacturers
namely Vox, Thomas and Eko located in Montecassiano, Macer-
ata province. Similarly, the Welson Syntex was produced by Webo
Electronics in Passatempo di Osimo, Ancona province. The Ital-
ian electronic instruments industry was able to provide know-how,
materials and production facilities for these kinds of products.

While the Satellite and the Synti were all-analog, the Pro Solo-
ist featured a digitally controlled oscillator to guarantee tuning sta-
bility. This is guaranteed by a resistor ladder DAC that converts
ROM-stored values to a control voltage fed to a stable VCO gen-
erating a timing pulse train. The circuits, thus, convert a digital
value into an analog voltage, and then an analog oscillator feeds
a series of digital circuits to obtain several square waves. What is
interesting about this oscillator design is that the sawtooth wave is
obtained by a weighted sum of square waves, following the WHT
DCO concept. This seems to be one of the earliest synthesizers
employing the technique, resulting in a very good approximation
of a sawtooth wave, as later discussed. Its development may have
started a bit earlier than the work in [14], however we have no
further information to assess whether the two approaches were de-
veloped independently.

The approach was later taken further by the Welson Syntex de-
velopers, that greatly reduced the complexity of the circuitry, only
employing logic circuits between the keyboard and the oscillator.
They also reduced the complexity of the oscillator, obtaining a far
from perfect sawtooth wave but with a distinct character that is
worth investigating.

3.2. Welson Syntex Synthesizer Architecture

The Syntex was developed in the years 1974–1976 by Mr. Menchi-
nelli and Mr. Elio Bellagamba who were employees at Welson. Its
sound engine follows the traditional VCO-VCF-VCA approach. It
has two oscillators, differently from all other preset synthesizers
mentioned above and a 4-pole transistor ladder filter with auto-
matic keyboard tracking. It features a third oscillator, which actu-
ally is a LFO, and a noise generator. A touch of craze was intro-
duced by a “Random Music” button, denoted by an atom icon, that

generates random pitches at the rate of the LFO.
The use of digitally controlled oscillators modifies substan-

tially the design of the keyboard and pitch control circuitry with
respect to other synthesizers with a VCO. In vintage instruments,
the keyboard is usually a resistor ladder that provides a linear volt-
age change that is later processed, depending on the oscillator.
A voltage-controlled oscillator following the 1V/octave paradigm,
e.g., rises its pitch exponentially by one octave in response to an
increase of 1V to the input. The Syntex, instead, relies on timing
and counter circuits without any analog voltage processing stage.
An overview is provided in Figure 2. The keyboard is fed to a
series of logic IC and gates that generates a 6-bit code. This is
further processed by additional glue logic to obtain a 12-bit binary
word that is the period duration in clock cycles.

3.3. Oscillator Design

The binary value is loaded into a chain of three 74191 synchronous
counters ICs, hardwired to count downwards and arranged to act
as a 12-bit counter. At the reaching of zero the binary value is
loaded again and the counting starts again. The reset output of the
last counter in the chain is also fed to a Schmitt trigger to generate
a pulse Q. This pulse has a short active time, 50µs and a period
8 times shorter than the 8’ output tone. The pulse is fed to a 7493
binary counter, with 4 outputs, that acts as an octave divider. Four
octave signals are generated,QA, QB , QC , QD , yielding a total of
five octaves including Q, although the signals QA, QB , QC , QD

are 50% duty cycle square waves. The five signals are summed
together with different ratios to obtain four footage output. These
are all available and are blended together by front panel poten-
tiometers. Oscillator 1 produces 32’, 16’, 8’ and 4’ tones, while
Oscillator 2 produces 16’, 8’, 4’, and 2’ 1 In the following analysis
we refer to the notation of Oscillator 1, although similar consider-
ations apply to Oscillator 2.

The weighted sum is performed by means of an inverting sum-
ming operational amplifier for each footage output as shown in
Figure 3. From the resistor values we can obtain the weights for

1The timing pulse Q of Oscillator 2 is run at twice the frequency of that
of Oscillator 1. The presence of a tuning potentiometer with a wide range
for Oscillator 2, however, allows to tune Oscillator 2 in unison to Oscillator
1.

DAFX-3

321



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

each of the footages outputs:

S32 = −(Q16 +
5

11
Q8 +

10

39
Q4 +

5

41
Q2) (5)

S16 = −(Q8 +
5

11
Q4 +

10

39
Q2 +

5

28
Q) (6)

S8 = −(Q4 +
5

11
Q2 +

10

27
Q) (7)

S4 = −(6
5
Q2 +

4

5
Q) (8)

In the Syntex oscillators, four square waves are available, cor-
responding to Walsh functions of order 1, 3, 7 and 15. Signal
Q, in general, is not orthogonal to the others, given the fact that
its duty cycle varies with the note pitch. It cannot, therefore, be
explained in the light of the WHT transform. The use of Q has
been explained by one of its developers, Mr. Elio Bellagamba, as
a trade-off between costs and benefits to add a fifth octave wave
without resorting to additional components. The musical experts
in the company approved this as the produced sound was more
aggressive, Mr. Bellagamba recalls.

Regarding the weights of the WHT that are implemented in
the Syntex, the chosen discrete resistor values depart from the the-
oretical values. Signal S32 is composed of all square wave signals,
thus, it could approximate the sawtooth using a WHT of order 16
if the following resistor values would be employed:

S32 = −(Q16 +
1

2
Q8 +

1

4
Q4 +

1

8
Q2). (9)

However, weights do differ in the actual implementation, as seen
in Eq. 5. This choice was motivated by the higher cost of precise
resistors. Furthermore, the other footages deviate from the ideal
WHT formulation as signal Q is not orthogonal to the others. In
this case resistor values were agreed with the musical experts. The
result of the four outputs are shown in Figure 4, and compared to
the measured waveforms.

3.4. Comparison with the ARP Pro Soloist

The ARP Pro Soloist generates the approximated sawtooth wave-
form by summing 6 square waves generated from a top octave,
according to the following:

SAPS =
6∑

o=1

Po

2o
, (10)

where P1 is the square wave with fundamental frequency pitch.
These are the weights as required per the WHT to approximate a
sawtooth signal. The simplified diagram in Figure 6 shows how
the sawtooth wave was obtained.

By employing 6 Walsh functions, the approximation of the
sawtooth wave is very good, as shown in Figure 7. The only de-
parture from the ideal sawtooth is the lack of every 64th harmonic,
which can be considered negligible, especially for tones over E4
where the 64th harmonic is over the human hearing range. The
difference between the ARP Pro Soloist tone and the S32 signal
from the Welson Syntex is still hardly noticeable. Signals S16,
S8 and S4, however, depart significantly from the ideal sawtooth
tone, making the Welson Syntex oscillator much more interesting
to study and model with known virtual analog techniques.

Figure 3: Summing different octave square waves to approximate
a sawtooth wave in Welson Syntex Oscillator 1. The lower octave
signalsQ2, Q4, Q8, Q16 are obtained from the top octave signalQ
by a binary counter IC (7493) acting as frequency divider, so that
Q2 is half the frequency,Q4 has one fourth of the frequency and so
forth. Please note that the Oscillator 2 shares the same circuit, but
the footage outputs are named 16′ to 2′ because the timing circuits
run at twice the frequency of Oscillator 1, with typical values of
the pitch and tuning potentiometers.

4. VIRTUAL ANALOG EMULATION

From the virtual analog side, the generation of the Welson Syntex
sawtooth wave is not trivial as the discontinuities can be source of
aliasing. In general, there are at least three different strategies to
generate the signals seen above:

A: generate the Qi signals and sum them according to Eqns. 5–8;

B: directly generate a staircase saw;

C: filtering a sawtooth with a comb filter2.

We shall analyze each of them, their computational cost and
their drawbacks. As far as alias suppression is concerned, we shall
take the BLEP technique [8] as reference, truncated to 4 samples
(2 backward, 2 forward).

Option A is very straightforward in principle. As a drawback,
BLEP, or similar alias suppression techniques, need to be applied
separately to all five signals. On the other hand, after each of the
five signals is generated, all four output footages are obtained with
little extra cost. In this case the computational cost per period is
2 + 4 + 8 + 16 + 32 BLEP, plus the generation of the waves and
the weighted sums (10 mul + 9 sums).

Option B allows two solutions: the wave can be directly syn-
thesized by knowing at what point the steps happen and applying

2This is not valid for signals S16–S4 due to the presence of the non-
orthogonal signal Q.
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Figure 4: Simulation of the four sawtooth waves from the Welson
oscillator: 32’ (a) to 4’ (d). The duty cycle of the Q signal has
been set to 1%.

BLEP at all these discontinuities or by noting that the wave results
from the sum of two sawtooth waves, one of larger period and one
of shorter period. In other words, a staircase sawtooth SK with K
steps can be generated by the following

SK [n] = SL[n]−
1

K
SH [n] (11)

where

SL[n] = 2(n
f0
Fs

mod 1)− 1 (12)

SH [n] = 2(n
Kf0
Fs

mod 1)− 1 (13)

This requires K+1 BLEP per period, proving very inexpensive if
only one of the footage outputs is to be generated. If all outputs
need be generated, sawtooth waveforms of period T , T/2, T/4
and T/8 and T/16 are generated, costing 1 + 2 + 4 + 8 + 16
BLEP per period. Finally theQ signal can be obtained by subtract-
ing another sawtooth of period T/16, with a phase shift, in order
to obtain the 50µs active time. The overall count is 47 BLEP, less
than option A. Figure 8 shows a 2 kHz S4 signal generated accord-
ing to option B with and without BLEP.

Option C results from the observation that a sawtooth ramp
with K stairs has a null in the spectrum every N harmonics, thus
it can be shown that applying a comb filter designed to suppress
these harmonics results exactly in a staircase sawtooth. A gener-
alized recursive comb filter with both feedback and feedforward
delay lines may be required to filter out the harmonics without af-
fecting the rest of the content. Such a filter is characterized by the
following difference equation:

yn = b0xn + bLxn−L + aLyn−L (14)

where the length of the delay lines is L samples.
The computational cost of this filter is 2 sum and 3 mul per

sample and some pointer arithmetics to update the delay lines,
which should be added to the cost of 1 BLEP per period to gen-
erate the alias-suppressed sawtooth, interpolation of the comb for
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Figure 5: The four sawtooth waveforms sampled from the instru-
ment output with the VCF completely open: 32’ (a) to 4’ (d). The
effect of the sound card DC blocking stage affects the waveform
shape by tilting the steps, while some light lowpass filtering due to
parasitic components in the analog path slightly smooths the wave-
forms. This is not seen using an oscilloscope directly at the output
of the components.

Figure 6: Sawtooth waveform generation in the ARP Pro Soloist.
The input square wave signals P1, ...P6 are generated by a top
octave divider. P1 is the lowest generated octave, corresponding
to the note fundamental.

precise tuning and, possibly the emulation of the Q pulse which
should be added to emulate signals S16, S8, S4. Overall, this solu-
tion is very inexpensive, despite the need to design the comb filter
coefficients and to allocate memory for storing the delay lines val-
ues. The design of the comb filter may be problematic if, as it is
the case with synthesizers, the pitch of the oscillator is modulated.
For this reason, options A and B may still be preferable.

5. CONCLUSIONS

This work described the use of the Walsh-Hadamard transform for
sawtooth signals generation and its application in early electronics
synthesizers. Two of such oscillator designs, taken from histor-
ical synthesizers, have been discussed, and their differences are
outlined. These oscillators are classified as DCOs. Therefore, the
emulation of their waveforms is not demanding in terms of com-
putational cost or circuit analysis. However, aliasing represents an
issue. Several options for virtual analog emulation are described
in the paper to obtain very similar results and their computational
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Figure 7: Comparison of ARP Pro Soloist and Welson Syntex saw-
tooth spectra for tones pitched at 250 Hz. In (a) the ARP Pro
Soloist spectrum (solid line) is compared to the ideal sawtooth fre-
quency envelope (dotted line) showing perfect matching (at least
up to the 64th harmonic, at 16 kHz). In (b) the S32 Welson Syntex
spectrum is shown to be identical to (a) except for the lack of each
16th harmonic. In (c) the S8 signal shows a larger departure from
the ideal sawtooth spectral envelope, with every 4th harmonic at-
tenuated. These are not totally canceled due to signal Q not being
a 50% duty cycle square wave.

cost is reported.
Several other synthesizers implemented the WHT for sawtooth

generation, making the results of this work useful for the emula-
tion of other historical synthesizers. An example of these is the
Korg Poly800, a polyphonic synthesizer from the 1980s. Over-
all, we argue that DCO designs deserve more interest from the
research community both for emulation goals and for preserving
good engineering practices. The authors hope that this work could
inspire others to study the solutions produced by past engineers, as
these represent a rich heritage that may be valuable to progress the
state-of-the-art.
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ABSTRACT

This paper proposes to speed up the design of a third-order graphic
equalizer by training a neural network to imitate its gain opti-
mization. Instead of using the neural network to learn to design
the graphic equalizer by optimizing its magnitude response, we
present the network only with example command gains and the
corresponding optimized gains, which are obtained with a pre-
viously proposed least-squares-based method. We presented this
idea recently for the octave graphic equalizer with 10 band filters
and extend it here to the third-octave case. Instead of a network
with a single hidden layer, which we previously used, this task ap-
pears to require two hidden layers. This paper shows that good re-
sults can be reached with a neural network having 62 and 31 units
in the first and the second hidden layer, respectively. After the
training, the resulting network can quickly and accurately design
a third-order graphic equalizer with a maximum error of 1.2 dB.
The computing of the filter gains is over 350 times faster with the
neural network than with the original optimization method. The
method is easy to apply, and may thus lead to widespread use of
accurate digital graphic equalizers.

1. INTRODUCTION

The design of a graphic equalizer (GEQ) has advanced consider-
ably in the past few years [1, 2]. Much research has been con-
ducted to improve the design of both the cascade [3–8] and the
parallel GEQs [9–13]. Currently it is possible to design either a
cascade [2,7] or a parallel GEQ [11–13] to have a maximum error
of 1 dB, which is often considered sufficient for hi-fi audio. How-
ever, the design still requires optimization, which includes matrix
operations, when the command gains are changed. This means
that the accurate design of a GEQ needs large computational re-
sources, if the parameters need to be updated quickly, such as in
low-latency real-time applications.

We have recently proposed the idea of simplifying the calcu-
lation of filter gain optimization in a cascade graphic equalizer us-
ing a neural network [14], instead of the previous heavier method,
which requires the calculation of DFT and matrix inversions. The
training of the neural network becomes easy, when the network is
presented with the pairs of command gains and the corresponding
optimized gains obtained with an accurate design method. Then
the task of the neural network is to imitate the nonlinear mapping,

∗ This research is related to the “Nordic Sound and Music Computing
Network—NordicSMC”, NordForsk project number 86892.
Copyright: c© 2019 Jussi Rämö et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

which the optimization method uses. This is simpler than using
the neural network to learn to design the graphic equalizer by opti-
mizing its magnitude response. It is also a different approach than
the teaching of an equalizer using a neural network directly from
an audio signal [15]. The training using the gain pairs was applied
first to the cascade octave GEQ using a conventional perceptron
with a single hidden layer [14].

The neural network introduces an error, when it approximates
the nonlinear mapping. In [14] it was shown that a perceptron hav-
ing twice as many hidden layer cells as input parameters was large
enough for good approximation. The number of input parameters
was 10 in the case of an octave GEQ, so 20 hidden layer cells were
needed [14]. The approximation error can be kept smaller than
0.085 dB, which is sufficient for a maximum error of 0.7 dB for
the GEQ itself [14].

In this paper, we apply the same idea to the design of a very
common large GEQ, which has third-octave-octave bands. The
third-octave GEQ has 31 bands to control the signal gain on nar-
row bands over the whole audio frequency range from 20 Hz to
20,000 Hz. This paper shows that the complexity of the problem is
much larger than in the case of the octave GEQ, which has only 10
bands, and, consequently, a neural network with a single large hid-
den layer may not learn the mapping sufficiently accurately. We
thus test a larger network structure having two hidden layers. It
seems necessary that one of the hidden layers should contain twice
as many nodes as the input layer.

The rest of this paper is organized as follows. Section 2 briefly
recapitulates the design of a cascade third-octave GEQ, which will
be approximated with the neural net. Section 3 explains the struc-
ture and training of the neural network. Section 4 presents vali-
dation and results of this work. Section 5 concludes this paper.

2. THIRD-OCTAVE GRAPHIC EQ DESIGN

An accurate design for a third-octave cascade graphic EQ (ACGE3)
was proposed at the DAFx-17 conference [2]. The method is an
extension of the corresponding accurate GEQ design for the oc-
tave case with ten bands [7]. Both designs take the user-set com-
mand gain values as inputs and then optimize the filter gains by
evaluating the interaction between different band filters, which are
second-order IIR filters. Each band filter is designed as a spe-
cific parametric equalizer, which is controllable at its own center
frequency and at the center frequencies of its neighboring bands
by defining the bandwidth in an unusual manner. This parametric
equalizer is a modification of the design proposed by Orfanidis in
his textbook [16].

The transfer function of the second-order band filter with user-
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Table 1: Center frequencies fc and bandwiths B for third-octave bands m.

m fc (Hz) B (Hz) m fc (Hz) B (Hz) m fc (Hz) B (Hz) m fc (Hz) B (Hz)

1 19.69 9.178 9 125.0 58.28 17 793.7 370.0 25 5040 2350
2 24.80 11.56 10 157.5 73.43 18 1000 466.2 26 6350 2846∗

3 31.25 14.57 11 198.4 92.51 19 1260 587.4 27 8000 3502∗

4 39.37 18.36 12 250.0 116.6 20 1587 740.1 28 10080 4253∗

5 49.61 23.13 13 315.0 146.9 21 2000 932.4 29 12700 5038∗

6 62.50 29.14 14 396.9 185.0 22 2520 1175 30 16000 5689∗

7 78.75 36.71 15 500.0 233.1 23 3175 1480 31 20160 5570∗

8 99.21 46.25 16 630.0 293.7 24 4000 1865
∗ Manually adjusted bandwidths due to warping close to the Nyquist frequency.

set linear gain Gm is [2]

Hm(z) = b0,m
1 + b1,mz

−1 + b2,mz
−2

1 + a1,mz−1 + a2,mz−2
, (1)

where

b0,m =
1 + βm

1 +Gmβm
,

b1,m = −2 cos(ωc,m)

1 +Gmβm
, a1,m = −2cos(ωc,m)

1 + βm
,

b2,m =
1−Gmβm
1 +Gmβm

, a2,m =
1− βm
1 + βm

, (2)

where

βm =


√
|G2

B,m − 1|
|G2

m −G2
B,m|

tan

(
Bm

2

)
, when Gm 6= 1,

tan

(
Bm

2

)
, when Gm = 1,

(3)

gB,m = cgm, where c = 0.4, (4)
ωc,m = 2πfc,m/fs, (5)

with gB,m = 20 log(GB,m) and gm = 20 log(Gm). The sampling
rate fs used throughout this work is 44.1 kHz. Table 1 shows the
center frequencies fc,m and bandwidths Bm of the third-octave
bands used in this work.

One such second-order IIR filter is used per band, see Fig. 1(a),
and all the 31 filters are cascaded to form the overall transfer func-
tion of the GEQ:

H(z) =
31∏

m=1

Hm(z), (6)

as illustrated in Fig. 1(b). The gain factorG0 in front of the graphic
equalizer in Fig. 1(b) is the product of the scaling coefficients b0,m
of the band filters:

G0 =
31∏

m=1

b0,m. (7)

This way the multiplier related to the scaling factor b0,m can be
removed from each band filter section, as can be seen in Fig. 1(a),
which saves M − 1 multiplications in total [13].

2.1. Least Squares Optimization of Filter Gains

The optimal filter gains for the cascade graphic equalizer are solved
using the least-squares method with the help of an interaction ma-
trix [7]. The magnitude response of each equalizer filter with an
example gain (17 dB is used in this work) is evaluated at the third-
octave center frequencies and at their geometric means. These data
are used to form the interaction matrix B0, which represents the
leakage caused by each band filter to the other frequency points.
Each row of the interaction matrix contains the normalized mag-
nitude response of the mth band filter sampled at the 61 prescribed
frequencies. Because of the normalization, the value of the in-
teraction matrix at the center frequency of the filter itself is always
1.0, since the magnitude response is divided by the filter gain. Fur-
thermore, an additional iteration is used, which calculates another
interaction matrix based on the filter gains obtained as the first LS
solution. The second interaction matrix is used for further opti-
mization [7]. This iteration round helps to restrict the approxima-
tion error in the magnitude response to be less than ±1 dB, which
was the design goal during the development of ACGE3 [2]. The
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b1, m

b2, m

z− 1

z− 1

(a)

OutH1(z) z-1H2(z) HM(z)In

G1 G2 GM

G0
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Figure 1: (a) The second-order IIR filter structure of each band
filter Hm(z), and (b) the graphic equalizer structure containing a
series of such filters and showing the filter gain controls, Gm. In
the third-octave design, the number of filter sections is M = 31.
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matrix inversions cause this optimization method to be computa-
tionally costly.

3. NEURAL NETWORK

3.1. Training Data

The training data for the feedforward neural net is created using the
ACGE3 design [2], which was reviewed in Sec. 2. With that design
it is possible to create a huge number of input-output gain pairs,
where the input values are the user-set command gains between
−12 dB and 12 dB and the outputs are the optimized filter gains
used in the underlying filter design, see Sec. 2.1.

For this work we created 1500 input-output pairs with random
input gains using the ACGE3 algorithm. Six special gain configu-
rations, known to be hard for GEQs, were included in the training
data. They were two constants cases with all gains set to +12 dB
and all gains at −12 dB, and two zigzag cases [2], as well as two
hard configurations which are special zigzag settings1.

3.2. Network Structure and Training

By definition, the third-octave EQ has 31 frequency bands, mean-
ing it has 31 user-adjustable command gains. Thus the neural net-
work has 31 nodes in its input layer, one for each band’s gain set-
ting. The ACGE3 design is implemented using one second-order
IIR filter ber band, resulting in 31 optimized gain values for the
EQ filters. Thus, the size of the output layer is also set to 31.

After initial training tests of the neural network it was decided
that the network structure should be in the form of 31-J-K-31, i.e.,
it should have two hidden layers of size J and K. After training
several different prototype neural networks we settled on the layer
sizes of J = 62 and K = 31. Based on our previous experiments
with the octave GEQ it is beneficial to have the size of the first
hidden layer twice the size of the input layer [14]. Figure 2 shows
the structure of the neural network, where g1, g2, ..., g31 are the
user-set command gains in dB and gopt,1, gopt,2, ..., gopt,31 are the
optimized filter gains in dB.

The neural network was trained using Matlab’s fitnet func-
tion, which is a function-fitting neural network that is able to form
a generalization of the input-output relation of the training data.
Thus, after the network is trained, it is possible to use it to gen-
erate outputs for inputs that were not in the training dataset. The
training algorithm was selected to be trainbr, a Bayesian reg-
ularization backpropagation algorithm [17]. It updates the weight
and bias values according to the Levenberg-Marquardt (LM) op-
timization [18, Ch. 12]. The LM algorithm provides a desirable
compromise between speed and guaranteed convergence of steep-
est descent [18], while the Bayesian regularization also ensures
that the resulting network generalizes well by minimizing a com-
bination of the squared errors and the network weights [17].

The training dataset was split into two sets, a training set (70%
of the whole dataset) and test data (the remaining 30%). The test
data is not used in the training per se, it is only used to monitor the
performance of the model to unseen data during the training. The
stopping conditions were set so that the training would continue
until it is converged. With Bayesian regularization, a good indica-
tion of convergence is when the LM µ parameter reaches a high

1gspecial = [12 −12 −12 12 −12 −12 −12 12 −12 −12 12 −12 −12
12 −12 −12 −12 12 −12 −12 12 −12 −12 12 −12 −12 −12 12 −12
−12 12]T and its opposite −gspecial.
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Figure 2: Neural network presented in this work has 31 inputs and
outputs, and two hidden layers.

value (Matlab’s default is 1010). However, after 15,000 epochs
the training was stopped, before reaching the maximum µ. One
epoch takes approximately a minute calculate, when using 12 par-
allel CPUs, so it is quite time consuming to train the neural net.
Thus, increasing the training time could still improve the accuracy
of the proposed neural net.

3.3. Final Neural Network

Figure 2 shows the resulting neural network while Fig. 3 depicts
individual neurons in the hidden layers and the output layer. In
Fig. 3, the leftmost neuron is the j th neuron of hidden layer 1.
Its inputs are the scaled user-set command gains g′1, g′2, ..., g′31,
since the neural network assumes that the input data has values
between −1 and 1. Matlab does the scaling automatically dur-
ing training using mapminmax function. The j th neuron uses the
weights w1

j,1, w1
j,2, ..., w1

j,31 to scale the inputs, sums them and
adds the bias value θ1j to the sum, and then uses the nonlinear sig-
moid function σ to calculate the output o1j of for the neuron:

o1j = σ

(M=31∑
m=1

w1
j,mg

′
m + θ1j

)
, (8)

where σ is equivalent to tanh(x) = 2/(1 + e−2x)− 1.
The output of a neuron in the second hidden layer is calculated

in similar manner as in Eq. (8), but now the inputs are the outputs
from every neuron in hidden layer 1. The output of the kth neuron
of hidden layer 2 is calculated as

o2k = σ

( J=62∑
j=1

w2
k,jo

1
j + θ1k

)
, (9)

and finally themth neuron in the output layer outputs the optimized
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Figure 3: Structure of individual neurons in the neural net. Cf. Fig. 2.

gain for the mth filter by calculating

g′opt,m =
K=31∑
k=1

w3
m,ko

2
k + θ3m. (10)

Equations (8)–(10), which are used for running the neural net-
work, can be written in matrix form as

g′ = 2 · g − xmin

xmax − xmin
− 1, (11)

o1 = tanh(W1g′ + θ1), (12)

o2 = tanh(W2o1 + θ2), (13)

g′opt = W3o2 + θ3, (14)

gopt = (tmax − tmin)
g′opt + 1

2
+ tmin, (15)

where all the vectors and matrices correspond to those shown in
the top part of Fig. 3. That is, Eq. (11) maps the user-set dB-gain
values g ∈ [−12 12] to g′ ∈ [−1 1], where all xmin,m = −12
and xmax,m = 12. Eq. (12) calculates the outputs o1 of hidden
layer 1 based on g′ by using weights W1, bias values θ1, and the
nonlinear transfer function tanh(). Similarly, Eq. (13) uses all of
the outputs o1 of hidden layer 1 to calculate the outputs of hidden
layer 2 using a different set of weights W2 and bias values θ2,
including the nonlinear sigmoid function. The output layer takes
the outputs o2 of hidden layer 2 as its inputs and weights them
with W3 and adds the bias values defined in θ3. Note that the
output layer has no nonlinearity in it. Finally, the output layer of
the neural network outputs the optimized gain vector g′opt that have
values between [−1 1], which are then mapped to dB values based
on the maximum and minimum values found in the training data
targets, tmax and tmin, respectively.

With these three weight matrixes, three bias vectors, and four
output/input extreme values, it is possible to run the neural network
for any arbitrary user command gain configurations (between−12
and 12 dB). We will provide all of the needed parameters to run
the model.

4. RESULTS AND VALIDATION

In order to validate the actual performance and accuracy of the
proposed third-octave neural GEQ (NGEQ3), we need to compare

it against ACGE3, which was used to train the network. In order
to do this, a validation dataset of 10,000 random command gain
settings was created.

4.1. Computational Performance

The main purpose of substituting the ACGE3 filter optimization
with a neural network is to computationally simplify the procedure
so that Fourier transforms and matrix inversions are not needed.
Although the designing and training of neural networks may take
some time, running a trained neural network is often computation-
ally quite straightforward. The neural network proposed in this
work has 4929 parameters, consisting of the weights and biases,
however, the main computation consists of only three matrix mul-
tiplications and additions, and two tanh calculations for vectors
of sizes 62 and 31, see Eqs. (12)–(14).

To evaluate the computational time of the filter optimization,
the validation dataset of 10,000 input command gains were opti-
mized and the averages of the optimization times were recorded.
The results are shown in Table 2. As can be seen, the proposed
NGEQ3 optimization (13µs) is much faster than that of the orig-
inal ACGE3 (4661µs). The ACGE3 optimization is heavier than
the proposed NGEQ3 optimization, since it requires the calcula-
tion and inversion of the interaction matrix, during the iteration
round, and several matrix multiplications. The interaction matrix
is constructed by using the discrete-time Fourier transform which
is used to evaluate the magnitude response of the band filters at
61 frequency points, consisting of the 31 third-octave center fre-
quencies and their midpoints. The matrix inversion requires the
computing of the Penrose-Moore pseudoinverse for the resulting
61-by-31 interaction matrix, which involves a matrix inversion and
three matrix multiplications [7].

Table 2: Comparison of computing times of the third-octave
ACGE3 and proposed NGEQ3 methods, average of 10,000 trials.
The fastest case in each column is highlighted.

Gain Coefficient
optimization update Total

ACGE3 (DAFx-17) 4661µs 57µs 4718µs
NGEQ3 (proposed) 13µs 57µs 70µs
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Figure 4: Comparison of ACGE3 and NGEQ3 filter optimization,
when all command gains are set to 12 dB.
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Figure 5: Alternating ±12 zigzag command gain settings. See the
legend in Fig. 4.

Furthermore, the calculation of the filter coefficients takes ap-
proximately 57µs, which is the same for both methods, meaning
that the NGEQ3 gain optimization is even faster than the actual
filter design.

4.2. Accuracy

While getting the implementation of the filter gain optimization
faster can be essential to certain applications, the proposed method
needs to be accurate in order to be useful. Figures 4 and 5 show
magnitude responses of two example runs of the proposed neural
network. Both cases are known to be challenging for a GEQ, and
thus, both of these example cases were also included in the training
dataset. Figure 4 shows a gain setting where all command gains are
set to +12 dB, while Fig. 5 shows a gain setting with alternating
commands at±12 dB. In both figures, red circles (◦) are the user-
set command gains, black squares (�) are the ACGE3 optimized
filter gains, blue crosses (×) are the optimized filter gains by the
proposed NGEQ3, and the black line plots the magnitude response
of the whole NGEQ3. Thus, in ideal case the crosses should lie
inside the squares (�). Furthermore, the horizontal dashed lines
plot the zero line, as well as the used maximum and minimum
values ±12 of the command gains.
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Figure 6: Worst case scenario based on the validation dataset of
10,000 gain configurations. See the legend in Fig. 4.
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Figure 7: Random command gain settings illustrating the mean
accuracy of NGEQ3. See the legend in Fig. 4.

These two examples clearly illustrate the importance of fil-
ter gain optimization, since it is evident that the optimized filter
gains (� and ×) can be totally different than the actual user-set
command gains (◦). In Fig. 4, where all the gains are set to
+12 dB, the optimized gains are considably smaller that the com-
mand gains, so that the final response settles at 12 dB. On the other
hand, in the zigzag case in Fig. 5, the optimized gains are more
than twice the value of the user-set command gains.

The accuracy of the proposed NGEQ3 was evaluated using the
same validation dataset as above. The proper error evaluation is to
compare NGEQ3 to ACGE3, since that is how the neural network
was trained. That is, a perfect neural net with zero error would
produce identical responses (and errors) with ACGE3. However,

Table 3: Magnitude-response errors in dB at command point fre-
quencies for 10,000 random gain settings.

ACGE Commands
Max Mean Max Max Mean Max

ACGE3 (DAFx-17) – – 1.1 0.53
NGEQ3 (proposed) 0.28 0.07 1.2 0.53
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the absolute errors in respect to the user-set command gains are
what eventually matters to the end user.

Table 3 shows the accuracy validation results. Each row in
the table compares the absolute error, calculated at the defined
command gain frequencies where the target can be specified, to
ACGE3 and to the actual user-set command gains values. The
largest error in NGEQ3 with respect to ACGE3 was 0.28 dB2. This
case is plotted in Fig. 6, where the largest error occurs at 1587 Hz.
However, the magnitude response still goes through the command
gain setting (◦), so there is no visible error for the end user.

Finally, Fig. 7 shows a random gain setting (not included in
the validation or training datasets) to illustrate how small the error
typically is. As can be seen in Table 3, the mean value of all the
maximum errors (mean max) over the 10,000 sample validation
dataset, when compared to ACGE3, was 0.07 dB, which is incred-
ibly small. Furthermore, the last two columns of the table show
the maximum and average of all of the maximum errors calculated
against the user-set command gains. As can be seen, the overall
maximum errors of ACGE3 and the proposed NGEQ3 are almost
the same and close to 1 dB, whereas the mean max of the validation
dataset is the same for both methods, approximately 0.5 dB.

5. CONCLUSIONS

This paper proposed to simplify the calculation of the gain opti-
mization of a third-octave graphic equalizers using a neural net-
work. This became possible after our team recently proposed an
accurate graphic equalizer design method, which optimizes filter
gains based on user-defined command gains. The filter gains are
determined using a least-squares technique with one iteration and
then, as all parameters are known, the IIR filter coefficients are
computed using closed-form formulas. Thus, the main complica-
tion in the design has been the filter gain optimization.

In this work, the command gain-filter gain vector pairs ob-
tained with the accurate design method are used as training data
for a multilayer neural network. After the training, the LS opti-
mization can be replaced with the neural network. The computing
of the filter gains is over 350 times faster with the neural network
than with the original LS method. The filter coefficients are finally
computed using traditional closed-form formulas, which now takes
more time than the gain optimization. The proposed method turns
accurate graphic equalizer design easy and fast. The associated
Matlab code is available online at http://research.spa.
aalto.fi/publications/papers/dafx19-ngeq/.

While in this work the neural network was trained by using
the input-output gain pairs from a previously known optimization
algorithm, in the future, it could be interesting to explore the pos-
sibilities to train a neural network with a novel cost function based
on the actual gains of a GEQ.
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ABSTRACT
Physical circuit models have an inherent ability to simulate the be-
haviour of user controls as exhibited by, for example, potentiome-
ters. Working to accurately model the user interface of musical
circuits, this work provides potentiometer ‘laws’ that fit to the un-
derlying characteristics of linear and logarithmic potentiometers.
A strategy of identifying these characteristics is presented, exclu-
sively using input/output measurements and as such avoiding de-
vice disassembly. By breaking down the identification problem
into one dimensional, search spaces characteristics are success-
fully identified. The proposed strategy is exemplified through a
case study on the tone stack of the Big Muff Pi.

1. INTRODUCTION

Virtual Analogue (VA) modelling is largely motivated by the her-
itage aim of recreating analogue effects in functional digital form.
A core component of an analogue effect is its user interface, i.e.
the controls available to the musician to design and fine-tune the
timbral qualities of the effect. To create a complete VA model of a
device, its user interface must therefore also be carefully recreated.

A ubiquitous element of the user interface is found in poten-
tiometers, which are present in countless guitar effects, synthesis-
ers, etc. These devices map a change in rotation (or other move-
ment) to a change in a specified phenomenon. Often, available
schematics omit potentiometer laws, requiring a method of deter-
mining them from the circuit. Further, ideal laws that are com-
monly used may not truly reflect the behaviour of real potentiome-
ters.

The aim of this paper is to investigate, identify, and model
such mappings with a view of incorporating the resulting poten-
tiometer laws into VA circuit models. Physical modelling is a good
match for the overall simulation in this case, as it preserves the cir-
cuit topology, meaning that potentiometer changes result in local
rather than global system changes. This does not hold for black-
and grey-box models [1, 2], which focus on deriving a model for
a single setting. A solution would require interpolation across a
large number of coefficient data sets to facilitate such potentiome-
ter control, equivalent to the strategy used to model a systems’
response to changes in input signal amplitude [3].

The main advantage of black box models is that they are de-
rived entirely from input/output (I/O) measurements, preventing
the need to disassemble a device and so avoiding any risk of dam-
age to the device under test. Previously it was found that for phys-
ical models, values of the components in a circuit can be identified
using only I/O measurements and positioning potentiometers at the
extreme ends of their travel [4]. The objective of this work is to

1

RT

3

2: Wiper

(a)

(b)
1

yRT (1− y)RT

3

2

Figure 1: (a) Annotated potentiometer schematic symbol. (b) Sep-
aration of the potentiometer symbol into the inter-terminal resis-
tances as used to model its behaviour. (c) Rotary potentiometer di-
agram with labelled terminals, and the rotating shaft highlighted
and range of rotation indicated, the shaft shown at 0 ◦.

complete a VA circuit model by identifying the underlying char-
acteristic of a potentiometer, again only using I/O measurements.
A key aspect of this challenge is to determine suitable fitting func-
tions.

The rest of this paper is organised as follows: §2 investigates a
variety of potentiometer laws and fits them to characteristics both
from literature and also measurements of individual devices. §3
presents the identification strategy used to estimate potentiometer
characterstics from I/O measurements, utilising the Big Muff Pi
tone stack as a case study. §4 then presents the results of the char-
acteristic identification from real I/O measurements, and finally §5
concludes the research and notes lines of future research. Compan-
ion material including MATLAB code and data sets are available
online.1

2. MODELLING POTENTIOMETER
CHARACTERISTICS

Potentiometers are a common component in musical circuits, used
to provide a direct user interface. Some of the most common
applications are for ‘volume’, ‘tone’, ‘gain’, etc. Illustrated in
Figure 1, the potentiometer implements control over such quan-
tities/phenomena by changing two resistances between three ter-
minals relative to the position of its wiper which is actuated by the
user.

The focus of this work is on how those resistances change with
respect to a change in position of the wiper, referred to as its ‘law’.

1https://bholmesqub.github.io/DAFx19/
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Figure 2: Linear, logarithmic, and anti-logarithmic potentiometer
tapers, ∆dB = 40 dB.

This law effectively maps the user’s control to a change in the be-
haviour of the circuit, and is an essential feature of the user inter-
face. Within the field of audio the most commonly encountered
laws are linear and logarithmic, and will be the focus of the pre-
sented modelling and identification. Out of these two, it could be
said that the logarithmic law is the most widely used, applied to
map a linear control to logarithmic quantities such as loudness and
frequency for application to volume controls and filter circuits.

2.1. Ideal laws

This section addresses ‘ideal’ potentiometer laws that are suitable
for musical expression, but may not correspond exactly with how
a physical potentiometer behaves electronically. An ideal poten-
tiometer law is defined having a maximum total resistance RT

which is the sum of resistance between terminals 1 and 3 as il-
lustrated in Figure 1. Each terminal and wiper are assumed to
be perfect conductors i.e. have no resistance. Wiper position is
defined here by the variable x which notes the rotation between
terminals, and can be normalised such that 0 ≤ x ≤ 1 which
maps to a degree of total rotation usually between 0 and 300 de-
grees. The potentiometer law is defined as a function of the ro-
tation, y = f(x) which dictates the proportion of RT that each
resistor represents: R1,2 = yRT and R2,3 = (1 − y)RT, where
subscript indicates terminal index. To reverse the orientation of
the potentiometer the resistors change position between terminals,
modelled as y = 1− f(x).

Ideal laws are shown in Figure 2, including an antilogarithmic
law in addition to the previously mentioned linear and logarithmic
laws. An ideal linear law can be defined as flin(x) = x. A deci-
bel ranged logarithmic function can be found by placing x in the
exponent,

flog(x) = 10
∆dB
20

(x−1), (1)

where ∆dB is the desired range in decibels. This effectively maps
linear rotation to a logarithmic law, a mapping which is used in
other contexts for example in envelope design [5]. This law never
reaches 0, which corresponds to− inf dB. Should a zero-value be
desired the law can be translated and scaled, though it would then
no longer be truly logarithmic.

The exponent operation can be computationally expensive de-
pending on the system, and often approximations are offered such
as a power law, e.g. f(x) = x4 in [5]. Modern audio plug-in
frameworks typically offer a variety of options to suit the needs of
the developer [6].

An anti-logarithmic law is found by reflecting the logarithmic
curve around x = 0.5 and y = 0.5, i.e. fAlog(x) = f̂log(x) where
f̂(x) = 1− f(1− x).

2.2. Laws from specifications

Though the ideal laws discussed in §2.1 may provide suitable con-
trol in software, these laws are unlikely to be encountered in real
devices. In this section specifications are first investigated from
a modelling perspective to determine which functions are suitable
for capturing the behaviour of a real potentiometer law. Two func-
tions are proposed to model the characteristics encountered in real
devices, a tanh based function for broadly capturing multiple laws
with a single function, and a piecewise function that aims to match
the manufactured composition of the studied devices. The piece-
wise functions are then used to model measurements from real po-
tentiometers that will then be used in the case study of the Big
Muff Pi tone stack in §3.

To utilise data of potentiometer mapping characteristics shown
in figures in the literature, online software for extracting data from
images was used [7].

2.2.1. An analytic multi-law function

An authoritative source on potentiometers, ‘The Potentiometer
Handbook’ [8] provides a reference for commonly occurring laws
as well as the underlying manufacturing techniques behind them.
The text refers to the Military Specification MIL-R-94B (now at
revision G though characteristics are unaltered [9]), reproduced
here in Figure 3. Each of these characteristics deviates from the
ideal law, shown with gentle transitions towards the extreme ends
of the functions. For the laws shown in Figure 3, a suitable non-
piecewise function is found in tanh(), parameterised with 4 free
parameters,

ftanh(x) = t1 tanh(t2x+ t3) + t4. (2)

By introducing lower and higher limits on the potentiometer func-
tion yl and yh, this function can be constrained by requiring
ftanh(0) = yl and ftanh(1) = yh resulting in

t4 = yl − t1tanh(t3), t1 =
yh

tanh(t2 + t3)− tanh(t3)
, (3)

leaving free parameters t2 and t3. For a full-range law yl = 0
and yh = 1, though due to inherent terminal and wiper resistances
these values will never be found from measurements of a real de-
vice.

The solid lines in Figure 3 show the fit of the tanh law to
those from [8]. The tanh function with 2 free parameters in (2 -
3) were fit using the fit function from MATLAB 2018a’s Curve
Fitting toolbox, with initial parameters t2 = 1 and t3 = −0.5. For
the anti-log characteristic the function was defined as fAlog

tanh (x) =

f̂tanh(x). The resultant function coefficients are shown in Table 1.
A maximum error of 4% is found in Figure 3 between the

specified characteristic and fitted function for the logarithmic law,
though most error falls between±2%. The larger error observed in
the log law can be attributed to it reaching the y limits prior to the
corresponding x limits. To mitigate this error, a piecewise function
could be employed with the tanh function only fitting the central
region, and transitioning to a different sub-function in the regions
where the most error is encountered. This would however reduce
the simplicity of the implementation, and other sub-functions may
offer improved fit to real potentiometer device laws. The tanh
function maintains applicability without additional sub-functions,
offering a single function that can model each of the examined
characteristics and providing this flexibility with only 2 parame-
ters.
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Figure 3: Specified linear, logarithmic, and anti-logarithmic po-
tentiometer tapers. The specified characteristic is marked by 5,
and the fit using a tanh function by the solid lines. Error is shown
in the lower plot.

Table 1: Fit parameters of the general tanh function to the po-
tentiometer laws specified in [8]. Limits are given as yl = 0 and
yh = 1.

t Linear Log ALog

t1 0.701 0.566 0.536
t2 1.790 4.400 5.113
t3 −0.919 −3.380 −3.787
t4 0.508 0.564 0.535

2.2.2. Piecewise linear/cubic functions

The specific potentiometers investigated within this work are of
the brand Alpha, a popular brand in the building of guitar effects-
pedals. Specifications for the potentiometer laws are found on
their website [10]. Again the tanh function could be employed
to model both linear and logarithmic laws for these specifications,
however after an initial study the error peaked at 8% at the same re-
gion as observed in Figure 3, though a figure of this result is omit-
ted for brevity. To reduce this error a piece-wise function would
need to be used to capture the end-regions where the function gra-
dient is zero. In the case that a piecewise function is required, it is
a logical step to test which functions can provide the optimal fit.

The logarithmic characteristics from [10] are reproduced in
Figure 4. Each law is specified by the percentage of total resis-
tance between terminals 1 and 2 at 50 % rotation. Upon inspection
of this set of characteristics there appear distinct sections with con-
stant gradients, joined via smooth transitions. This property can be
exploited through the use of a piecewise function containing linear
sub-functions. Defining a linear sub-function with local lower and
higher limits – yll = f̄lin(xll) and ylh = f̄lin(xlh) – results in the
expression

f̄lin(x) =
ylh − yll
xlh − xll

(x− xll) + yll, f̄ ′lin(x) =
ylh − yll
xlh − xll

. (4)

The derivative of the linear sub-function is important here as there
are no apparent jumps in gradient in any of the characteristics, and
so the gradient of the sub-functions must match at the transitional

values of the piecewise function. To achieve a match in derivatives
at transitional points, 4 free parameters would be required, two for
each transitional point, matching value and derivative. One such
sub-function that offers this is found in a general cubic polynomial,
expressed as

f̄cub(x) = c4x
3 + c3x

2 + c2x+ c1, (5)

where c1 – c4 are the cubic coefficients used to fit the sub-function
f̄cub(x). To find values for c1 – c4 the following set of equations
must be solved,

f̄cub(xll) = c4x
3
ll + c3x

2
ll + c2xll + c1, (6)

f̄cub(xlh) = c4x
3
lh + c3x

2
lh + c2xlh + c1, (7)

f̄ ′cub(xll) = 3c4x
2
ll + 2c3xll + c2, (8)

f̄ ′cub(xlh) = 3c4x
2
lh + 2c3xlh + c2. (9)

An explicit solution of this set of equations is available on the sup-
porting online content, but is omitted here for brevity.

The choice of the linear-cubic piecewise function aims to build-
in the specified behaviour of the manufacturer’s characteristics. By
matching the underlying structure of potentiometer characteristics,
the ability to produce an accurate law from a reduced/incomplete
set of measurements is improved, without needing a higher num-
ber of measurements to interpolate between.

From the specified or measured potentiometer characteristics a
set of x values can be found at which the function transitions from
linear to cubic (either through direct visual inspection or inspection
of the gradient of the law). At these points the corresponding y
values can be found by interpolating between the available data
points of the characteristic, yielding a set of points that make up
the piecewise function transitions.

In Figure 4, logarithmic characteristics from [10] are shown
with their piecewise fit. The transitional points are approximately
equal between each function, meaning that only one set of x values
was required to fit the full set of characteristics. These values of
x and the corresponding y values are shown in Table 2 where they
are marked with their respective sub-function. A total of 7 piece-
wise sections were needed to match the characteristic specified by
the manufacturer. The solid line in Figure 4 shows the fit of the
piecewise function to the specification, the error between the two
shown in the plot beneath. A peak error of 2% is found for the
15A law, with most error for each law falling within ±1%.

Figure 5 shows the characteristics as given for ‘linear’ laws
from [10]. A similar level of accuracy can be achieved using only
5 piecewise sections as opposed to the 7 used for the logarithmic
characteristics. The piecewise transitional points for each of these
laws varies significantly, necessitating an individual search for the
characteristic x values at which the transitions occur, found using
an optimisation algorithm.

From MATLAB’s Optimisation toolbox the Nelder-Mead al-
gorithm was selected for an easy-to-implement, derivative-free al-
gorithm to minimise the error of the function to the characteristic
by changing transitional values of x [11]. Four x variables were
gathered into θx to use as parameters, excluding those at 0 and 1.
The corresponding estimated values of f̂(x,θx) were then found
through interpolating between the available values of y, and a com-
plete piecewise function was assembled. The employed objective
function,

ξx(θx) =
1

η

Ns∑
n=0

(
yn − f̂(xn,θx)

)2
, η =

Ns∑
n=0

y2n, (10)
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Figure 4: Logarithmic Alpha characteristics (5 marks), and fit us-
ing linear-cubic piecewise functions (solid lines). Characteristics
are noted by the manufacturer’s code which refer to the resistance
percentage at 50% rotation. Error is shown in the lower plot. Ver-
tical dashed lines mark the points at which the piecewise function
sections change.

enumerates the sum-squared error between the measured points of
f(xn) = yn and those found using the piecewise function with
estimated transitional points f̂(xn,θx). A normalisation factor η
is applied to ensure that between data sets with different numbers
of elements, the enumerated error would be comparable, allowing
comparison between the results of the optimisation using different
data sets.

Constraints are applied directly to the objective function, re-
turning ξx = 103 if the constraints are not satisfied. These con-
straints prevent x values from exceeding domain limitations, i.e.
0 ≤ θx ≤ 1, and that they are incremental in value, i.e. for the jth
element θjx < θj+1

x .
Convergence tolerances were set at a change in value beneath

10−8 for both θx and ξx(θx). The resulting optimised x and cor-
responding y values are omitted here for brevity but can be found
on the companion webpage. The solid line in Figure 5 represents
the fitted piecewise function for each law, with the error between
fit and specification shown in the lower plot. Peak error is approx-
imately 1.2% with most contained within ±1%.

With suitable functions that match the specified potentiometer
laws to within 2% error, the following step is to apply this function
to model the characteristic of real potentiometer devices.

2.3. Measured potentiometer characteristic

Several potentiometers were purchased from a local distributor of
components for the DIY construction of guitar effects pedals. This
source was selected to ensure that the potentiometers would be
intended for the use in guitar effects pedals, and that they could
be used to determined which laws from the presented sets in Fig-
ures 4 and 5 are used in potentiometers popular among effects-
builders. The purchased potentiometers were specified to have
RT = 100 kΩ (±20%) as this is the value of the potentiometer
used in the Big Muff Pi tone stack, further discussed in §3.
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Figure 5: Linear Alpha characteristics from (5 marks), and fit us-
ing linear-cubic piecewise functions (solid lines). Characteristics
are noted by the manufacturer’s code. Error is shown in the lower
plot. Transitions are omitted for this figure as they each fall at
different values.

Table 2: Optimised transition points of the general cubic-linear
piecewise function, fit to the logarithmic potentiometer character-
istic specified in [10]. Values are rounded to 3 decimal places.
‘Law’ column is offset to indicate which law corresponds to each
set of end-points.

Law x y

05A 10A 15A 20A 25KA 30A

Lin. 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cub. 0.050 0.003 0.003 0.003 0.004 0.002 0.004

Lin. 0.300 0.015 0.028 0.063 0.084 0.123 0.151

Cub. 0.510 0.057 0.111 0.162 0.210 0.259 0.311

Lin. 0.700 0.284 0.363 0.410 0.443 0.501 0.542

Cub. 0.920 0.954 0.959 0.958 0.952 0.954 0.965

Lin. 0.970 0.999 0.999 1.000 1.000 0.999 1.000
1.000 1.000 1.000 1.000 1.000 1.000 1.000

To measure the potentiometer characteristic, a measurement
jig was designed with markers at 15 degree angles around a cen-
tral hole where the potentiometer was fixed. The markers were
placed using computer aided design/manufacturing, the jig made
from FR-4 with plated copper as used in circuit-board manufactur-
ing techniques.

Direct measurements presented here are only cursory to pro-
vide an approximate law with which to compare to those found
through the following identification from I/O measurements. The
potentiometer was rotated by hand to line the knob indicator to
each marker, while the resistance between adjacent terminals was
measured continuously with an LCR meter. Measuring the resis-
tance at 15 degree increments over a total of 300 degrees of travel
yielded 21 measurements. The obtained characteristics can be con-
sidered as suitably representative test data even in the presence
of possible measurement errors, including human error when per-
forming the manual wiper rotation and heating from continuous

DAFX-4

335



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

0

0.2

0.4

0.6

0.8

1

Lin
Log

0 0.2 0.4 0.6 0.8 1

-1

0

1

E
rr

or
 (

%
)

Figure 6: Measured (5 marks) and fit linear-cubic (solid lines)
potentiometer laws of 1 linear and 1 logarithmic potentiometer.
Error is shown in the lower plot. The laws of the two potentiome-
ters fit with that of ‘B’ from Figure 5 and ‘15A’ from Figure 4.

Table 3: Optimised transition points of the general cubic-linear
piecewise function, fit to measurements taken of a linear and log-
arithmic potentiometer. Values are rounded to 3 decimal places.
‘Law’ column is offset to indicate which law corresponds to each
set of end-points.

Linear Log

Law x y x y

Lin. 0.000 0.000 0.000 0.000

Cub. 0.050 0.000 0.071 0.005

Lin. 0.093 0.041 0.239 0.045

Cub. 0.951 1.000 0.603 0.215

Lin. 0.951 1.000 0.659 0.368

Cub. 1.000 1.000 0.850 0.939

Lin. - - 0.908 0.997
- - 1.000 1.000

driving from the LCR meter. Other physical parameters exist for
the potentiometer in addition to its law, such as terminal resistance,
but these were found to be of a magnitude that was impossible to
measure with available equipment, and therefore likely insignifi-
cant to the identification.

Figure 6 shows the measured characteristics of both a lin-
ear and a logarithmic potentiometer, and the fit of the piecewise
linear-cubic function to the measurements. A notable deviation
was found from the logarithmic tapers of Figure 4, with the tran-
sition to the zero-gradient section at the maximum of the function
occurring at a lower value of x. Therefore the optimisation ap-
proach used to fit the linear characteristics of Figure 5 was applied,
i.e. the x positions found by optimising them and finding the cor-
responding values of y through interpolation of the measurement.
The result is a good fit to the measurements with a peak error just
over 1%. Final transitional values of the piecewise function are
shown in Table 3.

3. IDENTIFYING POTENTIOMETER
CHARACTERISTICS FROM I/O MEASUREMENTS

Having fit laws to characteristics obtained from both linear and
logarithmic potentiometers, sufficient information is available to
validate results from the law identification strategy exclusively us-
ing input/output measurements, presented in this section. The case
study chosen to demonstrate this strategy is the tone stack from
the Big Muff Pi, informed from the description in [12], with the
schematic shown in Figure 7. In simple terms, the potentiometer
in the Big Muff Pi tone stack blends between a low pass formed
between R1 and C2, and a high pass filter formed by C1 and R2.
Both linear and logarithmic potentiometers will be used to demon-
strate the capability of the identification strategy to succeed inde-
pendent of potentiometer law.

The tone stack was assembled on a breadboard to enable di-
rect measurement of each component prior to the measurement
of the circuit’s transfer function. Use of a breadboard also facili-
tates the measuring of both linear and logarithmic potentiometers
to demonstrate the identification procedure for the two most com-
mon laws. Specified and directly measured component values can
be found in Table 4.

Only one potentiometer is present in the circuit. The presented
method should allow for independent identification of multiple po-
tentiometers by setting all but the potentiometer of interest at a
known position, at 0 or 300 degrees rotation, resulting in N ×M
independent identifications whereN is the number of positions per
potentiometer and M the number of potentiometers. This prop-
erty cannot be demonstrated using this circuit, but can be inferred
as only one variable, a single potentiometer position, would be
changed in between each measurement.

To begin identifying the potentiometer laws from input/output
measurements, one must start with estimates of the component
values, obtained from schematics or other identification strategies.
Should the component values be highly accurate, the input/output
measurements should theoretically be matched when the poten-
tiometer is at either extreme of its rotational travel. At these points
the values of y are assumed known. The accuracy of the fit achieved
at these limits will provide some indication of how accurately the
law can be retrieved.

The selection of a linear case study provides several desirable
traits: the circuit model can be represented using a transfer func-
tion which requires only a few data points to capture a large fre-
quency range, and issues of nonlinear behaviour such as aliasing
are avoided. The tone stack is modelled as a transfer function de-
rived using Modified Nodal Analysis [13]. The resultant function
is of the form

H(jω) =
b3(jω)3 + b2(jω)2 + b1jω

a4(jω)4 + a3(jω)3 + a2(jω)2 + a1(jω)1 + a0
.

(11)
Complete coefficients are omitted due to their complexity, but MAT-
LAB code for calculating the transfer function is available on the
companion webpage. Figure 8 shows the simulated amplitude re-
sponses of the Big Muff Pi’s tone stack with the potentiometer at
each end of its travel: presuming these responses to be accurate
the challenge then lies in measuring intermediate responses and
identifying the corresponding values of f(x).
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Table 4: Component values of the Big Muff Pi tone stack: specified
values and the values directly measured from the circuit using an
LCR meter.

Unit Specified Measured

R1 kΩ 39.000 39.080
R2 kΩ 22.000 21.950
RT kΩ 100.000 94.940 (lin) / 98.140 (log)
Ro kΩ 100.000 99.978
C1 nF 4.700 4.698
C2 nF 10.000 9.470
C3 nF 100.000 98.010
Cd pF 100.000 33.227

R1

(1− y)RT

C1

yRT

R2

C2

C3

Ro Cd

+

−
Vo

+
−Vi

Figure 7: Schematic of the Big Muff Pi tone stack with potentiome-
ter marked by red line. Cd is the input capacitance of the mea-
surement equipment used.

3.1. Identification strategy

The identification strategy proposed in this work identifies a po-
tentiometer’s characteristic from input/output measurements of a
circuit. A series of optimisations are performed, only operating
on a single value of x at a time. Values of y = f(x) are es-
timated at each point, thus identifying the potentiometer charac-
teristic. To perform such optimisations, an objective function is
required which compares the measurements of the circuit to the
equivalent data from the model, enumerating the error between
circuit and model.

Considering the linear case exhibited by the Big Muff Pi tone
stack, the input/output measurements can be condensed into the
form of a transfer function. Due to the limitations of the measure-
ment equipment (further discussed in Section 3.2) only the ampli-
tude response of the transfer function is used, with phase informa-
tion discarded. From this information the objective function was
constructed, for an estimated value of y = f(x),

ξio(y) =
1∑Ns−1

n=0 |H(jωn)|2

Ns−1∑
n=0

(
|H(jωn)| − |Ĥ(jωn, y)|

)2
,

(12)
where the operator | · | indicates the magnitude of a complex value.
Frequencies of the transfer function are specified using ωn, where
n indicates index of the discrete frequency selected to be included
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Figure 8: Amplitude responses of the Big Muff Pi tone stack with
the potentiometer at extreme ends of its rotational travel.

in the measurement data.
The optimisation algorithm chosen to minimise the value of

ξio(y) was that of fminsearch from MATLAB’s optimisation
toolbox, specifically the Nelder-Mead simplex algorithm. Conver-
gence conditions were again set to be a change in y or ξio less
than 1× 10−8. Initial experiments using simulated I/O measure-
ments demonstrated successful identification of the potentiometer
characteristics to within 10−5% of the accurate value.

3.2. Measurement procedure

Among various possible valid measurement approaches to find the
transfer function of the Big Muff Pi tone stack, a multi-sine exci-
tation signal was chosen, expressed as

Vi = Vp

du∑
d=dl

Adcos(2πdf0nT + φd), n = 0, . . . , Ns. (13)

The integer values of d are limited to contain sinusoidal compo-
nents at multiples of f0 = fs/Ns between the lower and upper
limits dl and du. Phase terms φd are specified as in [14], i.e.

φd = −2π

d−1∑
l=1

(d− l)Ad, d = dl, dl + 1, ..., du. (14)

which requires that 1 =
∑du

d=dl
Ad. Individual amplitude com-

ponents allow a frequency-domain weighting to be applied which
can be used to maximise the signal-to-noise ratio, but in this case
were set to be Ad = 1/(du − dl).

Finally the value of Vp is selected such that the peak voltage of
the resultant signal is normalised to a chosen peak voltage typically
as defined by the measurement equipment.

To produce a transfer function from the measured output of
the circuit, the input is deconvolved from the output signal by per-
forming an element-wise division in the frequency domain.

An excitation signal was designed with frequencies between
1 Hz − 20.1 kHz, i.e. f0 = 1, dl = 1 and dh = 20100. The
measured frequency range was measured outside of the anticipated
required range in case this information was important to the identi-
fication, though the range is later restricted to 20 Hz – 20 kHz. The
limitations of the analogue input was 2 V which was used to find
the value of Vp. The signal was repeated 60 times and averaged to
one period to reduce stochastic noise.

The measurement equipment used is a National Instruments
myDAQ. Previous experiments with Data Acquisition devices and
identification have shown that any errors in the phase response can
severely effect accuracy in the identification procedure [4]. Upon
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Figure 9: Potentiometer laws as directly measured (solid line) and
estimated from I/O measurements (5 marks), and error between
the two sets presented beneath.

detection of phase error by testing the unloaded I/O response, it
was decided that the phase response should be omitted from the
identification data.

A notable capacitance was measured across the input to the
myDAQ, noted as Cd in Table 4. This capacitance was included
in the circuit model to incorporate any effect it may have on the
measured transfer functions. The measured value ofCd was found
by driving a series impedance of 2 MΩ with a multi-sine signal,
and measuring the cutoff frequency of resulting RC low pass filter
at approximately 2.395 kHz.

Measurements were taken from 21 positions along the rota-
tional axis of both the linear and logarithmic potentiometers (15
degree rotations from 0-300 degrees). The amplitude response of
each of the measured transfer functions was then used to estimate
the value of y at each position. To minimise computational ex-
pense during optimisation, the transfer function data was down-
sampled from 20.1× 103 data points to 512 points spaced loga-
rithmically between 20 Hz and 20 kHz, each point rounded to the
nearest integer such that it corresponds to a measured value, not re-
quiring interpolation. Removing duplicate entries that occur at low
frequencies results in a unique set of 469 amplitudes/frequencies.

4. RESULTS

Optimisation was applied as described in Section 3.1, using the
Nelder-Mead algorithm and the objective function described in
(12). Convergence was achieved successfully from each optimi-
sation.

The identified potentiometer laws for both linear and logarith-
mic potentiometers are shown in Figure 9, with the solid line rep-
resenting the directly measured law and the 5 marking the values
estimated using the identification strategy. Error between the sets
peak at approximately 4.5 % for the logarithmic characteristic and
3 % for the linear characteristic.

Illustrated for both potentiometer laws in Figure 10 are the
measured and identified amplitude responses of the Big Muff Pi

tone stack. This serves to provide one way of attributing error but
also as a source of validation. Inspecting the x values of high er-
ror in Figure 9 it is clear that there is not an anomalous amount of
error in the fit to the amplitude response at corresponding values.
Consistent accuracy from identified amplitude responses but in-
creasing error in the identified potentiometer characteristic points
towards the error being introduced by device heating/human error
during measurement.

As a form of validation, the fit to measurements demonstrated
in Figure 10 is accurate to within 1 dB across all measurements,
indicating that the tone stack filtering effect is captured over the
the full wiper range.

5. CONCLUSION

This work has focused on the modelling and identification of po-
tentiometer laws without device disassembly. Two functions were
proposed to model potentiometer characteristics as found in spec-
ifications and from measurements, a tanh() based function and a
piecewise linear-cubic function. The latter was used to model the
laws of Alpha potentiometers as given by both specifications and
measurements within 2% error.

Identification of the potentiometer characteristics from I/O mea-
surements of the device was tested on a linear subcircuit of the Big
Muff Pi: the tone stack. Identification exclusively using the ampli-
tude response of the subcircuit was shown to be possible, with the
results of the identification retrieving both linear and logarithmic
potentiometer characteristics to within 4.5% error.

It is likely that some of this 4.5% error has been introduced
by device heating and/or human error. Increasing the precision
and repeatability of the measurements could be achieved by the
design of an automated mechatronic system that would simultane-
ously rotate the potentiometer wiper and perform measurements.
One such solution might involve e.g. a stepper motor to control
the potentiometer and a pulsed measurement system to control the
variation in resistance caused by changes in temperature.

For those seeking a fast method of determining the orienta-
tion and approximate law of a potentiometer, a complete set of
21 points is not required. Assuming f(0) and f(1) are known,
from e.g. parameter estimation as in [4], only one additional mea-
surement at f(0.5) is sufficient to differentiate between linear and
logarithmic/anti-logarithmic. A further measurement at e.g. f(0.25)
or f(0.75) would then enable differentiation between orientations
of the potentiometer and also logarithmic and anti-logarithmic laws.

The anticipated application of this identification strategy is for
complete, nonlinear audio circuits. Elements that may cause is-
sues in the identification include nonlinear behaviour, and effects
for which potentiometers control behaviour that is difficult to mea-
sure, e.g. LFO rate in a phasor effect. The low-data point ampli-
tude response facilitates fast identification, which has significant
benefits with regard to rapid design and refinement of the identifi-
cation process. Time-based and/or nonlinear effects would prevent
this selection and therefore demand a search for a suitable, simi-
larly efficient, objective function. For example, a gain control may
use the Total Harmonic Distortion of the output waveform when
driven by a sinusoid, or for a delay length control, the time be-
tween repeats when driven by a pulse-type signal. Each control
type requires individual attention, but due to the monotonic nature
of the studied potentiometer laws, and as each potentiometer can
be identified independently, each position should yield a unique
measured value, so long as the objective function is well-chosen.
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Figure 10: Estimated (dotted) and measured (solid) amplitude responses of the Big Muff tone stack, with error in decibels shown below.
Only 11 of the 21 measured amplitude responses are shown to improve clarity of the figure.
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ABSTRACT

Many recent approaches to creative transformations of musical au-
dio have been motivated by the success of raw audio generation
models such as WaveNet, in which audio samples are modeled
by generative neural networks. This paper describes a genera-
tive audio synthesis model for multi-drum translation based on
a WaveNet denosing autoencoder architecture. The timbre of an
arbitrary source audio input is transformed to sound as if it were
played by various percussive instruments while preserving its rhyth-
mic structure. Two evaluations of the transformations are con-
ducted based on the capacity of the model to preserve the rhythmic
patterns of the input and the audio quality as it relates to timbre of
the target drum domain. The first evaluation measures the rhyth-
mic similarities between the source audio and the corresponding
drum translations, and the second provides a numerical analysis
of the quality of the synthesised audio. Additionally, a semi- and
fully-automatic audio effect has been proposed, in which the user
may assist the system by manually labelling source audio segments
or use a state-of-the-art automatic drum transcription system prior
to drum translation.

1. INTRODUCTION

The creative transformation addressed in this paper is generative
audio synthesis of percussive instruments, which involves map-
ping (or translation) of musical audio to drum sounds achieved
with artificial neural networks. Flexible digital audio effects that
utilise machine learning techniques would benefit musicians and
music producers by generating audio controllable by a target rhythm,
melody or style that may be used directly in the music production
process. Among such tools, autoregressive (AR) models for raw
audio generation such as WaveNet [1] have inspired several sys-
tems that utilise the power of generative neural networks for mu-
sical audio synthesis. Audio synthesis in these models is achieved
by learning an AR distribution that predicts the next audio sample
from the previous samples in its receptive field using a series of di-
lated convolutions. The majority of these systems have been devel-
oped to address pitched instruments [1, 2], while no such systems
have been focused on the generation of percussive instruments and
rhythmic aspects of such transformations.

Copyright: c© 2019 Maciek Tomczak, Jake Drysdale and Jason Hockman . This is an

open-access article distributed under the terms of the Creative Commons Attribution

3.0 Unported License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

1.1. Background

In the field of digital audio effects, rhythmic and timbral transfor-
mations have initially been addressed through signal processing
architectures [3, 4, 5, 6]. At present there are only a handful of
systems that approach this type of transformation using artificial
neural networks in areas such as audio style transfer [7] and AR
generative audio synthesis [1, 8, 9].

WaveNet is a generative audio synthesis model that was devel-
oped for tasks related to speech synthesis [10, 11]. To date, a rela-
tively small number of systems have experimented with it for syn-
thesis of musical audio. Engel et al. [2] proposed a WaveNet au-
toencoder that learns codes that meaningfully represent the space
of musical instruments with the ability to model long temporal
dependencies. This work led to the NSynth system [2], a neural
synthesiser capable of generating new sound embeddings learned
from a large dataset of musical notes. Dieleman et al. [12] adapted
the WaveNet architecture for the unconditional generation of piano
music that exhibits stylistic consistency at longer timescales across
tens of seconds. In [13], the authors combined audio and symbolic
models and use a long short-term memory recurrent neural net-
work (RNN) to learn melodic structures of different styles of mu-
sic, which are used as conditioning input to a WaveNet-based in-
strument melody generator. Other AR models include RNN-based
architectures such as: VRNN [14], SampleRNN [15] and Wav-
eRNN [16]. Alternatively, the WaveNet architecture has been used
in the context of musical timbre transfer. Huang et al. [17] adapted
an image-based style transfer method [18] for translation of an im-
age from one domain to another using a conditional WaveNet syn-
thesiser within the TimbreTron model. Kim et al. [8] proposed a
music synthesis system with timbre control that learns to generate
spectrograms from symbolic music representations and instrument
embeddings, and generates raw audio with a WaveNet vocoder.

Mor et al. [9, 19] introduced a novel system for timbre and
style translations that combined the WaveNet autoencoder with
unsupervised adversarial training. This architecture differed from
other generative audio synthesis models in that it could convert the
timbre of one instrument to that of another while preserving the
melody and rhythm of the input. The WaveNet autoencoder archi-
tecture of Mor et al. [19] has been adopted, with key differences
made in training strategies and the use of a simplified architecture,
specialised for rhythmic and timbral transformations of percussion
instruments.

1.2. Motivation

In this paper, a system that adapts the music translation approach
for timbre transfer is proposed, with the aim of encoding the rhyth-
mic structure of an arbitrary audio input as a combination of dif-
ferent percussion instruments from the common drum kit. In this
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Figure 1: Drum translation overview in three stages. Source audio is transformed to output through a single shared autoencoder of domain
p specialised on domain decoders Dp, where p represents: kick (k), snare (s), kick and snare (ks), hi-hat (h), kick, snare and hi-hat (ksh),
kick and hi-hat (kh) or snare and hi-hat (sh). Colours illustrate pathways between source and corresponding Dp trained to synthesise
the target instrument (e.g., orange decoder Ds synthesises snare drums). Solid lines represent information flow during synthesis and
dashed-dotted line represents information flow to a domain confusion network present only during training.

transformation, the timbre of an input is transformed such that it
sounds as if it were played on a different drum. To that end, a
denoising WaveNet autoencoder architecture is modified and spe-
cialised for drum translation by utilising an unsupervised training
strategy of a multi-domain latent space that is trained end-to-end
on combinations of drum samples. In this architecture, a single en-
coder of [19] encodes a shared latent space for multiple decoders
to use during training and audio generation. The size of the ar-
chitecture is adjusted to learn short-term sounds of drum samples,
while maintaining encodings for different drum instruments. The
rhythmic accuracy of this model has been explored as well as a va-
riety of creative percussive transformations in a simplified task of
drum-to-drum translation akin to the task of redrumming or drum
replacement [20]. The aims of the system are to facilitate the cre-
ation of new drum arrangements from arbitrary audio inputs pro-
vided by untrained musicians and to uncover the musical relation-
ships between audio recordings that might otherwise have never
been heard.

The remainder of this paper is structured as follows: Section
2 outlines our proposed method for drum translation. Section 3
presents experiments undertaken to assess the rhythmic accuracy
and the quality of the translated audio. Section 4 provides experi-
ment results with a discussion on audio degradation caused by the
system for different drum domains. Conclusions and suggestions
for future work are presented in Section 5.

2. METHOD

This approach to drum translation concerns the task of synthesis-
ing source audio to corresponding drum sounds. The system is
inspired by architecture of [19], in which music signals can be
translated across instruments and styles. This paper contributes to
this kind of transformation by simplifying the translation network
and proposing a new training strategy specialised towards percus-
sion instruments.

Figure 1 provides an overview of the proposed drum trans-
lation system, which is comprised of three stages: (1) Feature
representation; (2) WaveNet autoencoder; and (3) Generation. At
the core of the system is a WaveNet autoencoder network with a
shared encoder and a disentangled latent space, distributed across
each drum domain decoder Dp, where p represents a percussion
domain for P total number of domains. In total, there are seven
percussion domains (P = 7) defined as kick (k), snare (s), hi-
hat (h) instruments as well as their combinations such as, kick and
hi-hat (kh). During training, multiple source-target p pathways
(one per drum domain illustrated by different colours in Figure 1)
are encoded by a domain-independent encoder E. The input to
the neural network is an audio segment Xp of length T samples
(T = 6000) representing a waveform of one of the seven drum
domains. Each segment is distorted by random pitch modulation
to prevent the network from memorising the input signal and pro-
vide a semantic encoding.

To improve the generalisability of a single encoder during train-
ing and to increase the size of the training data, a pitch augmen-
tation approach of [19] is implemented. In popular music pro-
duction, pitch shifting of individual drum samples is a common
processing technique that is used either on all drums or on a sub-
set of drum samples that are layered underneath other sounds to
create richer timbres. Instead of augmenting only parts of the in-
put data as in [19], pitch is modulated across the whole length of
each audio segmentXp by a random value between±3 semi-tones
with LibROSA [21]. The final representation of each augmented
percussion segment used for training is Xp = {xp,1, ..., xp,T }.

The input audio goes through the Wavenet encoder E, a fully
convolutional network, and outputs latent space Z that is down-
sampled with 8-bit µ-law encoding [1]. The latent space is then
used to condition a domain confusion network [22] responsible
for providing an adversarial signal to the encoder during training.
The latent signal is then temporally upsampled to the original au-
dio rate and is used to condition a WaveNet decoder Dp. Each
decoder uses a softmax activation to output the probability of the
next time step. Once training is finished the embeddings of all
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drum domains in the shared latent space can be used to transform
source audio from any arbitrary audio domain.

2.1. WaveNet Autoencoder

A similar dilated convolutional WaveNet encoder architecture as
[2] is adopted and a WaveNet decoder from [19] to model percus-
sion sounds in the time domain. Dilated convolutions are convolu-
tions with holes that greatly increase the receptive field while sig-
nificantly reducing the model parameters and computational cost.
In addition to dilated convolutions, WaveNet incorporates a resid-
ual learning framework [23] that reduces training time and avoids
the vanishing gradient problem linked with the training of very
deep neural networks.

The shared encoder E has 18 layers with two blocks of nine
residual-layers [23] and a maximum dilation of 512 samples. As in
[19], a residual-layer structure with a ReLU non-linearity is used,
a non-causal dilated convolution with an increasing kernel size, a
second ReLU, and a 1x1 convolution (i.e., a time-distributed fully
connected layer) followed by a residual summation of the activa-
tions before the first ReLU. Unless specified otherwise, 64 chan-
nels are used in all hidden layers of the autoencoder architecture.
After two blocks, the encoding goes through a 1x1 layer and an
average pooling with a kernel size of υ samples (υ = 400).

The WaveNet domain decoder Dp is conditioned with a tem-
porally upsampled version of the latent encoding Zup obtained
with nearest neighbour interpolation. The conditioning signal adds
parameters to the probability distribution so that it depends on
variables that describe the audio to be generated instead of only
using the previously generated samples. Without conditioners,
WaveNet has been shown to mix sequences of speech by repeated
phoneme shifting between voices of all speakers used in training
of the model. As in [19], the conditioning goes through a differ-
ent 1x1 layer for each decoder Dp to ensure that the latent space
is domain independent. This reduces source-target pathway mem-
orisation, which is also aided by pitch augmentation. To ensure
that only previous samples are used in the generation of the new
ones, decoders Dp use dilated causal convolutions together with
additional non-linear operations to enable them to learn input au-
dio representations that cannot be captured with just linear opera-
tions. Each Dp has two blocks of nine residual-layers, where each
layer contains a causal dilated convolution with an increasing ker-
nel size, a gated hyperbolic tangent activation [1] (the main source
of non-linearity), a 1x1 convolution followed by the residual sum-
mation of the layer input, and a 1x1 convolution layer for skip
connections. Encoding Zup is used to condition each residual-
layer during training. The skip connections are summed with a
ReLU non-linearity activation and passed through a 1x1 convolu-
tion layer before a softmax activation layer.

2.2. Domain Confusion Network

In order to introduce an adversarial signal to the autoencoder and
ensure that the encoding is not domain-specific, a domain confu-
sion network C is implemented following [19]. The network pre-
dicts the percussion domain label of the input data based on the
latent vectors Z. It uses a single gradient reversal layer defined
in [22] and three 1D-convolution layers. The gradient reversal
layer (GRL) reverses the gradient by multiplying it with a negative
scalar λ (λ = 0.01). The GRL ensures that the feature distribu-
tions over the P drum domains are made similar (i.e., as difficult as

possible to recognise for the domain classifier C), thus resulting in
the domain-independent features. The three 1D-convolutional lay-
ers all include ELU non-linearities [24] with 128 channels in all
hidden layers. After three layers the output is passed through a
tanh and a 1x1 convolution layer to project the vectors to P total
number of domains.

2.3. µ-law Quantisation

WaveNet predicts a non-normalised probability distribution from
the residual-layers and transforms it into a proper probability dis-
tribution by using a softmax function. The authors of the original
WaveNet [1] show that softmax distribution tends to be more flexi-
ble than other mixture models and can more easily model arbitrary
distributions as it makes no assumptions about their shape.

All audio files processed by the model use a sampling rate of
22.05 kHz and are stored as 16-bit integers. To model all possible
values per time step, a softmax layer would need to output 216

probabilities. To moderate this high bit-depth resolution of the
input audio, a µ-law algorithm [25] is implemented and quantises
the data to 28 quantisation levels:

f(xp) = sign(xp) ∗
ln(1 + µ|xp|)
ln(1 + µ)

, (1)

where µ = 255 and −1 < xp < 1. This quantises the high reso-
lution input to 256 possible values causing a loss in audio quality
[1], however it makes the model feasible to train.

2.4. Model Details

Two losses are minimised during training with regards to an input
sample xp at time step t from augmented segmentXp: (1) domain
confusion loss Ldc,

Ldc =
∑
p

∑
xp

`ce(C(E(xp)), p), (2)

which applies cross entropy loss `ce to each element of the output
Z and the corresponding percussion label p, and (2) autoencoder
loss Lac,

Lac =
∑
p

∑
xp

`ce(Dp(E(xp)), xp). (3)

The decoder Dp is an AR model conditioned on the output of the
shared encoder E. Final loss L is defined as:

L = Lac − λLdc, (4)

where λ is a scaling factor for Ldc described in Section 2.2.
An Adam optimiser with the initial learning rate of 0.001, and

a decay factor of 0.98 is used. The model is trained for 10 epochs
and 50,000 iterations in total, where each iteration takes a random
mini-batch of 8 randomly pitch shifted Xp segments. All weights
in the network are initialised using Xavier initialisation [26].

The system consists of a naïve WaveNet architecture [27],
where O(2L) is the overall computation time for a single output
withL total number of layers of the WaveNet autoencoder outlined
in Section 2.1. The system is implemented using the Tensorflow
Python library1 and was trained on an NVIDIA Tesla M40 com-
puting processor.

1https://www.tensorflow.org/
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2.5. Generation

During the transformation of an unaugmented audio sample y from
any source domain, the autoencoder of domain p with its corre-
sponding Dp is used to output the new sample ŷ through:

ŷ = Dp(E(y)). (5)

3. EXPERIMENTS

Two individual experiments are conducted to evaluate the rhyth-
mic modification characteristics of the system as well as the trans-
lation quality through numerical analysis. In the first experiment
(Section 3.2), the rhythmic similarity between source and drum
translated audio pairs are evaluated by measuring the cosine sim-
ilarity between rhythmic envelopes. For the second experiment
(Section 3.3) a numerical analysis of audio degradation by [8] is
presented measuring the Pearson correlation between the trans-
lated and source audio.

3.1. Training Data

For all experiments, the system is trained using raw audio wave-
forms as input features. Kick, snare and hi-hat samples used in the
creation of different domains p for training are selected from a va-
riety of different sample libraries included in the Ableton Live 10
Suite software. Drum samples are reduced to mono 16-bit WAV
files and downsampled from 44.1 kHz to 22.05 kHz. To ensure
each domain is accurately represented by the model, silence is re-
moved from the start of each audio recording. The additional do-
mains, which represent when two or more percussion instruments
are played simultaneously (e.g., kick drum and hi-hat together),
are artificially synthesised by overlaying randomly selected per-
cussion samples.

In total, there are 1000 drum recordings for each domain re-
sulting in a total dataset size of 7000. The mean duration of the
drum recordings is 4862 samples (i.e., 0.22s). The resulting seg-
ments are normalised and zero-padded to a constant length T . Au-
dio samples longer than T are trimmed, with a linear fade applied
to the last 1000 samples. To mitigate the low resolution at ranges
near±1 that results from the µ-law encoding stage, the amplitudes
of all audio segments are randomly scaled between 0.5 and 0.6.

3.2. Experiment 1: Rhythmic Similarity

The purpose of the first experiment is to evaluate the capacity of
the proposed system for preservation of rhythmic patterns during
transformations. A variety of different drum loops are used as the
source for this experiment. The events in each drum loop are man-
ually labelled, then translated into an output drum loop where do-
mains correspond to the source. The cosine similarity is measured
between the rhythmic envelopes of source and output transforma-
tion pairs.

In order to extract the rhythmic envelope R from each file,
the short-time Fourier transform of each audio file is computed us-
ing an n-length Hanning window (n = 2048) with a hop size of
n
4

. The standard spectral difference envelopes are then calculated
as the sum of the first-order difference between each spectrogram
(e.g., [28]). The resulting envelopes are then normalised between
0 and 1. Following the approach described in [7], the cosine sim-
ilarity Φ between rhythmic envelopes of inputs and their transfor-
mations is calculated as follows:

Φα,β =
Rα ·Rβ
‖Rα‖‖Rβ‖

, (6)

where α and β represent source input and drum translated output
respectively.

This experiment is conducted using 20 drum loops selected
from the Apple Logic Pro sample library, resulting in 20 trans-
formations to be evaluated. The drum loops are chosen to reflect
a variety of different drum patterns and styles, with multiple do-
mains reflected in each loop. The drum loops have a mean duration
of 3.5s and tempo ranges from 100 beats per minute (BPM) to 170
BPM. All loops are in the mono WAV format and are resampled to
22.05 kHz with 16-bit resolution.

3.3. Experiment 2: Translation Quality

In the second experiment, the timbral differences linked to the
µ-law quantisation and the limited WaveNet model capacity are
analysed. As an objective measure of audio quality, following
[8], the Pearson correlations between the source and the drum
translated audio are plotted. The correlations are visualised over
a logarithmically scaled range of frequencies between 32–10548
Hz and calculated using 101-bin log-magnitude constant-Q trans-
forms (CQT) with 12 bins per octave starting from C1 (≈32.70Hz)
and hop size of 512 using LibROSA [21]. For the purpose of this
experiment, seven audio tracks are created using drum samples
selected from the Logic Pro sample library. Each track contains
ten drum samples with different timbres from the corresponding
domains p (e.g., ten kick drum samples). All ten samples are
translated into their corresponding domains (e.g., ten kick sam-
ples transformed into ten kick samples), resulting in a total of 70
separate drum translations.

4. RESULTS AND DISCUSSION

4.1. Rhythmic Similarity

The mean cosine similarity score across the 20 transformations in
the rhythmic similarity experiment is 0.75. This indicates that in
most cases, the proposed system is capable of preserving rhyth-
mic structure when translating from source to target domain. The
highest rhythmic similarity score is 0.96, which suggests that for
this transformation the majority of the target domains were suc-
cessfully translated resulting in a rhythmic envelope that is almost
identical to the input. Transformations receiving low similarity
scores failed to translate parts of the input resulting in dissimilar
rhythmic envelopes. The lowest performing transformation has a
rhythmic similarity score of 0.48 due to a frequent failure in prop-
erly translating domain k. The possible reasons for different arti-
facts and behaviours of the synthesised audio are discussed using
two translation outputs presented in Figure 2.

To better understand the issues present in the translated out-
puts, two examples of source and output waveforms have been
plotted in Figure 2. The cosine similarity of the translation A is
0.79 indicating some differences in their rhythmic similarities. In
the first beat of the output example A, it can be seen that the wave-
form of the source kick drum was unnaturally smeared, whereas
the source kick drum A from beat 3 was not translated at all. Both,
the smearing and the missing event are examples of the system
failing to correctly translate to domain k that is a cause of multiple
failed transformations in Experiment 1. In example B, all drum
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Figure 2: Example translations generated from two sources (A and
B), with spectral difference functions as solid lines over each wave-
form. Output colours correspond to target drum domains (e.g.,
blue represents kick drum translations).

domains were effectively translated resulting in a high rhythmic
similarity score of 0.96. Is is likely that the timbral characteris-
tics of source B contributed to a more suitable translation output
that shared, to a certain extent, some of the latent representations
of different drum domains. For instance, the output kick drum
translation from source B in beat 1 exhibits a noisy attack but then
effectively transforms the expected low frequencies, while still no-
tably changing the characteristics of the source thus creating a new
kick sound.

4.2. Translation Quality

Figure 3 presents the results using evaluation methodology de-
scribed in Section 3.3. For each domain, the mean Pearson cor-
relation is taken for ten different source and output log-magnitude
CQT spectrograms. The correlation values across all frequencies
are smoothed using a median filter. High Pearson correlations in-
dicate that translation quality for a particular domain is well pre-
served, whereas lower correlations indicate larger quality degrada-
tion from the source.

For all domains, the results indicate that frequency informa-
tion below 100 Hz is well preserved. Across all domains there is
a significant drop in correlation for low-mid frequencies between
220–1760 Hz. In comparison to other instruments, domain k (blue
curve) maintains higher correlation for these low-mid frequencies
however, there is a significant roll-off for high frequencies above
1760 Hz due to noise introduced by the model. Domain ksh (pink
curve) represents when a kick, snare and hi-hat are all played si-
multaneously and has the lowest Pearson correlation across all fre-
quency bands demonstrating that this domain was most difficult to
reconstruct accurately due to complexity introduced by the three
instruments.

Drum translations used in Experiment 1 as well as other ex-
amples can be found on the supporting website for this project.2

As can be heard from many of the drum translations, the proposed
system is capable of generating samples indicative of the intended

2https://maciek-tomczak.github.io/maciek.github.io/
Drum-Translation-for-Timbral-and-Rhythmic-Transformation

Figure 3: Smoothed mean Pearson correlations between the trans-
lated and source audio for all drum domains.

target domains; however, a considerable amount of noise is pro-
duced in the transformations. It is assumed that the audio qual-
ity of the system is currently restricted by the limited amount of
data on which it has been trained; by using more varied training
data that has not been synthesised artificially (e.g., audio samples
corresponding to real life audio loops or drum recordings), it is
expected that the system would be capable of producing more ac-
curate transformations. In addition to this, the limited size of the
model restricts the number of possible transformations.

4.3. Automatic and Semi-automatic Drum Translation

An automatic and semi-automatic extension to drum translation
has been proposed, in which a user can choose to automatically
label different drums in the audio input with ADTLib [29] or man-
ually annotate the input prior to translating it into various target
drum domains. In this transformation, the length of segments at-
tributed to the labelled domain corresponds to detected inter-onset-
intervals. A novice or expert user can use such transformation in
a music composition scenario. Once all onsets are processed the
system translates annotated source audio segments into specified
drum domains.

5. CONCLUSIONS

A drum translation technique that explores the rhythmic and tim-
bral capabilities of generative audio synthesis with WaveNet au-
toencoders has been presented. In this transformation, an input file
is transformed so that it sounds as if it were performed by differ-
ent drum instruments. Two experiments were conducted to assess
the rhythmic accuracy and overall audio quality of the transforma-
tions with respect to different drum instruments. The experimental
results demonstrate that the system produces rhythmically accu-
rate transformations, while there exist significant aspects of the
proposed transformation that contribute to the creation of audio
artifacts and added noisiness that could be mitigated with a net-
work architecture of larger capacity. The memory requirements of
the current model limit the number of available residual channels
and the number of layers which can be overcome by architectures
such as Parallel WaveNet [30]. Another possible avenue of future
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work would explore a broader range of signals outside the tested
datasets as well as other applications of diverse adversarial losses
to audio to improve translation audio quality.
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ABSTRACT

Rigid-body impact sound synthesis methods often omit the ground
sound. In this paper we analyze an idealized ground-sound model
based on an elastodynamic halfspace, and use it to identify sce-
narios wherein ground sound is perceptually relevant versus when
it is masked by the impacting object’s modal sound or transient
acceleration noise. Our analytical model gives a smooth, closed-
form expression for ground surface acceleration, which we can
then use in the Rayleigh integral or in an “acoustic shader” for a
finite-difference time-domain wave simulation. We find that when
modal sound is inaudible, ground sound is audible in scenarios
where a dense object impacts a soft ground and scenarios where
the impact point has a low elevation angle to the listening point.

1. INTRODUCTION

Many sound synthesis examples in computer animation and vir-
tual environments contain moving objects that impact the ground
or other large flat surfaces. The ground affects the sound in two
ways: 1) as a passive scatterer: sound waves in the room are re-
flected off the ground, and 2) as an emitter: the surface of the
ground vibrates due to impact events, and thus emits sound. Typi-
cal approaches incorporate the passive scattering and reflection de-
pending on context and methodology; however, very few physics-
based approaches consider the acoustic emissions of the ground
itself. In this paper we model the ground as an idealized elas-
todynamic halfspace, and analyze its sound emission during an
object-ground impact. Its relative importance is assessed in vari-
ous object-ground impact scenarios, and is found to vary greatly.

Ground emission and scattering have been explored in many
works over the decades. One line of works [1, 2] fit data-driven
models to synthesize footstep sounds. Works on fracture and micro-
collisions [3, 4] treat the ground and table as a large modal vi-
bration source; of these, one paper [3] models the modes from a
9 m × 9 m × 0.9 m concrete slab; these dimensions directly af-
fect modal resonant frequencies. The modal method also requires
heavy precomputation resources and storage because large objects
have many vibration modes within audible frequencies. Further-
more, the above methods [3, 4] compute propagation with only
one object at a time and omit repeated object-ground reflections.

After an object-ground collision, we may hear three types of
sounds: (1) the object emits ringing sound from on its resonant
modes, (2) the object emits a transient acceleration noise upon
impact, and (3) the ground emits a transient sound upon impact.
While many previous papers [3, 4, 5] model the first two in their
Copyright: c© 2019 Ante Qu and Doug L. James. This is an open-access article

distributed under the terms of the Creative Commons Attribution 3.0 Unported Li-

cense, which permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

sound synthesis, they omit the third type of sound. Most recently,
[5] models the collisions of many floor materials; however, it in-
corporates the floor properties only in the excitation force profile
and models sound just from the object’s surface.

One argument for omitting the ground sound is that object
sounds are often louder, especially for larger objects, and can mask
quieter ground contributions. Nevertheless, depending on the floor-
ing materials, contact parameters, and listening angle, the ground
can sometimes be a more efficient sound source than a small ob-
ject. The interference from the object’s reflection can also change
its waveform and make it distinct from the ground sound. Our
ground vibration model allows us to quantify the intensity of the
ground sound, albeit for a simplified elastic halfspace ground model.

Another work [6] develops a discretized modal model to col-
lide vibrating strings with solid obstacles. We aim not to model
ringing sound but rather to introduce a closed-form formula for
the transient surface vibrations due to a single impulse.

Finite-difference, time-domain (FDTD), wave-based sound syn-
thesis methods [7, 8, 9] naturally handle scattering with static or
moving objects. Recently, [9] enabled scattering with moving ob-
jects by rasterizing their boundaries during each timestep. This
method abstracts away object sources using an “acoustic shader”
interface; the simulation queries the object shader for the surface
vibrations and uses them to drive sound waves that propagate to
the listener. However, no method is proposed to evaluate ground
vibrations in an acoustic shader. We implement a ground shader
in this work. Our work focuses on the topic of sound emission
rather than reflections; it is orthogonal to room acoustics models
that simulate room impulse responses and modes.

This surface vibration problem has been studied in seismol-
ogy literature as Lamb’s problem [10], and its ideal solution is
well-known with a closed form. However, the ideal solution to
an instantaneous load contains singularities at wavefronts that are
difficult to evaluate numerically. To smooth the singularities, we
derive a closed-form temporal regularization of the solution to
Lamb’s problem that removes the singularities at the three wave-
fronts, similar to how [11] regularizes the singularity in an infinite
elastic medium for animation effects. This closed-form expression
makes it easy to model ground sound without simulation.

We consider the following problem: Given a simple solid ob-
ject, such as a ball, colliding with the ground (modeled as an elastic
half-space) how do we estimate the sound emitted by the surface
vibrations of the ground? Our contributions are

1. an estimate of the material properties and object sizes where
the ground sound is not masked by the object sound,

2. an interactive method to synthesize ground sound (no pre-
computation is required), and

3. an “acoustic shader” for finite-difference time-domain sim-
ulations that directly evaluates the regularized solution.
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2. GROUND SOUND MODEL: BACKGROUND

We model the transient ground sound by first modeling the ground
surface vibration, and then using this motion to drive sound propa-
gation into the air. For the former, we derive a closed-form model
of the ground vibration to minimize computation while preserving
accuracy. Our propagation model is one-way coupled because air
pressure oscillations are not powerful enough to affect the ground.

In particular, we use Lamb’s problem [10] and its solutions to
model the floor surface vibrations from an impact, and we describe
them in Sections 2.2 and 2.3. We regularize the model in Section 3
to eliminate undesired singularities, and then we model the sound
propagation in Section 4.

2.1. Lamb’s problem

We present Lamb’s problem here, which involves applying an in-
stantaneous normal point load to an elastic halfspace. We present
it with a load rather than an impulse in order to simplify the math-
ematical representation of the solution. In later sections we will
derive and use a closed-form representation of the surface acceler-
ation in response to a specific impulse profile.

Consider a linear isotropic elastic half-space with Poisson’s
ratio ν and stiffness (shear modulus) µ, as shown in Figure 1. We
consider the elastic half-space to be on the bottom (z negative), and
free space to be above it, with the boundary being the horizontal
z = 0 plane. Starting at time t = 0, a normal point force of
magnitude 1 is applied and held (“push”) at the origin (0, 0, 0).
The input force profile on the z = 0 plane is therefore

f(x, y, t) = δ(x, y) θ(t) ẑ, (1)

where δ, θ are the Dirac delta and Heaviside theta functions.

f(t)

+z

un(r,t)

r
ground

air

Figure 1: Notation for Lamb’s problem: f(t) is the ground ex-
citation force, and un(r, t) is the vertical displacement response.
Note that while our diagram shows f(t) in its usual downward
direction (−z), we define f(t) in (1) to point in the +z direction.

The linear partial differential equations and boundary condi-
tions can be found, for example, in equations 4 and 1 (respectively)
of [12]; we present their closed-form solution in the next section.

2.2. Solution to Lamb’s problem

Pekeris [12] first solved Lamb’s problem in 1955 for ν = 1/4.
Others [13] later solved it for generic ν. We present the solution
for generic ν from [14]. Some relevant notation is the following:

cp = speed of compression (P)-waves in the medium,
cs = speed of shear (S)-waves in the medium,

a =
cs
cp

=

√
1− 2ν

2− 2ν
, r =

√
x2 + y2.

Define κ2
1, κ

2
2, κ

2
3 as the complex roots to the Rayleigh equation:

16(1− a2)κ6 − 8(3− 2a2)κ4 + 8κ2 − 1 = 0. (2)

This equation admits three real solutions when ν < 0.2631; oth-
erwise, it has one real root and two complex conjugates. Let κ2

1 be
the largest real root, and define γ = κ1. Treat these roots as math-
ematical tools to help express the result with no direct physical
meaning (except that γ is the ratio of the S- and R- wave speeds).

Define the following set of coefficients:

Aj =
(κ2
j − 1

2
)2
√
a2 − κ2

j

(κ2
j − κ2

i )(κ
2
j − κ2

k)
, i 6= j 6= k

While the response contains both horizontal and vertical displace-
ment, only the vertical motion produces sound. The final vertical
displacement response un(r, t) is the following:

un(r, t) =
1− ν
2πµr



0 τ ≤ a,
1
2

(
1−

∑3
j=1

Aj√
τ2−κ2

j

)
, a < τ < 1,

1− A1√
τ2−γ2

, 1 ≤ τ < γ,

1 τ ≥ γ,
(3)

τ =
cst

r
. (4)

This solution applies for all ν, from 0 to 0.5 (see [14]). The piece-
wise boundaries correspond to the three wavefronts: the pressure
P-wave arrives first, when τ = a, travelling at speed cp. The shear
S-wave arrives when τ = 1, travelling at speed cs. Finally, the
Rayleigh R-wave arrives when τ = γ, travelling the slowest at
speed cr = cs/γ. See the blue line in Figure 2 for an illustration.

0.6 0.8 1.2 1.4
t

-2

-1

0

1

u(t)
Surface Displacement due to Load, 1 m Away

Original Pekeris

ϵ = 0.02 m

ϵ = 0.05 m

ϵ = 0.10 m

ϵ = 0.25 m

1.0

P
R

S

Figure 2: Elastic wavefronts in time: (Blue:) Scaled displace-
ment response in the Pekeris solution, at 1 m away. The three
wavefronts (P-, S-, R-) are labeled. (Other colors:) Our temporal
regularization, described in Section 3. The horizontal axis is time
in seconds; the vertical axis is scaled normal displacement.

Note: It is often convenient to flip the signs of a2, γ2, and τ2

in the square roots of both the numerator and denominator in the
terms containing A1, so that the inside of the square root is real.

2.3. Singularities

In order to radiate sound waves we need to evaluate the acceler-
ation in the impulse response of Lamb’s problem. Unfortunately,
the push-like load’s displacement response, un(r, t), already con-
tains four singularity locations, which means that at each singular-
ity it will be difficult to numerically approximate surface motion.
• One singularity occurs at all positive t at the origin, where
r = 0. This singularity occurs due to the spatial δ load
location, and it has asymptotic behavior 1/r.
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• One singularity occurs at each of the wavefronts—one each
at the P- (τ = a), the S- (τ = 1), and the R- (τ = γ)
wave fronts. The first two wavefronts have continuous but
not differentiable singularities. The third wavefront is dis-
continuous with asymptotic behavior (γ − τ)−

1/2.

Our goal is to design a regularizing function in time or in
space, as a smooth approximation of a delta impulse, to act as the
initial force. We then convolve our function with the un solution
to get a closed-form response that removes the singularities.

We consider the physical parameters of our problem in choos-
ing temporal versus spatial regularization. We would like the reg-
ularization parameter to directly match the contact timescale and
area. Typical contact radii are much smaller than the contact timescale
multiplied by any of the three wave speeds; see Table 1 for one
example. Therefore the spatial contact area smooths the resulting
wave by very little compared to the temporal smoothing. Temporal
regularization thus gives us a more accurate response than spatial.

3. TEMPORAL REGULARIZATION OF THE GROUND
VIBRATION MODEL

Consider a function fε(t) that approximates δ(t) on a smoothing
timescale ε. Since the elastic wave equation is linear and un is the
response to a Heaviside θ load, we can get the vertical displace-
ment response to the force, fε ∗ θ (which is an approximate θ), by
computing the convolution uε = fε ∗ un, or

uε(r, t) =

∫ ∞
−∞

fε(t− t′)un(r, t′)dt′. (5)

The above gives us the displacement response to a “push load” (c.f.
[11]). We want an impulse response corresponding to a fε(t) force
profile. Since δ is the derivative of θ and fε can be written fε ∗ δ,
we can subsequently compute the displacement response wε to an
fε impulse force by taking a time derivative of uε, and likewise the
acceleration aε by taking more derivatives:

wε(r, t) =
∂uε
∂t

, (6)

aε(r, t) =
∂3uε
∂t3

. (7)

We use the regularization function fε defined by

gε(t) =
csε

π(c2st2 + ε2)
; (8)

fε(t) = 2gε(t)− g2ε(t). (9)

We chose this function for several reasons. Firstly, it approxi-
mates a δ(t) function as ε → 0: for all ε, the total impulse ap-
plied is 1, and as ε gets smaller, a larger proportion of the impulse
is applied over a smaller amount of time (

∫
|t|<
√
ε
fε(t) → 1 as

ε → 0); see Figure 3 for an illustration. Secondly, it is a smooth
approximation of a Hertzian half-sine contact acceleration profile,
with timescale 4ε/cs (see Section 4.1). Thirdly, while gε is only
second-order (gε(t) = O(t−2) as t → ∞), we can form linear
combinations of gε with varying ε to achieve higher-order falloff,
just like the multiscale extrapolation in [15]; in this case, our fε
achieves fourth-order falloff (O(t−4)).

The final reason is that we can analytically derive the closed-
form expression for uε(r, t) that is provided in (28) of the ap-
pendix. Our regularization eliminates the three singularities at the

-0.2 -0.1 0.0 0.1 0.2
time (s)

5

10
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20

25

f(t)

Regularized Impulse Force

ϵ = 0.02

ϵ = 0.05

ϵ = 0.10

ϵ = 0.25

Figure 3: Smoothed delta function used as the impulse force
profile fε(t). Here ε is in meters, the horizontal axis is time in
seconds, and the vertical axis is scaled force.

wavefronts and leaves an integrable, fixed 1/r singularity at the
origin. In the supplemental material1 we show that there are no
branch cut crossings (a common type of numerical artifact in com-
plex functions) when ν ≤ 0.2631. We still observe branch cut
issues when ν > 0.2631, which is when κ2

2, κ
2
3 become complex.

We recommend using a piecewise polynomial regularization func-
tion (see Conclusion Section 6.1) to deal with the branch cuts.

4. SOUND SYNTHESIS

4.1. Impulse profile approximation

Similar to [5, 16], we model the acceleration a(t) using the Hertz
contact model. To avoid a discontinuous jerk we approximate the
half-sine force with our fourth-order temporal kernel, with ε/cs set
to one-fourth the contact timescale tc:

f(t) ≈ Jfε(t), (10)

4ε = cstc = 2.87cs

(
m2

a0E∗2vn

)1/5

, (11)

where a0,m,E∗, J, vn are the object’s local radius of curvature,
mass, effective stiffness, impulse, and normal impact velocity.

4.2. Direct sound synthesis via Rayleigh integration

Assuming no scattering or absorption from nearby objects, the
Rayleigh integral [17] says the sound pressure at a point (r, z)
due to the plane vibration source is equal to

p(r, z, t) = ρ0

∫
R2

aε(r
′, t−R′/c0)

2πR′
dr′, (12)

whereR′ =
√
|r− r′|2 + z2, ρ0 is air density, and c0 is the speed

of sound in air.
We evaluate this integral numerically in Wolfram Mathemat-

ica. We found that the singularity at the origin (r = 0), mentioned
in Section 2.3, does not cause issues: to check, we experimented
with modified versions of uε where in each version we subtract out
a ramp R(r) of radius H times the singularity and add back in a
ramp CR(r) scaled to have the same average value (from analyti-
cally integrating about the origin), and we found that numerically
the results were identical to those from the unmodified uε. We
tested radii of H = 0.01 m, 0.02 m, and 0.10 m.
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4.3. Floor sound shader for FDTD acoustic wavesolvers

We implemented our floor acceleration model in a general-purpose
wavesolver [9] that incorporates the scattering of nearby objects.
It solves the acoustic wave equation with Neumann boundary con-
ditions

∂2p(x, t)

c20∂t
2

= ∇2p(x, t) +
α

c0
∇2 ∂

∂t
p(x, t), x ∈ Ω; (13)

∂np(x, t) = −ρ0an(x, t), x ∈ ∂Ω, (14)

by discretizing a region of space onto a rectangular grid and timestep-
ping it with finite differences (see [9] for details); here Ω is the air
region, ∂Ω is the boundary with objects, the subscript n indicates
the normal direction, and we set the air viscosity damping coeffi-
cient α = 2E-6 m. The wavesolver samples the boundary normal
acceleration an(x, t) through acoustic shaders.

We implemented the floor acceleration model as an “acoustic
shader” which evaluates the regularized acceleration af (r, t) due
to each contact impulse, where r is the distance, projected onto the
ground plane, between the shader’s sample point x and the floor
impact location. Since there is theoretically an object in contact
at the contact point and therefore no adjacent fluid cells, we do
not evaluate an acceleration there; therefore the singularity at the
contact point (r = 0) does not cause a problem.

For consistency, we modified the acceleration shader in [9]
to use the same smooth force profile and impulse evaluation con-
straints as our ground shader. This also corrects for any amplitude
or spectral mismatches between acceleration noise and ground sound.

5. RESULTS

Sound samples for our results are available online.1

5.1. Model Validation

The push-like volume displacement D is given by

D(t) =

∫
R2

uε(r, t) dr. (15)

We evaluate this on a scenario with a small stainless steel ball
dropped onto a medium density fiberboard ground and make sure
that the volume displacement is consistent with the unregularized
Pekeris solution. Relevant parameters are given in Table 1.

We examined the response to a push load with our temporal
regularization. Figure 2 plots the vertical displacement at a point
1 m away, and Figure 4 plots the total volume displacement. The
curves converge to the Pekeris solution as ε decreases, and asymp-
totically, each D(t) converges to the correct value as t→∞.

We also examined the volume displacement, the volume flux,
and the momentum flux in response to an impulse. These are each
defined as integrating wε, dwε/dt, and aε over the R2 plane. As
expected, their curves look like the derivatives of those in Figure 4.

5.2. Sound Synthesis Results

5.2.1. FDTD Synthesis Examples

We added our ground surface acceleration shader to the time do-
main simulation system from [9]. We also use the modal shader

1http://graphics.stanford.edu/papers/ground/

Parameter Value
Ball Material Stainless Steel (see Table 2)

Ground Material Wood (see Table 2)
Ball Diameter (2a0) 2 cm

Drop Distance 15 cm
Restitution Coefficient (κ) 0.5

Impact Location (0, 0, 0) m
Listening Location (R) (0, 0, 0.2) m

cs 2422 m/s
Contact Time (tc) 1.633E-4 s

Contact Radius (rc) 6.316E-4 m
ε = cstc/4 9.888E-2 m

Table 1: “Ball Drop” Simulation Parameters: Scenario infor-
mation for the validation, the steel ball, wood ground example in
Figure 8, and the comparisons in Table 3. The lowest frequency
nontorsional vibration mode for the steel ball is at 131 kHz, so we
omit modal sound. Note that ε is much larger than the contact ra-
dius rc, implying that temporal regularization has a much larger
smoothing effect than spatial. These parameters are used in the
rest of the results unless stated otherwise.

-2 -1 1 2
time (s)

1

3

4

5

D(t)

Volume Displacement

Pekeris

ϵ = 0.02

ϵ = 0.05

ϵ = 0.10

ϵ = 0.25

2

Figure 4: Volume displacement, D(t): Here ε is in meters, and
the vertical axis is volume displacement scaled by the same fac-
tor as in Figure 2. The modified temporal regularization with a
smoothed origin proposed in Section 4.2 has a volume displace-
ment plot that looks identical.

and the acceleration noise shader, which synthesize impact sound
for objects. We show a few notable examples in Figures 5, 6, and
7. In each example the modal sound is almost inaudible.

Figure 5 shows 13 steel balls with a 2 cm diameter hitting
a concrete ground from various heights between 3 cm and 23 cm
above ground, and Figure 6 shows these balls hitting a soil ground.
Each ball has no audible ringing modes. In both examples the
sound from the acceleration noise and the ground have similar fre-
quency spectra. The concrete ground smooths the total sound of
the steel ball collision; however, the short duration of the transient
sound makes it difficult to discern the sound spectrum. On the
other hand, the soil greatly amplifies the total sound from the steel
ball collision. Since the ball-soil collision has a longer timescale
than the ball-concrete collision, we can hear that the soil sound has
a slightly different shape than the ball sound, making the ground
relevant.

Figure 7 shows a spherical granite rock with a 30 cm diameter
dropped from a height of 25 cm above ground (centroid at 40 cm).
The only audible ringing modes are at much higher frequencies
than the contact timescale, hence they were soft, with a peak am-
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Figure 5: An example with 13 balls dropped from various heights
onto a concrete ground, simulated with our wavesolver. See the
supplemental material for the sound. Each sound (ball, ground,
combined) is normalized to 10 Pa. The listening point is at
(0.20, 0.12, 0.16) m, with the z coordinate specifying the height.

plitude of 0.106 Pa. In comparison, the acceleration noise was at a
peak amplitude of 1.76 Pa, and the ground contributed a noticeable
rumble peaking at 17.2 Pa.

5.2.2. Ball ground impact comparisons

Similar to prior work [16], we can use a closed-form expression
to model the sound from a small ball. We treat it as a compact
translating sphere, which forms an acoustic dipole source. The far-
field acoustic pressure depends on the jerk, with a 1/r falloff. The
nearfield pressure depends on the acceleration with a 1/r2 falloff.
The final expression, according to Eq (6.20) in [18], is

p(r, t) =
ρ0a

3
0 cos(θ)

2

(
−
a(t− r−a0

c0
)

r2
+

da
dt

(t− r−a0
c0

)

c0r

)
(16)

where a(t) is the acceleration of the ball at time t and θ is the angle
between the acceleration and r. We assume perfect reflection and
model it by adding the reflection image source of this ball, reflect-
ing the dipole direction and position over the y axis. The total is a
longitudinal quadrupole source for hard reflective grounds, and a
dipole source for absorptive grounds.

We model the acceleration with the same fourth-order tempo-
ral force as that used for the ground in section 4.1.

a(t) = −f(t)/m. (17)

We simply use (1 + κ)mvn as the impulse, where κ is the coeffi-
cient of restitution of the collision.

Figure 8 illustrates an ideal 2 cm steel ball, wood ground im-
pact, with their respective amplitudes. We verified the amplitudes
from our wavesolver against these amplitudes. For harder ground
materials such as concrete, or lighter object materials such as ce-
ramic, wood, or dice, the ground sound would be much softer com-
pared to the ball sound. The next section generalizes this observa-
tion.
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Figure 6: An example with 13 balls dropped from various heights
onto soil ground, simulated with our wavesolver. See the sup-
plemental material for the sound. Each sound (ball, ground,
combined) is normalized to 4.5 Pa. The listening point is at
(0.20, 0.12, 0.16) m.

Material Property Reference
Material E (Pa) ν ρ (kg m−3)

Stainless Steel 1.965E+11 0.27 7955
Ceramics 7.2E+10 0.19 2700
Granite 5.07E+10 0.28 2670

Concrete 1.85E+10 0.20 2250
Wood 1.1E+10 0.25 750

Plastic (ABS) 1.4E+9 0.35 1070
Soil 4.0E+7 0.25 1350

Paraffin Wax 5.57E+7 0.37 786

Table 2: Material parameters used for common materials: The
Young’s modulus is E, Poisson’s ratio is ν, and density is ρ. We
used medium density fiberboard for wood.

5.3. Impact Sound Parameter Dependence

Let us describe the impact scenario with the parameters (tc, a0, vn,
κ, Ef , νf , cs, ρb, R, θ), where the subscript f indicates ground,
b indicates ball, and (R, θ) indicate the listening point distance
and elevation angle. We hereby fix all parameters to their Table 1
values and vary just one or two of them at a time.

ρb, Ef : By algebra, the ground sound amplitude is propor-
tional to ρb/Ef , while the ball sound stays constant. Table 2 lists
these properties for common materials, and Table 3 lists the inten-
sity ratio for each material pair.

νf : We found that changing the ground Poisson’s ratio does
not significantly affect either sound amplitude.

tc: Figure 9 discusses the dependence on contact timescale for
one example. In the far field (R � c0tc) both the ground and the
ball sound intensity have similar power law dependence.

θ: Figure 11 shows the dependence on listening point angle
from the plane. As the listening point gets closer to the plane, the
ball sound gets softer at a faster rate than the ground sound.

cs: The ball sound does not depend on cs, the speed of shear
waves in the ground, and Figure 10 discusses the ground sound de-
pendence on cs. The ground amplitude increases linearly in pro-
portion to cs until a threshold ck ≈ A

√
c0R/tc determined by the
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Relative Intensities (dB) of Ground Sound Compared to Ball Sound
XXXXXXXXXball

ground Steel Ceramics Granite Concrete Wood Plastic Soil Wax

Steel -30.25 -21.30 -18.94 -11.83 -6.12 4.15 19.06 19.58
Ceramics -39.63 -30.69 -28.33 -21.22 -15.51 -5.23 9.68 10.19
Granite -39.73 -30.78 -28.43 -21.32 -15.60 -5.33 9.58 10.10

Concrete -41.21 -32.27 -29.91 -22.80 -17.09 -6.81 8.09 8.61
Wood -50.76 -41.81 -39.46 -32.34 -26.63 -16.36 -1.45 -0.93
Plastic -47.67 -38.73 -36.37 -29.26 -23.55 -13.27 1.64 2.15

Soil -45.65 -36.71 -34.35 -27.24 -21.53 -11.25 3.65 4.17
Wax -50.35 -41.41 -39.05 -31.94 -26.22 -15.95 -1.04 -0.53

Table 3: Theoretical relative intensity (dB) of ground to ball sound, for the scenario in Table 1. Ball materials are listed on the left,
ground on the top. Positive values indicate the ground was louder than the ball. Impact timescale was kept constant at 1.63E-4 s and
Poisson’s ratio at 0.25, as neither significantly affect relative amplitude. Scenarios with louder ground sound (≥ 0 dB) are highlighted
in teal , and scenarios where the ground sound can be audible (above the most sensitive JND level of -13 dB [19]) are highlighted in
light orange . Note that our overhead listening point is near the maximum relative loudness for the ball, whereas low listening angles tend

to receive more ground sound (Figure 11 expands on this relationship).
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Figure 7: An example with a 30 cm spherical granite rock dropped
from 25 cm above ground onto soil, simulated with our wave-
solver. See the supplemental material for the sound. Each sound
(rock, ground, combined) is normalized to 20 Pa. For the almost-
silent modal component, we used the modal shader used in [9] with
Rayleigh damping parameters α = 6, β = 1E-7, in SI units. The
listening point is at (0.45, 0.27, 0.48) m.

contact timescale tc and the listening point distance R.
a0, vn, κ, R: In the far field, they affect both sounds equally.

5.4. Discussion

We found that in most everyday scenarios with rigid objects and
listening points with high elevation angle, the ground sound would
be masked by the object sound: the amplitude of the ball sound is
louder, the frequency content is similar, and the contact timescale
is often too short to hear the distinct waveforms. In these scenarios,
namely the unhighlighted cells in Table 3, we can omit the ground
sound.

If the object is dense and the ground has a low shear modulus,
then the ground sound can be as loud or louder than the object’s
acceleration noise. Furthermore, the contact timescale can be slow
enough for us to hear the difference between the object and ground

0.0004 0.0006 0.0008 0.0010
time (s)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

pressure (Pa)

Ideal Ball Floor Impact Sound

Floor Sound

Ball Sound

Combined

Figure 8: Ideal unobstructed sound for a 2 cm steel ball dropped
from 15 cm impacting a wood ground with restitution coeffi-
cient 0.5. The listening point is 20 cm directly above the impact
point. The quadrupole shape of the ball sound is different from
the ground sound, but at high frequencies the frequency content
sounds similar and it is hard to tell perceptually. The ground sound
adds a significant amount of amplitude to the combined sound, and
the combined sound seems to be higher pitched than either sound.

sounds. In a few examples we examined, such as steel or granite
objects hitting wood, concrete, and soil, the modal ringing sound
for the object is too soft, but for larger, less round, and softer ob-
jects, the modal ringing sound can dominate the total power output.

6. CONCLUSION AND FUTURE WORK

We regularized the solution to Lamb’s problem to give us a closed-
form expression for ground surface acceleration. For impacts from
small balls, we used a Rayleigh integral to compute ground sound
amplitudes and compared them with object acceleration noise. Fur-
thermore, we implemented an acoustic shader in an FDTD wave-
solver to synthesize sound from generic object impacts with the
ground, combining modal sound, acceleration noise, and ground
sound. We found that the ground sound is more important when
the listening point is at a low angle, when the ground has a low
shear modulus, or when the object has a high density. Furthermore,
ground noise (similar to acceleration noise) is important only for
objects where modal ringing noise, which is louder in larger ob-
jects, was not audible. In the absence of modal sound, the relative
importance of ground sound was not affected by object size in “ball
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Figure 9: Sound dependence on contact timescales measured
overhead at z = 20 cm. For low timescales, the ball and ground
both have a τ−3 dependence; however, at high timescales, the
near-field term of the ball sound dominates, and its power falls
off as τ−3

drop” tests, notwithstanding changes in contact duration.

6.1. Limitations and future work

Our work has several limitations that motivate future work:

1. Stable numerical evaluation for general ν: Our model crosses
a discontinuous branch cut when evaluated for high ν ≥
0.2631. We were unable to express the regularized response
uε in a form that eliminates this branch cut. We explored
an alternate regularization using a piecewise polynomial
fε = (1 − (t/ε)2)n for |t| < ε, and this gives an expres-
sion that does not have the branch jump. However, we used
n = 4 to get a continuous acceleration, and the degree-8
polynomial produces a result that suffers from catastrophic
cancellation when ε is small. Future work should ensure
stable numerical evaluation for all ν values.

2. Finite-depth ground and realistic flooring: Our ground sound
model applies well for ground that is homogeneous for a
very deep layer, greater than approximately 50 m deep. For
shallower ground layers, the reflections between the layer
boundaries form resonance modes that our model does not
capture. Furthermore, when an object is dropped onto a
hard floor in a building, we hear the vibrational response
of the building. Future work could model the responses of
more realistic building and flooring structures.

3. Tangential frictional loads: We only modeled the vertical
response to a vertical load. Future work can regularize the
closed-form solutions for a vertical response to a tangential
load, such as incurred by contact friction.

4. No closed-form sound: We provided an expression for sur-
face acceleration but not the sound. Future work could de-
rive a model for the final sound based on listening position.

Figure 10: Ground sound dependence on cs measured overhead
at z = 20 cm. At low cs, the ground sound intensity is propor-
tional to c2s, and at high cs, it is constant. The knee cutoff, ck,
is about 2576 m/s. By testing a few more parameters, we exper-
imentally determined that ck ≈ A

√
c0R/tc, where c0 is the air

speed of sound, R is the listening point distance, tc is the contact
timescale, and A is a dimensionless constant between 3 and 4.
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A. DERIVATION OF REGULARIZED RESPONSE

In this derivation, we let t′ = cst, and we note that at the end, we
need to scale by the right power of cs.

gε(t
′) =

ε/π

t′2 + ε2
(18)

We want to find the convolution k′ε = gε(t
′) ∗ un(r, t′). This rep-

resents the displacement response to an arctan load, which approx-
imates the Heaviside theta load. Define U ,W,V, as the following

Uε(t′, σ) =
1

r

∫ ∞
σ

gε(t
′ − s)ds; (19)

Vε(t′, s, α) =

∫
gε(t

′ − s)√
s2 − α2

ds; (20)

Wε(t
′, s, α) =

∫
gε(t

′ − s)√
α2 − s2

ds. (21)

Integrating,

Uε(t′, σ) =
1

2r
+

1

πr
arctan

(
t′ − σ
ε

)
; (22)

Zε(t
′, α) =

√
α2 + (ε− it′)2; (23)

Vε(t′, s, α) = Re
(

1

πZε(t′, α)

(
− log(ε− i(t′ − s))

+ log(α2 − (t′ + iε)s− iZε(t′, α)
√
s2 − α2)

))
;

(24)

Wε(t
′, s, α) = Im

(
−1

πZε(t′, α)

(
− log(ε− i(t′ − s))

+ log(α2 − (t′ + iε)s+ Zε(t
′, α)

√
α2 − s2)

))
.

(25)

Check the Mathematica notebook on the website1 for verification.
Plugging in the integration limits, the convolution k′ is

k′ε(r, t
′) =

1− ν
4πµ

(
Uε(t′, ar) + Uε(t′, r)

+ 2Wε(t
′, γr, γr)−Wε(t

′, r, γr)−Wε(t
′, ar, γr)

+
3∑
j=2

(Vε(t′, r, κjr)− Vε(t′, ar, κjr))

)
. (26)

Our final expression, in terms of the original t, is

kε(r, t) = k′ε(r, cst), (27)

that is, there is no missing cs scale factor because the extra cs from
the convolution is cancelled by the missing cs from normalizing
gε. For fourth-order, we simply take

uε(r, t) = 2kε(r, t)− k2ε(r, t). (28)

In the supplemental material1 we show that when ν ∈ [0, 0.2631),
this solution does not cross any branch cuts as we vary (r, t).
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ABSTRACT

This article explains how to apply time–frequency scattering, a con-
volutional operator extracting modulations in the time–frequency
domain at different rates and scales, to the re-synthesis and manip-
ulation of audio textures. After implementing phase retrieval in
the scattering network by gradient backpropagation, we introduce
scale-rate DAFx, a class of audio transformations expressed in the
domain of time–frequency scattering coefficients. One example of
scale-rate DAFx is chirp rate inversion, which causes each sonic
event to be locally reversed in time while leaving the arrow of time
globally unchanged. Over the past two years, our work has led to
the creation of four electroacoustic pieces: FAVN; Modulator (Scat-
tering Transform); Experimental Palimpsest; Inspection (Maida
Vale Project) and Inspection II; as well as XAllegroX (Hecker Scat-
tering.m Sequence), a remix of Lorenzo Senni’s XAllegroX, released
by Warp Records on a vinyl entitled The Shape of RemiXXXes to
Come.

1. INTRODUCTION

Several composers have pointed out the lack of a satisfying trade-
off between interpretability and flexibility in the parametrization
of sound transformations [1, 2, 3]. For example, the constant-Q
wavelet transform (CQT) of an audio signal provides an intuitive
display of its short-term energy distribution in time and frequency
[4], but does not give explicit control over its intermittent perceptual
features, such as roughness or vibrato. On the other hand, a deep
convolutional generative model such as WaveNet [5] encompasses
a rich diversity of timbre; but, because the mutual dependencies
between the dimensions of its latent space are unspecified, music
composition with autoencoders in the waveform domain is ham-
pered by a long preliminary phase of trials and errors in the search
for the intended effect.

Scattering transforms are a class of multivariable signal repre-
sentations at the crossroads between wavelets and deep convolu-
tional networks [6]. In this paper, we demonstrate that one such
instance of scattering transform, namely time–frequency scattering
[7], can be a relevant tool for composers of electroacoustic music,
as it strikes a satisfying compromise between interpretability and

This work is supported by the ERC InvariantClass grant 320959. The
source code to reproduce experiments and figures is made freely available
at: https://github.com/lostanlen/scattering.m
Copyright: c© 2019 Vincent Lostanlen et al. This is an open-access article dis-

tributed under the terms of the Creative Commons Attribution 3.0 Unported License,

which permits unrestricted use, distribution, and reproduction in any medium, pro-

vided the original author and source are credited.

log2 λ

t

Figure 1: Interference pattern between wavelets ψα(t) and
ψβ(log2 λ) in the time–frequency domain (t, log2 λ) for differ-
ent combinations of amplitude modulation rate α and frequency
modulation scale β. Darker shades of red (resp. blue) indicate
higher positive (resp. lower negative) values of the real part. See
Section 2 for details.

flexibility. We describe the scattering-based DAFx underlying the
synthesis of five electroacoustic pieces by Florian Hecker: FAVN
(2016); Modulator (Scattering Transform) (2016-2017); Experi-
mental Palimpsest (2016); Inspection (Maida Vale Project)(2016)
and Inspection II (2017); as well as XAllegroX (Hecker Scatter-
ing.m Sequence), a remix of Lorenzo Senni’s XAllegroX, released
by Warp Records on a vinyl entitled The Shape of RemiXXXes to
Come (2017). In addition, we demonstrate the result of this algo-
rithm in the companion website of this paper, which contains short
audio examples as well as links to full-length computer-generated
sound pieces.

Section 2 defines time–frequency scattering. Section 3 presents
a gradient backpropagation method for sound synthesis from time–
frequency scattering coefficients. Section 4 introduces “scale-rate
DAFx”, a new class of DAFx which operates in the domain of
spectrotemporal modulations, and describes the implementation of
chirp reversal as a proof of concept.

2. TIME–FREQUENCY SCATTERING

In this section, we define the time–frequency scattering transform
as a function of four variables — time t, frequency λ, amplitude
modulation rate α, and frequency modulation scale β — which
we connect to spectrotemporal receptive fields (STRF) in auditory
neurophysiology [8]. We refer to [9] for an in-depth mathematical
introduction to time–frequency scattering.

Companion website: https://lostanlen.com/pubs/dafx2019
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2.1. Spectrotemporal receptive fields

Time–frequency scattering results from the cascade of two stages:
a constant-Q wavelet transform (CQT) and the extraction of spec-
trotemporal modulations with wavelets in time and log-frequency.
First, we define Morlet wavelets of center frequency λ > 0 and
quality factor Q as

ψλ(t) = λ exp

(
−λ

2t2

2Q2

)
× (exp(2πiλt)− κ), (1)

where the corrective term κ ensures that each ψλ(t) has one van-
ishing moment, i.e. a null average. In the sequel, we set Q = 12
to match twelve-tone equal temperament. Within a discrete setting,
acoustic frequencies λ are typically of the form 2n/Q where n is
integer, thus covering the hearing range. For x(t) a finite-energy
signal, we define the CQT of x as the matrix

U1x(t, λ) = |x ∗ψλ| (t), (2)

that is, stacked convolutions with all wavelets ψλ(t) followed by
the complex modulus nonlinearity.

Secondly, we define Morlet wavelets of respective center fre-
quencies α > 0 and β ∈ R with quality factor Q = 1. With
a slight abuse of notation, we denote these wavelets by ψα(t)
and ψβ(log λ) even though they do not necessarily have the same
shape as the wavelets ψλ(t) of Equation 2. Frequencies α, here-
after called amplitude modulation rates, are measured in Hertz
(Hz) and discretized as 2n with integer n. Frequencies β, hereafter
called frequency modulation scales, are measured in cycles per
octave (c/o) and discretized as ±2n with integer n. The edge case
β = 0 corresponds to ψβ(log λ) being a Gaussian low-pass filter
φF (log λ) of bandwidth F−1. These modulation scales β play the
same role as the quefrencies in a mel-frequency cepstrum [7].

We define the spectrotemporal receptive field (STRF) of x as
the fourth-order tensor

U2x(t, λ, α, β) =
∣∣U1x

t∗ψα
log2 λ∗ ψβ

∣∣(t, λ)
=

∣∣∣∣∣
∫∫

U1x(τ, s)ψα(t− τ)ψβ(log2 λ− s) dτ ds

∣∣∣∣∣, (3)

that is, stacked convolutions in time and log-frequency with all
wavelets ψα(t) and ψβ(log2 λ) followed by the complex modulus
nonlinearity [10]. Figure 1 shows the interference pattern of the
product ψα(t − τ)ψβ(log2 λ − s) for different combinations of
time t, frequency λ, rate α, and scale β. We denote the multiindices
(λ, α, β) resulting from such combinations as scattering paths [11].
We refer to [12] for an introduction to STRFs in the interdisciplinary
context of music cognition and music information retrieval (MIR),
and to [13] for an experimental benchmark in automatic speech
recognition.

2.2. Invariance to translation

Because it is a convolutional operator in the time–frequency domain,
the STRF is equivariant to temporal translation t 7→ t + τ as
well as frequency transposition λ 7→ 2sλ. In audio classification,
it is useful to guarantee invariance to temporal translation up to
some time lag T [11]. To this aim, we define time–frequency
scattering as the result of a local averaging of both U1x(t, λ)

and U2x(t, λ, α, β) by a Gaussian low-pass filter φT of cutoff
frequency equal to T−1, yielding

S1x(t, λ) =
(
U1x

t∗ φT
)
(t, λ) and (4)

S2x(t, λ, α, β) =
(
U2x

t∗ φT
)
(t, λ, α, β) (5)

respectively. In practice, for purposes of signal classification, T is
of the order of 50ms in speech; of 500ms in instrumental music;
and of 5 s in ecoacoustics [14]. The delay of a real-time implemen-
tation of time–frequency scattering is of the order of T .

2.3. Energy conservation

We restrict the set of modulation rates α in U2x to values above
T−1, so that the power spectra of the low-pass filter φT (t) and all
waveletsψα(t) cover uniformly the Fourier domain [15, Chapter 4]:
at every frequency ω, we have∣∣φ̂T (ω)∣∣2 + 1

2

∑
α>T−1

(∣∣ψ̂α(ω)∣∣2 + ∣∣ψ̂α(−ω)∣∣2) / 1, (6)

where the notation A / B indicates that there exists some ε� B
such that B − ε < A < B. In the Fourier domain associated to
log2 λ, one has

∑
β |ψ̂β(ω)|

2 / 1 for all ω. Therefore, applying
Parseval’s theorem on all three wavelet filterbanks (respectively
indexed by λ, α, and β) yields ‖S1x‖22 + ‖U2x‖22 / ‖U1x‖22.
Figure 2 illustrates the design of these filterbanks in the Fourier
domain.

The spectrotemporal modulations in music — e.g. tremolo,
vibrato, and dissonance — are captured and demodulated by the
second layer of a scattering network [16]. Consequently, each scat-
tering path (λ, α, β) in U2x(t, λ, α, β) yields a time series whose
variations are slower than in the first layer U1x(t, λ); typically
at rates of 1Hz or lower. By setting T to 1 second or less, we
may safely assume that the cutoff frequency of the low-pass fil-
ter φT (t) in Equation 5 is high enough to retain all the energy in
U2x(t, λ, α, β). This assumption writes as ‖S2x‖ / ‖U2x‖ and
is justified by the theorem of exponential decay of scattering coeffi-
cients [17]. Let S be the operator resulting from the concatenation
of first-order scattering S1 with second-order scattering S2. In
the absence of any DC bias in x(t), we conclude with the energy
conservation identity

‖Sx‖22 = ‖S1x‖22 + ‖S2x‖22 / ‖U1x‖22 / ‖x‖22. (7)

3. AUDIO TEXTURE SYNTHESIS

In this section, we describe how to pseudo-invert time–frequency
scattering, that is, to generate a waveform whose scattering coeffi-
cients match the scattering coefficients of some other, pre-recorded
waveform.

3.1. From phase retrieval to texture synthesis

Although the invertibility of the convolutional operator involved
in the constant-Q transform is guaranteed by wavelet frame theory
[15, Chapter 5], the complex modulus nonlinearity in Equation 2
raises a fundamental question: is it always possible to recover x, up
to a constant and therefore imperceptible phase shift, from the mag-
nitudes of its wavelet coefficients U1x(t, λ) ? This question has
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ψ̂λ

ω

(a) Wavelets ψ̂λ of frequencies λ and quality factor Q = 12.

ψ̂α

ω

(b) Wavelets ψ̂α of rates α and quality factor Q = 1.

ψ̂β

ω

(c) Wavelets ψ̂β of scales β and quality factor Q = 1.

Figure 2: Filterbanks of Morlet wavelets in the Fourier domain:
(a) for CQT; (b) for STRF, temporal dimension; (c) for STRF,
log-frequential dimension. See Section 2 for details.

recently been answered in the affirmative, suggesting that a redun-
dant CQT should be preferred over critically sampled short-term
Fourier transforms (STFT) when attempting to sonify spectrograms
in the absence of any prior information on the phase of the target
waveform [18].

By recursion over layers in the composition of wavelet modulus
operators, the invertibility of wavelet modulus implies the invertibil-
ity of scattering transforms of infinite depth [19], up to a constant
time shift of at most T . However, the time–frequency scattering
network presented here has a finite number of layers (i.e., most
usually two layers) and is therefore not exactly invertible. Because
of the theorem of exponential decay of scattering coefficients [17],
the residual energy that is present in deeper layers can be neglected
on the condition that T is small enough. In the rest of this section,
we set T to 186ms, which corresponds to 8192 samples at a sam-
ple rate of 44.1 kHz. Since the unit circle is not a convex subset
of R2, the optimization problem y∗(t) = argminy E(y) where
E(y) = 1

2

∥∥Sx− Sy
∥∥ is nonconvex; therefore, its loss surface E

may have local minimizers in addition to the global minimizers
of the form y∗τ (t) = x(t − τ) with |τ | < T . As a consequence,
we formulate the problem of audio texture synthesis in loose terms
of perceptual similarity. We refer to [20] for a literature review
on texture synthesis, and to [21] for a discussion of quantitative
evaluation procedures.

Starting from a colored Gaussian noise y0(t) whose power
spectral density matches S1x(t, λ), we refine it by additive updates
of the form yn+1(t) = yn(t) + un(t), where the term un(t) is
defined recursively as un(t) = m× un(t) + µn∇E(yn)(t). In
subsequent experiments, the momentum term is fixed at m = 0.9
while the learning rate is initialized at µ0 = 0.1 and modified at
every step according to a “bold driver” heuristic [22].

3.2. Gradient backpropagation in a scattering network

Like deep neural networks, scattering networks consist of the com-
position of linear operators (wavelet transforms) and pointwise non-
linearities (complex modulus). Consequently, the gradient E(yn)

can be obtained by composing the Hermitian adjoints of these oper-
ator in the reverse order as in the direct scattering transform — a
method known as backpropagation [23].

First, we backpropagate the gradient of Euclidean loss for
second-order scattering coefficients:

∇U2y(t, λ, α, β) =
(
(S2x− S2y)

t∗ φ
)
(t, λ, α, β). (8)

Secondly, we backpropagate the second layer onto the first:

∇U1y(t, λ) =
(
(S1x− S1y)

t∗ φ
)
(t, λ, α, β)

+
∑
α,β

R

([(
U1y

t∗ ψ̄α
log λ
∗ ψ̄β

)
∣∣U1y

t∗ ψ̄α
log λ
∗ ψ̄β

∣∣ ×∇U2y

]

t∗ψα
log λ
∗ ψβ

)
(t, λ, α, β), (9)

where the symbol R(z) denotes the real part of the complex number
z. Lastly, we backpropagate the first layer into the waveform
domain:

∇E(y)(t) =
∑
λ

R

([
y
t∗ψλ

|y t∗ψλ|
×∇U1y

]
t∗ψλ

)
(t) (10)

Time–frequency scattering bears a strong resemblance with
the set of spectrotemporal summary statistics developed by [24] to
model the perception of auditory textures in the central auditory
cortex. A qualitative benchmark has shown that time–frequency
scattering is advantaged if x(t) contains asymmetric patterns (e.g.
chirps), but that the two representations perform comparably other-
wise [14]. Nevertheless, time–frequency scattering is considerably
faster: the numerical optimizations of wavelet transforms and the
recursive structure of backpropagation allows time–frequency scat-
tering (both forward and backward) to be on par with real time on
a personal computer, i.e. about 20 times faster than the other im-
plementation. Therefore, an audio snippet of a few seconds can be
fully re-synthesized in less than a minute, which makes it relatively
convenient for composing sound serendipitously.

3.3. Creation: FAVN (2016) and other pluriphonic pieces

FAVN is an electroacoustic piece that evokes issues surrounding
late 19th-century psychophysics as well as Debussy’s Prélude à
l’après-midi d’un faune (1894), which itself is a musical adaption
of Stéphane Mallarmé’s L’après-midi d’un faune (1876). To create
FAVN, we began by composing 47 blocks of sound of duration
equal to 21 seconds, and spatialized across three audio channels.
These blocks are not directly created with time–frequency scat-
tering; rather, they originate from the tools of the electroacoustic
studio, such as oscillators and modulators. After digitizing these
blocks, we analyze them and re-synthesize them by means of time–
frequency scattering. We follow the algorithm described above:
once initialized with an instance of Gaussian noise, the reconstruc-
tion is iteratively updated by gradient descent with a bold driver
learning rate policy. We stop the algorithm after 50 iterations.

During the concert, the performer begins by playing the first
iteration of the first block, and progressively moves forward in
the reproduction of the piece, both in terms of compositional time
(blocks) and computational time (iterations). The Alte Oper Frank-
furt, Frankfurt am Main, Germany premiered FAVN on October
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5th, 2016. The piece was presented again at Geometry of Now in
Moscow in February 2017, and became a two-month exhibition
at the Kunsthalle in Wien in November 2017, with a dedicated
retrospective catalogue [25].

In the liner notes of FAVN, librettist Robin Mackay elucidates
the crucial role of analysis-synthesis in the encoding of musical
timbre:

The analysis of timbre — a catch-all term refer-
ring to those aspects of the thisness of a sound that
escape rudimentary parameters such a pitch and dura-
tion — is an active field of research today, with mul-
tiple methods proposed for classification and com-
parison. In FAVN, Hecker effectively reverses these
analytical strategies devised for timbral description,
using them to synthesize new sonic elements. In the
first movement, a scattering transform with wavelets
is used to produce an almost featureless ground from
which an identifiable signal emerges as the texture
is iteratively reprocessed to approximate its timbre.
[Wavelets] correspond to nothing that can be heard in
isolation, becoming perceptible only when assembled
en masse. [26]

We refer to [27] for further discussions on the musical implica-
tions of time–frequency scattering, and to [28, 29] on the musical
aesthetic of Florian Hecker. Since the creation of FAVN, we have
used time–frequency scattering to create four new pieces.

Modulator (Scattering Transform) is a remix of Hecker’s elec-
tronic piece Modulator (2012), obtained by retaining the 50th itera-
tion of the gradient descent algorithm. Editions Mego has released
this remix in a stereo-cassette format. In addition, we presented an
extended version of the piece in a 14-channel format at the exhibi-
tion “Florian Hecker - Formulations” at the Museum für Moderne
Kunst Frankfurt, Frankfurt am Main, Germany from November
2016 to February 2017. In this multichannel version, 14 loud-
speakers in the same room play a different iteration number of the
reconstruction algorithm.

Experimental Palimpsest is an eight-channel variation upon
Palimpsest (2004), Hecker’s collaboration with the Japanese artist
Yasunao Tone, obtained by the same procedure. This piece was
premiered at the Lausanne Underground Film Festival, Lausanne,
Switzerland, in October 2016.

Inspection (Maida Vale Project) is a seven-channel piece for
synthetic voice and computer-generated sound, performed live at
BBC’s Maida Vale studios in London and has been broadcast on
BBC Radio 3 in December 2016, marking the BBC’s first ever
live binaural broadcast. An extended version, Inspection II, will
be released as a CD by Editions Mego, Vienna and Urbanomic,
Falmouth, UK in Fall 2019.

3.4. XAllegroX (scattering.m sequence)

Lastly, XAllegroX (scattering.m sequence) is the remix of a dance
music track by Lorenzo Senni, entitled XAllegroX and originally
released by Warp Record in Senni’s The Shape of Trance to Come
LP (WAP406). Like in Hecker’s experimental pieces, we remixed
XAllegroX by, first, isolating a few one-bar loops from the original
audio material, and secondly, by reconstructing them from their
scattering coefficients. While, at the first iteration, the loop sounds
hazy and static — or, a electronic musicians would call it, droney
— it regains some of its original rhythmic content in subsequent
iterations, thus producing a feeling of sonic rise that is fitting to the

typical structuration of dance music. The peculiarity of this scat-
tering.m sequence remix is that the musical “rise” is not produced
over the well-known sonic attributes of frequency and amplitude
(as is usually the case in electronic dance music), but on a rela-
tively novel, joint parameter of texture; that is, a notion of sonic
complexity which consists of the organization of frequencies and
amplitude through time. Therefore, the development of gradient
backpropagation for time–frequency scattering over new avenues
for musical creation with digital audio effects: in addition to remix-
ing amplitude (by EQ-ing) and frequency (by phase vocoder), it is
now possible to remix texture itself, independently of amplitude and
frequency. Along the same lines of amplitude modulation (AM)
and frequency modulation (FM), we propose to call this new musi-
cal transformation a meta-modulation (MM), because it operates
over spectrotemporal modulations rather than on the direct acoustic
content. Future work will strive to further the understanding of
MM, both from mathematical and compositional standpoints.

In July 2018, Warp released XAllegroX (scattering.m sequence)
as part of a remix 12" named The Shape of RemiXXXes to Come
(WAP425), hence the title of the present paper. This remix has
been pressed on vinyl and made available on all major digital music
platforms. The remix was aired on the Camarilha dos Quatro
weekly podcast. Mary Anne Hobbs, an English DJ and music
journalist, shared another of the album songs on her BBC show
“6 Music Recommends”. FACT listed the record as one of the
must-haves of the month.

4. SCALE-RATE DIGITAL AUDIO EFFECTS

In this section, we introduce an algorithm to manipulate the finest
time scales of spectrotemporal modulations (from 10ms to 1 s)
while preserving both the temporal envelope and spectral envelope
at a coarser scale (beyond 1 s). As an example, we implement chirp
rate reversal, a new digital audio effect that flips the pitch contour
of every note in a melody, without need for tracking partials. This
concept will be featured throughout in the pluriphonic sound piece
Syn 21845 (2019), a sequel to Hecker’s Statistique Synthétique aux
épaules de cascades (2019).

4.1. Mid-level time scales in music perception

The invention of digital audio technologies allowed composers
to apply so-called intimate transformations [30] to music signals,
affecting certain time scales of sound perception while preserving
others. The most prominent of such transformations is perhaps the
phase vocoder [31], which transposes melodies and/or warps them
in time independently. By setting T to 50ms, a wavelet-based
phase vocoder disentangles frequencies belonging to the hearing
range (above 20Hz) from modulation rates that are afferent to
the perception of musical time (below 20Hz) [32]. Frequency
transposition is then formulated in S1x as a translation in log2 λ
whereas time stretching is formulated as a homothety in t.

In its simplest flavor, the phase vocoder suffers from artifacts
near transient regions: because all time scales beyond T are warped
in the same fashion, slowing down the tempo of a melody comes
at the cost of a smeared temporal profile for each note. This well-
known issue, which motivated the development of specific methods
for transient detection and preservation [33], illustrates the impor-
tance of mid-level time scales in music perception, longer than
a physical pseudo-period yet shorter than the time span between
adjacent onsets [34].
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The situation is different in a time–frequency scattering net-
work: the amplitude modulations caused by sound transients are
encoded in the scale-rate plane (α, β) of spectrotemporal receptive
fields [7]. Therefore, time–frequency scattering appears as a conve-
nient framework to address the preservation of such mid-level time
scales in conjunction with a change in rhythmic parameters (meter
and tempo); or, conversely, changes in articulation in conjunction
with a preservation of the sequentiality in musical events.

4.2. General formulation

We propose to call scale-rate DAFx the class of audio transforma-
tions whose control parameters are foremostly expressed in the
domain (t, λ, α, β) of time–frequency scattering coefficients, and
subsequently backscattered to the time domain by solving an opti-
mization problem of the form

y∗ = argmin
y

∥∥f(S)x− Sy
∥∥2
2
, (11)

where the functional f(S) = (f1(S1), f2(S2)) is defined by the
composer. Compared to Section 3.1, the loss function in the equa-
tion above is not only nonconvex, but also devoid of a trivial global
minimizer. Indeed, if the image of the reproducing kernel Hilbert
space (RKHS) associated to Equation 3 by the complex modu-
lus operator and low-pass filter φT (t) (Equation 5) does not con-
tain the function f(Sx), then there is no constant-Q transform
U∗1(t, log2 λ) whose smoothed STRF is f2(S2) ; and a fortiori no
waveform y∗(t) such that Sy = f(S)x. In order to allow for more
flexibility in the set of valid choices of f , we replace the definition
of S2x in Equation 5 by

S2x(t, λ, α, β) =
(
U2x

t∗ φT
log2 λ∗ φF

)
(t, λ, α, β), (12)

that is, a blurring over both time and frequency dimensions; and
likewise for S1x. This new definition guarantees that Sx is invari-
ant to frequency transposition up to intervals of size F (expressed
in octaves), a property that is often desirable in audio classification
[35]. Transposition-sensitive scattering (Equations 4 and 5) are a
particular case of transposition-invariant scattering (equation above)
at the F → 0 limit, i.e. the Gaussian φF becoming a Dirac delta
distribution.

A thorough survey of scale-rate DAFx is beyond the scope of
this article; in the sequel, we merely give some preliminary insights
regarding their capabilities and limitations as well as a proof of
concept. With Q� 12 wavelets per octave in the constant-Q trans-
form and F of the order of one semitone, scale-rate DAFx would
fall within the well-studied application domain of vibrato transfor-
mations [36]: a translation of the variable log2 α (resp. log2 |β|)
would cause a multiplicative change in vibrato rate (resp. depth).
Perhaps more interestingly, with Q � 12 and F of the order of
an octave, scale-rate DAFx address the lesser-studied problem of
roughness transformations in complex sounds: since the scattering
transform captures pairwise interferences between pure tones within
an interval of Q−1 octaves or less [16], a translation of the variable
(log2 λ+ log2 α) would transpose the sound while preserving its
roughness, whereas a translation of the variable (log2 λ− log2 α)
would affect roughness while preserving the spectral centroid. We
believe that the capabilities of such transformations, both from
computational and musical perspectives, are deserving of further
inquiry.

4.3. Example: controlling the axis of time with chirp inversion

Because both Morlet wavelets ψα(t) and ψβ(log2 λ) have a sym-
metric profile, we have the following identity between Kronecker
tensor products:

ψα ⊗ψ−β = ψ−α ⊗ψβ . (13)

Since the constant-Q transform modulus U1x is real-valued, the
above implies that S2x(t, λ, α,−β) = S2x(t, λ,−α, β). In other
words, flipping the sign of the modulation scale β is equivalent to
reversing the time axis in the wavelet ψα; or, again equivalently, to
reversing the time axis in the constant-Q transform U1x around the
center of symmetry t before analyzing it with ψα and ψβ . From
these observations, we define a chirp inversion functional f(S) =
(f1(S1), f2(S2)) where f1(S1) = S1 and f2 is parameterized as

f2 : S2(t, λ, α, β) 7−→
1 + σ(t)

2
× S2(t, λ, α, β)

+
1− σ(t)

2
× S2(t, λ, α,−β),

(14)

with σ(t) a slowly varying function at the typical time scale
T . Observe that setting σ(t) = 1 leaves S unchanged; that
σ(t) = −1 resembles short-time time reversal (STTR) ofx(t) with
half-overlapping windows of duration T [37]; and that σ(t) = 0
produces a re-synthesized sound that is stationary, yet not neces-
sarily Gaussian, up to the time scale T . It thus appears that the
parameter σ(t) in Equation 14 is amenable to an “axis of time”
knob that can be varied continuously through time within the range
[−1; 1].

As a proof of concept, Figure 3a shows the constant-Q trans-
form of a repetitive sequence of synthetic chirps with varying
amplitudes, frequential extents, and orientations; as well as its
transformation by the functional f described above, with

σ(t) =
1− exp

(
t
τ

)
1 + exp

(
t
τ

) (15)

the sigmoid function with a time constant τ � T . The frequency
transposition invariance F is set to 1 octave. We observe that,
while the metrical structure of the original excerpt is recognizable
at all times, the pitch contour of every musical event is identical to
the original for t � −τ and inverted with respect to the original
for t � τ . For |t| < τ , there is a progressive metamorphosis
between the “forward time” and “backward time” regimes. The
effect obtained in Figure 3b, although relatively simple to express
in the scale-rate domain, would be difficult to implement in the
time–frequency domain.

4.4. Towards digital audio effects on the pitch spiral

One evident drawback of scale-rate DAFx is the need to manually
adjust the frequency transposition invariance F according to the
analysis-synthesis task at hand. Forgoing this calibration step would
certainly streamline the creative process. Furthermore, setting F
to any value above 1 octave does not only affect spectrotemporal
modulations but also the spectral envelope of U1x(t, λ). In the
context of speech transformations, this undesirable phenomenon
has led to the development of specific improvements to the phase
vocoder [31].

With the aim of addressing both of these shortcomings, we
suggest replacing the resort to STRF in Equation 3 U2x(t, λ) by
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t

log2 λ

(a) An interpretation of Steve Reich’s Clapping Music (1972) with synthetic chirps of varying rates, scales, and amplitudes.
log2 λ

t

(b) Re-synthesis after chirp rate inversion. The arrow of time goes forward for t < 0 and locally backward for t > 0.

Figure 3: An example of chirp rate inversion with time–frequency scattering. Top: original audio material. Bottom: computer-generated
output after 100 iterations of gradient descent on time–frequency scattering coefficients. The chirp inversion functional follows a sigmoidal
dynamic, as described in Equations 14 and 15. See Section 4 for details.

spiral scattering [38], a convolutional operator cascading wavelet
transforms along time, along log-frequencies, and across neighbor-
ing octaves. Denoting by blog2 λc the octave index associated to
the frequency λ – that is, the integer part of its binary logarithm –
the spiral scattering transform of x(t) writes as

U2x(t, λ, α, β, γ) =∣∣∣U1x
t∗ψα

log2 λ∗ ψβ
blog2 λc∗ ψγ

∣∣∣(t, λ) (16)

where ψγ is a Morlet wavelet of quality factor Q = 1 and center
frequency γ, with |γ| < 1

2
measured in cycles per octave. Since

spiral scattering disentangles temporal modulations of the non-
stationary source-filter model [14], it is conceivable that source
modulations and filter modulations could be manipulated indepen-
dently in the space of spiral scattering coefficients. In particular, the
aforementioned effect of “chirp rate reversal” could be generalized
to the modulations of the source-filter model. For nonstationary
harmonic tones, this would result in a reversal of melodic profile
with preservation of the formantic profile, or vice versa. Although
the present article does not give a demonstration of such effects,
it is worth remarking that their future implementation in the scat-
tering.m library would rely on the same principles as the gradient
backpropagation of time–frequency scattering coefficients.

The procedure of rolling up the log-frequency axis into a spiral
which makes a full turn at every octave, thus aligning power-of-two
harmonics onto the same radius, is central to the construction of
auditory paradoxes of pitch perception [39] and has recently been
applied to musical instrument classification [14] and real-time pitch
tuning [40]; yet, to the best of our knowledge, never as a mid-
level representation for DAFx. As such, the theoretical framework
between scale-rate DAFx and spiral DAFx lies at the interaction
between two concurrent approaches in the DAFx community: sinu-
soidal modeling [33] and texture modeling via neural networks [41].
The former is more physically interpretable requires no training
data, yet makes strong assumptions on the detectability of partials
in the input spectrum; conversely, the latter is bereft of partial
tracking, yet requires a training set and allows for less post hoc
manipulations. The long-term goal of scale-rate DAFx is to borrow
from both of these successful approaches, and ultimately achieve
a satisfying compromise between interpretability and flexbility in
texture synthesis.

5. CONCLUSION

The past decade has witnessed a breakthrough of deep convolu-
tional architectures for signal classification, with some noteworthy
applications in speech, music, and ecoacoustics. Yet there is, to
this day, virtually no adoption of any recent deep learning system
by electroacoustic music composers. This is due to several short-
comings of deep learning in its current state, among which: its high
computational cost [42]; the need for a large dataset of musical
samples, often supplemented with univocal human annotation [5];
the difficulty of synthesizing audio without artifacts [43]; and a
certain opacity in the structure of the learned representation [44].

In this article, we have argued that time–frequency scattering
– a deep convolutional operator involing little or no learning – is
adequate for several use cases of contemporary music creation. We
have supported our argumentation by three mathematical proper-
ties, which are rarely guaranteed in deep learning: energy conser-
vation (Section 2); well-conditioned adjoint operators in closed
form (Section 3); and psychophysiological interpretation in terms
of modulation rates and scales (Section 4)..

All of the numerical applications presented here might, after
enough effort, be implemented without resorting to time–frequency
scattering at all. Yet, one noteworthy trait of time–frequency scatter-
ing resides in its versatility: it connects various topics of DAFx that
are seemingly disparate, such as coding [4], texture synthesis [20],
adaptive transformations [33], and similarity retrieval [45]. The
guiding thread between these topics is that – adopting the categories
of Iannis Xenakis [46] – time–frequency scattering extracts musical
information at the meso-scale of musical motifs, allowing to put
it in relation with both the micro-scale of musical timbre and the
macro-scale of musical structures [28].

From a compositional perspective, the appeal of time–
frequency scattering stems from the possibility to generate sound
with a holistic approach, devoid of intermediate procedures for
parametric estimation; yet leaving some room to serendipity and
surprise in the listening experience. The best evidence of this fruit-
ful trade-off between flexibility and interpretability is found in the
breadth of computer music pieces that have resulted from the ongo-
ing interaction between the two authors of this paper. The earliest
musical creation that was based on time–frequency scattering (e.g.
FAVN in 2016) was conceived as an operatic experience with pluri-
phonic spatialization at the Alte Oper Frankfurt, Frankfurt am Main,
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Germany. In contrast, Modulator (Scattering Transform) (2017) is
a stereo-cassette mix for Editions Mego; Inspection (Maida Vale
Project) (2017) is a live radio performance at the BBC; and lastly,
XAllegroX (Hecker Scattering.m Sequence) (2018) is the remix of a
dance music track for Warp Records.

More than a fortuitous affinity of personal initiatives, the
research-creation agenda that is outlined in the present paper wishes
to espouse the noble tradition of musical research [47], i.e. a kind of
creative process in which the conventional division of labor between
scientists and artists is tentatively called into question. Here, for
the sake of crafting new music, a signal processing researcher (VL)
becomes de facto a computer music designer, while a composer
(FH) takes on a role akin to a principal investigator [48].
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ABSTRACT

An improved and expanded method for carillon bell synthesis is
proposed. Measurements of a carillon bell and its clapper were
made to serve as the basis for an efficient synthesis framework.
Mode frequencies, damping, and amplitudes are used to form a
modal model fit to measurements. A parameterized clapper inter-
action model is proposed to drive the bell model, reproducing vari-
ation of timbre as the bell is played in different dynamic ranges.
Reverberation of the belfry was measured from several listener
perspectives and an efficient modal reverberation architecture is
shown to model the sound of the bell from locations inside and
outside the belfry.

1. INTRODUCTION

Musical acousticians and composers have long held interest in car-
illons and other bells. Rossing and others seek to understand the
physics of how bells vibrate [1, 2]. Others, such as Lehr, work
for bell foundries and are interested in improving their casting and
tuning techniques [3, 4]. Recently, some researchers have mod-
eled bells using finite element analysis [5]. Romantic composers
have often evoked and imitated the sound of bells in their music.
Twentieth century works by John Chowning, Jean-Claude Risset,
and Jonathan Harvey have all prominently feature synthesized bell
timbres. More recent “Hack the Bells” initiatives such as [6] have
lead to an increased interest in music for carillon and live electron-
ics.

In contrast to [7], where the authors’ goal was to provide a
simple model for carillon bell synthesis suitable for processing by
composers of electroacoustic music, in this paper we provide a
more sophisticated model. Like in previous work, a modal archi-
tecture is presented where a bell is modeled as a sum of exponen-
tially decaying sinusoids. One of the issues of [7] was that the
authors were limited to a single recording of each bell of the car-
illon they were modeling. This means they were unable to model
the spectral differences between quiet and loud bell hits and were
restricted to the perspective of the single microphone.

For this work, we made a comprehensive set of measurements
of the bell we model with the idea that the results can be applied
for modeling other bells. These measurements include multiple
microphone locations, laser Doppler vibrometer (LDV) measure-
ments from the impact position, and accelerometer measurements
of the clapper’s movement. We additionally made impulse re-
sponse measurements of the belfry. With these measurements, we

∗ All authors should be considered co-first author of this paper.
Copyright: c© 2019 Mark Rau, Orchisama Das, Elliot K. Canfield-Dafilou. This is an

open-access article distributed under the terms of the Creative Commons Attribution

3.0 Unported License, which permits unrestricted use, distribution, and reproduction

in any medium, provided the original author and source are credited.

perform better when estimating the modal parameters, incorporate
a driving function that adequately controls the spectral changes
associated with quiet and loud bell strikes, and demonstrate an ef-
ficient modal reverberation algorithm allowing the possibility to
control and modify the position of the listener.

A carillon is a musical instrument consisting of multiple cup-
shaped cast bronze bells. The bells are stationary and struck on
the inside by clappers. The bell measured and modeled in this
study comes from the Stanford Carillon located in the tower of the
Hoover Institution. This carillon consists of thirty-five bells origi-
nally cast by Michiels in Tournai, Belgium for the 1939 New York
World’s Fair [8]. In 2002, The Dutch foundry Royal Eijsbouts re-
cast eleven of these bells and added an additional thirteen bells,
bringing the total to forty-eight bells. Additionally, they upgraded
several other components of the instrument such as the keyboard
and the hanging mechanism. The instrument is equally tempered.

We begin by outlining the measurements of the bell and belfry
in §2. Then in §3 we describe the modal synthesis model and
how we estimate the various parameters. We discuss results in §4.
Finally, §5 offers some concluding remarks.

2. CARILLON BELL MEASUREMENTS

For this study, we measured a large carillon bell tuned to C3, hav-
ing a fundamental frequency of 129 Hz. An accelerometer was
used to measure the keyboard driven clapper interaction while a
laser Doppler vibrometer and various microphones were used to
measure the resulting bell vibrations. Figure 1 shows the locations
of the microphones, LDV, accelerometer, and loudspeaker in rela-
tion to the tower, belfry, and bell.

2.1. Clapper Interaction

An accelerometer was placed on the back of the clapper to measure
its acceleration as it strikes the bell. It was in line with the clapper’s
primary direction of motion, orthogonal to the shell of the bell. It
was assumed that the arc of the clapper path was negligible and
only in one spacial direction. A laser Doppler vibrometer was used
to measure the surface velocity at a point on the outside of the bell
corresponding to the location of the clapper hit. The measurement
locations were chosen to be at an approximation of the driving
point, taking physical considerations into account.

2.2. Near Field Radiation

In addition to the contact measurements, several measurement-
quality omnidirectional pressure microphones were used to record
the sound radiated by the bells at various locations. One micro-
phone was placed in the belfry about 1 m away from the carillon
bell to capture the close field radiation. A second microphone was
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Figure 1: Measurement setup.

placed in the belfry below the bells, in a location similar to where
a person may stand in the tower while the carillon is played. A
third microphone was suspended on a pole 3 m out of a window
in the belfry. This captures the on axis portion of the signal that
would pass through the windows of the carillon tower. While this
measurement is not from a listener’s perspective, it is from an ac-
cessible location partway between the belfry and the ground and
provides a different prospective of the bell sound.

2.3. Far Field Radiation

In an attempt to measure impulse responses of the bell tower to
common listening positions, inexpensive portable recorders were
placed at four locations outside of the tower. One recorder was
located 25 m from the base of the tower, and the other three were
approximately 150, 600, and 1000 m away, at ground level. Two-
minute-long exponential sinusoidal sweeps covering the audible
frequency range from 20–20000 Hz were played from a loud-
speaker in the tower and recorded using all near field and far field
microphones. Several of the far field recorders were corrupted by
noise caused by other sound sources in the area and the large dis-
tance from the tower.

2.4. Bell Coupling

To test if the bells are acoustically coupled, an LDV was used to
measure the surface vibration of one bell while other bells were
played. Two pairs of bells were tested—one pair was adjacent to
each other and the other tonally separated by an octave. In both
cases, no significant coupling was measured, so this was not con-
sidered further in the model.

3. MODAL CARILLON BELL MODEL

The sound of a bell can be described as an inharmonic series of
partials. Like in [7], we use a modal model to represent each bell
as a sum of exponentially decaying sinusoids,

g(t) =
M∑
m=1

αme
jωmte−t/τm , (1)

where αm is the complex amplitude, ωm the frequency, and τm
the decay rate for each mode m.

Throughout this section, we will describe our methods for esti-
mating the modal parameters for synthesizing carillon bell sounds.
We extend the modal analysis proposed in [7] using simple and
robust methods rather than complex high resolution methods such
as the one described in [9].

3.1. Estimating Partial Frequencies

First, the clapper impact is deconvolved from the time domain bell
measurements. Then, all ten measurements at different loudness
levels are averaged in the time domain for further analysis. This
improves the signal to noise ration (SNR) as the spectral peaks are
common in all measurements. Additionally, nulls in the spectrum
of the clapper are dependent on the loudness of the strike while
the mode parameters of the bell itself should be independent of
loudness. By averaging recordings at several loudness levels, we
reduce the bias in the peak picking and amplitude fitting that would
over-fit to a single bell loudness.

Similar to [7], the deconvolved bell signal is high-passed fil-
tered half an octave below the hum tone before its Fourier Trans-
form is taken. This reduces the likelihood of picking spurious
peaks in the lower frequencies that are simply background noise.

The method for peak picking proposed in [7] is not able to
detect close-frequency beating partials (doublets) and it misses a
number of high frequency partials which decay very quickly, re-
sulting in inaccurate reconstruction of the bell attack. The follow-
ing subsections explain the updated method for overcoming these
shortcomings.

3.1.1. Resolving doublets

In the previous method, peaks that were very close to each other
were discarded. For resolving doublets, this constraint is removed.
Even with a larger FFT size, resolving doublets can be tricky. The
Hann window used in [7] has a side lobe height of−31.5 dB. This
poses the danger of partial side lobes being detected as peaks. To
fix this, we use the Hann-Poisson window (2) instead, which is
essentially a Hann window multiplied with an exponentially de-
caying Poisson window [10]. The advantage of this window is that
for γ ≥ 2, the side-lobes are smoothed. For high γ, this win-
dow has no side-lobes. With the Hann-Poisson window, the peaks
detected are guaranteed to be partials and not their side-lobes.

w(n) =
1

2

[
1 + cos

( 2πn

M − 1

)]
exp

(−2γ|n|
M − 1

)
(2)

3.1.2. Adaptive threshold for peak picking

In the previous method, the threshold for peak picking was kept
constant. However, as can be seen from Fig. 2, the spectral enve-
lope shape is not flat, but resembles a low-pass filter. This means
that a constant threshold will not be able to detect higher partials,
which fall below it. A smarter decision is to pick a threshold that
follows the spectral envelope. To do so, first we use a median fil-
ter with a filter order of 100 to smooth the spectrum and estimate
the spectral envelope. We then fit a straight line to the spectral
envelope, and add a constant value to it to get the new threshold.
Flattening the spectrum with a “pre-emphasis” filter would have
also worked.
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Figure 2: Mode frequency estimates.

3.1.3. Two FFT sizes

We pick two different FFT sizes for low and high frequency par-
tials, with a transition frequency at 3 kHz. A larger FFT size of
215 for detecting lower partials ensures that beating partials are re-
solved. For higher frequency partials, resolution is not an issue.
Lower partials have a small beat frequency, however the beat fre-
quency increases for higher partials, which is why resolving high
frequency doublets is possible with a smaller FFT size. Instead,
too large an FFT size for higher partials results in poor signal to
noise ratio in estimation of decay rates. So, we choose an FFT
size of 213 for higher partials. For lower partials, we use a Hann-
Possion window with γl = 7 and for higher partials, γh = 3.
We can get away with less smoothing of side lobes for higher par-
tials because we ensure that two nearby candidate peaks are not
detected as two separate partials. This ensures no side lobes are
incorrectly labeled as partial peaks. The peaks picked with two
different FFT sizes are shown in Fig. 2. We do not detect any peaks
above 10 kHz because the accelerometer is band-limited and there
is a high noise floor so we are not confident in the measurements
in this region. Instead, we statistically generate higher frequency
modes as described in §3.4.

3.2. Estimating Partial Decay Rates

As in [7], we use each frequency found in §3.1 as the center fre-
quency for a fourth-order Butterworth band-pass filter. We find
the energy envelope for each partial by averaging the band-pass
filtered signals using a 100 ms RMS procedure. However, in [7],
the decay rate of each partial was estimated by performing a linear
fit to the amplitude envelope using least squares. The region over
which the linear fit was performed was selected manually. Since
many more partials are detected in our updated method, this proce-
dure is inefficient and time consuming. Instead, we use the method
in [11] to automatically estimate the decay rates. This algorithm is
based on nonlinear optimization of a model for exponential decay
plus stationary noise floor. It works well, even for beating partials
that are coupled. For higher modes that decay quickly, we use a
weighting function that fits an exponential decay only over the first
second of the energy envelope and discards the rest, so that high
frequency noise does not perturb the calculation of decay rates.
This method was rejected in [7] because the SNR of the single-

bell recordings often challenged the algorithm. Here, our SNR is
much higher so the algorithm performs better. A disadvantage of
this method is that it solves a large optimization problem, and is
therefore, quite slow.

3.3. Estimating Partial Amplitudes

Once we have estimated the frequency and decay rate of each
mode, we estimate the initial amplitude of each partial required
to reconstruct the original bell recording. To do this, we form a
matrix where each column holds each partial independently as in

M =


1 . . . 1

e(jω1−1/τ1) . . . e(jωM−1/τM )

... . . .
...

e(jω1−1/τ1)T . . . e(jωM−1/τM )T

 , (3)

where ωm are the frequencies, τm the decay rates, and T is the
length of the time vector. We use least squares to find the complex
amplitudes

α = (MᵀM)−1Mᵀg , (4)

where g is the original bell recording and α is the vector of com-
plex amplitudes.

3.4. Statistically Generating High Frequency Modes

While the low frequency modes are louder and decay more slowly
than the high frequency modes, the high modes play a role in de-
veloping the transient attack sound. It is difficult to measure and
estimate modal parameters for the high modes for a variety of rea-
sons. The signal energy at high frequencies is much lower than the
low frequencies and the noise floor becomes a significant impedi-
ment. Additionally, the measurements from the accelerometer are
band-limited, making it impossible to accurately estimate the high
frequency modes.

Since the resonant structure of the bell is inharmonic and hu-
man hearing has low acuity in high frequencies, it is possible to
synthesize artificial high frequency modes. The idea here is to
synthesize enough high frequency modes to produce the transient
sound without increasing the computational cost too much. To do
this, we generate a set of modal frequencies above the frequency
we stop fitting modal parameters, i.e. 10 kHz. Figure 3a shows the
frequency of estimated modes in black circles, along with the cut-
off frequencies of the Bark critical bands of hearing in grey [12].
We can see that mode density increases with critical band number.
We fit a quadratic function along with some sinusoidal modulation
to the existing mode frequencies and generate new mode frequen-
cies in the range of 10–16 kHz (shown as blue crosses). For the
decay rates and amplitudes, we extrapolate from the lower modes.
We fit a decaying exponential to the existing decay rates to gener-
ate new data points (Fig. 3b). For the amplitudes, we sample from
a Gaussian distribution with a mean given by that of the estimated
mode amplitudes from §3.3 and a variance of 10−5 (Fig. 3c).

3.5. Modeling the Bell-Clapper Interaction

Previous literature suggests that when the carillon is performed at
higher dynamic ranges, the high harmonics become more promi-
nent in the timbre. It is suggested that this change in timbre is
due to the contact time of the clapper interaction, with a louder hit
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Figure 3: Extrapolated mode parameters (in blue crosses).

having a shorter contact time [13, 14]. To confirm this effect, the
clapper acceleration of the initial impact was recorded during nine
different dynamic levels. It was assumed that the acceleration of
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(b) Frequency domain.

Figure 4: Measured impact acceleration of the clapper striking the
bell.

the clapper during the time when it was in contact with the bell
is proportional to the force exerted by the clapper, so the acceler-
ation can be used as an input signal to drive the carillon model.
The measured acceleration during impact of nine hits as well as
the corresponding frequency response of the impulses are shown
in Fig. 4.

As confirmed by our measurements, when the carillon is per-
formed at a louder dynamic level, the impact time is shorter and the
pulse shape changes in an asymmetrical manner. The frequency re-
sponse shows that the locations of the nulls change, and the louder
hits boost frequencies in the range of 1.5–3 kHz in relation to the
quiet hits.

To create a musically usable synthesis model, it is desirable
to have as few variable parameters as possible. In this case, it
would be ideal to have one parameter for strike amplitude which
can drive the carillon model. There have been multiple solutions
proposed to model the impact ranging from a half-cycle sine wave
proposed by Rayleigh [15], or a Gaussian [5], to numerical solu-
tions [5, 16, 17]. However, the half-cycle sine wave and Gaussian
solutions are oversimplified and a numerical solution is not practi-
cal for real-time synthesis, so a compromise was made to generate
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Figure 5: Data used to fit curves for parameterized clapper impact
model.

impact signals which are created to fit the data and are parameter-
ized by the impact peak acceleration.

The two defining characteristics of the impacts were chosen
to be the time of the acceleration peak and the length of the de-
creasing portion of the acceleration. Figure 5a shows the time of
the acceleration peak plotted against the peak acceleration, while
Fig. 5b shows the time taken for the acceleration to decrease to
zero after the peak acceleration, against the peak acceleration.

The impact peak time was fit using the logarithmic function:

p(ap) =
− ln

(
ap

29170(ms−2)

)
7193(s−1)

, (5)

where ap is the peak amplitude, and ln is the natural logarithm.
The time taken for the impact acceleration to decrease was fit using
the linear function:

d(ap) = 6.658× 10−8(m−1s3)× ap + 5.056× 10−4(s), (6)
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Figure 6: Synthesized impact acceleration of the clapper striking
the bell.

where ap is the peak amplitude. The curve fits are shown in Fig. 5a
and 5b.

Synthesized clapper impulses were created by combing the
left and right portions of two window functions. The left portion
of the impulse is the left half of a Blackman window,

wl(n) = 0.42− 0.5 cos

(
2πn

N

)
+ 0.08 cos

(
4πn

N

)
, (7)

for 0 ≤ n ≤ N − 1, where N = 2fs × p(ap), and fs is the
sample rate. The right portion of the impulse is the right half of a
Bartlett-Hann window,

wr(m) = 0.62− 0.48
∣∣∣m
M
− 0.5

∣∣∣− 0.38 cos

(
2πm

M

)
, (8)

for 0 ≤ m ≤ M − 1, where M = 2fs × d(ap) [10]. These
windows are parameterized by the peak amplitude of the desired
hit (ap), and created to be of length 2p(ap) and 2d(ap) seconds re-
spectively for the Blackman an Bartlett-Hann windows. Figure 5
shows time and frequency domain plots of synthesized impact sig-
nals having the same peak acceleration as the measured impacts
shown in Fig. 4.
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(a) Belfry impulse response.

(b) Ground impulse response.

Figure 7: Impulse responses taken from Hoover tower.

3.6. Efficient Belfry Reverberation

The belfry where the bells are housed can have a large impact on
the sound of a carillon in addition to affecting how the sound ra-
diates from the tower. Figure 7 shows impulse responses of the
reverberation of Hoover tower measured 3 m outside the belfry
and from the bottom of the tower. The response from the bottom
of the tower contains much less high-frequency energy and has a
prominent slapback echo from a nearby building. Needless to say,
the bells sound very different from inside the tower.

The sound of a carillon bell ringing in a belfry can be rep-
resented as the convolution of the bell with the reverberation of
the belfry. Since we are using a modal bell model, we can also
implement the reverberation with a modal architecture [18]. The
computation time is independent of the fact that this architecture
is a combination of series and parallel components. For each time
step, the number of operations scales linearly with the total num-
ber of modes. That being said, we can implement an even more
efficient reverberation algorithm by taking advantage of the modal
architecture.

Most of the modes of the carillon bell are orthogonal to most of
the modes of the reverb. If we assume that the majority of the en-
ergy of each bell mode only drives the reverb modes that are close
in frequency, we find an efficient way to implement the reverbera-

(a) Synthesized bell.

(b) Synthesized bell with belfry convolution reverb.

(c) Synthesized bell with efficient modal reverb.

Figure 8: Comparison of a synthesized bell without reverb (8a),
with convolution reverb (8b), and with an efficient modified modal
reverb (8c).
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tion. Instead of processing each mode of the bell through the full
complement of reverberation modes, we can pass each bell mode
through the reverberation mode nearest in frequency. Furthermore,
we fold the reverberation model into the bell model by replacing
the decaying exponential amplitude envelopes of the bell modes
and reverberation modes by the convolution of the envelopes. Now
(1) can be replaced by

g(t) =
M∑
m=1

αmβme
jωmt

τmζm
(
e−t/τm − e−t/ζm

)
τm − ζm

, (9)

where βm is the amplitude and ζm the decay rate of the belfry
reverberation nearest the mth mode where the frequency term is
shared for the bell and reverb. Figure 8 shows a synthesized bell
without reverb and the same bell resynthesized with the belfry re-
verberation implemented with convolution reverberation and with
the efficient scheme shown in (9).

4. RESULTS AND DISCUSSION

Sound examples of the original measurements and resynthesized
bells with and without reverb can be found at https://ccrma.
stanford.edu/~kermit/website/morebells.html.
The modal bell driven with synthesized impacts to emulate differ-
ent loudness levels is shown in Fig. 9. As the impact force on the
bell increases, higher modes become more perceptually prominent
and ring longer. There is also more energy imparted into all modes,
as is intuitive and clear from the figure. A comparison of a mea-
sured and modeled bell strike can be seen in Fig. 10. Note that the
resynthesized bell has significantly less noise than the recording
but they otherwise sound similar.

The clapper interaction model is simple and controlled by one
parameter, providing a reasonable approximation of the spectral
variation one would expect when playing a carillon at varying dy-
namic ranges. However, the model is an approximation based on
measurements and not derived analytically from the physics gov-
erning contact dynamics of the interaction. This leads to the high
frequency nulls not appearing at the exact location of the measured
impulses. A more accurate model based on the physics would be
a large improvement, but it must be easily parameterizable and re-
quire low computation to be useful in a performance context.

The efficient reverberation algorithm presented in §3.6 does
not sound exactly the same as the convolution reverb. This is due
to the fact that some energy spreads to modes at other frequencies.
One solution to this issue would be to compute a small subset of
the reverberation modes for each bell mode. At the expense of a
little more computation, this will more accurately implement the
reverberation. Another possibility would be to implement a hybrid
reverberation algorithm where the efficient modal implementation
is used in combination with a short FIR filter containing the a win-
dowed version of the few milliseconds of the belfry reverberation
with the shared mode frequencies removed. This would implement
the mode coupling while remaining computationally efficient.

5. CONCLUSION AND FUTURE WORK

In this paper, we have proposed an accurate modal model of a car-
illon bell capable of being driven by different impact functions
which have been derived from physical measurements of the clap-
per striking the bell. Artificial high frequency modes have been

Figure 9: Synthesized bell at different dynamic levels: ff (top), mf
(middle), and p (bottom).

Figure 10: Measured bell (top) and modeled bell (bottom).

generated using data extrapolation for more accurate reconstruc-
tion of the bell transient. We also measured the belfry impulse
responses and proposed an efficient implementation of the belfry
reverberation with a modal architecture. This model is more accu-
rate than previous attempts, can be run real-time, and takes musical
dynamics into consideration. We hope that this added flexibility in
modeling bells will aid composers to conceive pieces with novel
and interesting uses of the carillon bell aided with live electronics.

A method for modeling bells has been presented, but has only
been tested on one bell. Future work may include further valida-
tion on multiple bells. Of particular interest is testing how the clap-
per interaction model will translate to smaller bells. We attempted
to measure a smaller bell as well, but the accelerometer clipped
due the higher acceleration of the less massive clapper. We hope
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to continue working on carillon models to increase their accuracy
and expand the flexibility for composers.
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ABSTRACT

We apply modal synthesis to create a virtual collection of crash
cymbals. Synthesizing each cymbal may require enough modes
to stress a modern CPU, so a full drum set would certainly not
be tractable in real-time. To work around this, we create a GPU-
accelerated modal filterbank, with each individual set piece allo-
cated over two thousand modes. This takes only a fraction of avail-
able GPU floating-point throughput.

With CPU resources freed up, we explore methods to model
the different instrument response in the linear/harmonic and non-
linear/inharmonic regions that occur as more energy is present in a
cymbal: a simple approach, yet one that preserves the parallelism
of the problem, uses multisampling, and a more physically-based
approach approximates modal coupling.

1. INTRODUCTION

Modal synthesis is an effective way of capturing a variety of phys-
ical sounds. Its parameters are intuitive and have a space-efficient
representation. Parameters may be computed by solving the equa-
tions governing the system, analytically from a series of system
measurements or instrument recordings, or by combining or mor-
phing between other instruments’ coefficients.

Increasing the number of modes N of our synthesizer is im-
portant to broaden the types of sounds we may represent. A cow-
bell may be synthesized with a few dozen modes, but qualita-
tively, a cymbal wash benefits from hundreds or even thousands
of modes. Compare the whole-sound spectra of a cowbell against
that of a cymbal in Figure 1. To see behavior over time, the spec-
trogram of a Sabian 16” HHX Evolution Crash, a relatively ”dark”
or ”complex” crash, is shown in Figure 2. We note evidence of
highly nonlinear effects, such as higher frequencies emerging in
the 100ms-300ms range. These cannot be simulated directly with
our basic linear modal synthesis method, but we will explore meth-
ods that attempt to obtain such sounds by extending our linear syn-
thesis system with approximations.

In addition to having a complex sound with many modes, thin
shells exhibit highly nonlinear behavior, with response often di-
vided into three regimes: linear, inharmonic, and chaotic. This
makes creating accurate physical models difficult[1, 2, 3], though
the sounds and control space are rich.

Ducceschi et al.[4] solve the von Kármán equations that gov-
ern the underlying nonlinear plate physics of plates and cymbals in
Copyright: c© 2019 Travis Skare et al. This is an open-access article distributed

under the terms of the Creative Commons Attribution 3.0 Unported License, which

permits unrestricted use, distribution, and reproduction in any medium, provided the

original author and source are credited.

Figure 1: Top: Cowbell spectrum. Bottom: Sabian HHX Crash
Cymbal Spectrum. Note the latter has a significantly higher den-
sity of modes, while the former can be better represented by a
smaller number of local maxima.

terms of the system’s modes. They obtain values for coupling co-
efficients offline, yet efficiently. In [5] the authors extend this work
and apply a simpler, though less inherently stable, Störmer-Verlet
method for time integration to obtain synthesis results running
fairly quickly–only 8x slower than real-time on a CPU. Nguyen
et al. [6] use a similar time stepping method to cymbal synthesis,
paying particular attention to specific cymbal geometry variations
that is relatively unique in the literature–cymbals are not plates of
uniform thickness, but vary from bell to inner bow to edge, and the
authors demonstrate this is an important property to model when
considering cymbals over gongs.

Our end goal is to run simulation of several cymbals in re-
altime with enough processing power left over for the rest of a
drum set and the other instruments. GPU acceleration is attractive
for this application–using the single instruction, multiple thread
model of execution, modern graphics processors excel at execut-
ing one piece of code simultaneously across tens, hundreds, or
even thousands of threads, each performing the same operations
on different data. This is a more parallel version of vector instruc-
tions, and while it is not applicable to every application (handling
one input through a series of connected effects plugins, for exam-
ple), there are some audio applications where it excels. In [4] for
example, Ducceschi et al. reduced computation time from 90 min-
utes per second of audio on a desktop CPU down to 55 seconds
per sound. And we again emphasize their work is physically accu-
rate while our work here will aim for simpler approximations for
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Figure 2: Sabian HHX Evolution Crash Spectrogram.

cymbal-like sounds.
The literature has several projects involving GPU-Accelerated

additive synthesis or massive parallel filtering:
Savioja et al.[7] give an overview of potential audio tasks that

may be accelerated via GPGPU programming at audio rate and
reasonable buffer sizes for real-time performance. For example,
FFTs running on a GPU were able to be eight times as long as
their CPU-implementation counterparts. GPU-accelerated FIR fil-
ters were able to be 130x as long as the baseline versions. In [8],
the authors synthesized 1.9 million sinusoids in real-time, a 1300x
speedup over a serial lookup table computation on one CPU. This
was on a GPU that is six generations behind ours and three major
GeForce architecture revisions behind the card we are using, and
we note that our card is itself a generation behind state of the art.

Trebien et al.[9] use modal synthesis to synthesize physically-
accurate collision sounds between objects of different materials –
balls rolling down a ramp, for example. They introduce a trans-
form of the system’s IIR filters to be able to compute several sam-
ples in parallel, turning the operation into linear convolutions that
are well-suited for a GPU. More recently, Cirio et al.[10] tackle
this problem with specific attention on cymbals and gongs, and in
particular attempt to model the chaotic and wave-turbulent effects.
This work leverages parallelism between frequency bands as one
strategy to parallelize, and as they simulate nonlinear effects in
a more physically-accurate fashion than we will, they obtain rich
sounds with only 100 high-frequency modes. Simulation costs for
one cymbal are still 43x slower than real-time, but that is a 70x
speedup over their target algorithm, making the approach tractable
for generation audio to graphics offline. Chadwick et al.[11] also
apply modal strategies, including simulated coupling, plus intro-
duce far-field acoustic transforms, for such “virtual foley” work.
Collisions of thin shells including water bottles and crash cymbals
sound realistic. Simulation and precomputation are expensive, but
the runtime acoustic transfer map step runs relatively faster, at 16x
slower than real-time.

Belloch et al. [12] apply a transform on IIR filters to make
them more suitable for the GPU. At 44.1kHz they run over 1,200
256th-order IIR filters simultaneously, with latency of less than a
millisecond. Subsequently, Belloch et. al apply massively paral-

lel filtering[13] to Wave Field synthesis on a 96-speaker array[14],
running nearly ten thousand fractional-delay room filters with thou-
sands of taps. Several dozen sources were able to be placed into
the field.

Bilbao and Webb[15] describe a GPU-accelerated model of
a set of timpani, simulating both the drums as well as the space
outside. They obtain speedups of 8x to 30x over CPU implemen-
tations, and the drum update runs in near-real-time (2 milliseconds
per sample), with the bottleneck being a linear drum membrane
update.

With advances in machine learning and deep learning fields,
some groups are using GPUs to train models that output audio
during inference, an interesting approach different from physical
modeling. The convolutional WaveRNN by Kalchbrenner, Elsen
et al.[16] can run inference (generation) even on mobile CPUs.

The physical modeling applications mentioned above often ex-
ploit parallelism across time – different GPU threads are simulta-
neously working on x(tn) and x(tn+k) for small k. This is often
the result of a clever transform, for example moving IIR filters to
parallel form. In our application, we’d like to retain the option to
modulate system parameters based on a signal we are fed sample-
by-sample, and unfortunately cannot apply such transforms. In
[17] we demonstrated our modal synthesis filters can be run at au-
dio rates on modern GPUs in a serial fashion–that is, GPU core
speed and FPU throughput have advanced sufficiently in recent
years such that developers do not need to parallelize across time
for certain audio applications (of course, if you can, it still unlocks
a great deal of parallelism). Floating-point throughput on modern
high-end consumer hardware is enough to run over a million such
filters.

Since that work on building blocks and benchmarks, a real-
time GPU filterbank was developed, which we present here and
then leverage toward cymbal synthesis.

2. BUILDING BLOCKS: VERY HIGH-Q PHASOR
FILTERS

We use a modal filterbank for synthesis. This consists of N res-
onant filters. We make the assumption that all the filters are uni-
form in construction and vary in parameters, though a GPU could
run multiple styles of filters in parallel, either through conditional
execution or simultaneous kernel execution.

Modal synthesis may be performed using the developer’s fa-
vorite resonant filter, or via adding sinusoids. In practice, rapidly
changing the coefficients on e.g. Direct-Form II filters may re-
sult in audible artifacts. Adding sinusoids is efficient, especially
if we’re simply performing lookups into a table that’s in processor
cache, but we have a preference for another approach if computa-
tional resources are available.

In [18] Max Mathews and Julius Smith proposed a filter that is
very-high-Q, numerically stable, and artifact-free, based on prop-
erties of complex multiplication. The parameters map one-to-one
with the physical properties of our system which makes it a great
choice for modal synthesis and modal reverberators such as in [19].
The recursive update equation we need to implement is:

ym(t) = γmx(t) + e(jωm−αm)ym(t− 1) (1)

where:
x() is an input or excitation signal.
ωm is mode m’s frequency.
γm is a per-mode complex input amplitude gain.
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αm is a per-mode damping factor.
In terms of implementation details, the state we store for each

mode is limited to the prior output ym(t−1), plus having the input
parameters available (αm, γm, and ωm). This fact will be relevant
when we walk through the GPU code.

This filter has some nice properties, such as that it preserves
phase across restrikes if parameters are updated on zero-crossings.
We next present how we may run hundreds of thousands of them
in parallel.

3. GPU FILTERBANK IMPLEMENTATION

We present a system that has three major pieces across two pro-
cesses. A system diagram is in Figure 3.

• The CPU Client is a JUCE C++ plugin that accepts MIDI
events, translates them into modes, and populates data struc-
tures to facilitate communication to the GPU (modal param-
eters) and from the GPU (audio data to copy to a DAW au-
dio callback buffer). For a set of cymbals, we may copy in a
set of modes that are mapped to a particular MIDI note rep-
resenting that instrument selection. For a tonal instrument
application, modes would be scaled to start on the correct
fundamental frequency.

• The GPU Process contains code to allocate memory on the
graphics card and on the host PC. It copies relevant data to
the GPU and manages kernel execution.

• The GPU kernel is the code that runs on the GPU and rep-
resents the core of the synthesis.

Figure 3: Overall System Diagram. Top: offline components an-
alyze modes from samples. Bottom: real-time system synthesizes
using the proposed parallel architecture.

For the sake of discussion, we aim to keep the GPU kernel
code as simple, short, and approachable as possible. Specifically,
it will take as input our modal filter parameters ωN , γN , αN and
input signal x(), and simply synthesize the resulting audio output.
Later versions may perform parameter interpolation, modal cou-
pling, etc. or post-process audio.

Keeping the GPU process as simple as possible allows much
of the complexity to be moved to an application that calls the GPU
code, enables easy extension to multiple client applications, en-
ables rapid development, and allows for code reuse across projects
as the GPU process will happily run in the background indefinitely
while only taking a few MB of RAM.

Communication between host and GPU processes was accom-
plished using shared memory, and signaling between processes
was done using semaphores. The shared memory is simply a chunk
of memory mapped into each of the two CPU processes. It is a se-
ries of ModeInfo structures as defined in Listing 1 followed by
a chunk of memory to allow transmitting audio data back to the
JUCE plugin so it can in turn be sent back to the DAW or the next
plugin in the chain for more processing. This was chosen for sim-
plicity and speed; the code should compile without any external
libraries beyond CUDA. Other projects may wish to replace the
cross-process communication with, for example, an OSC client
and run the host application on a tablet.

struct ModeInfo {
bool enabled; // is this filter on?
bool reset; // should we zero state?

// filter parameters
float amp_real; // Re{alpha}
float amp_imag; // Im{alpha}
float damp; // gamma
float freq; // omega

// currently-unused optimizations
bool amp_changed; // did alpha change?
bool freq_changed; // did omega change?

};

Listing 1: ModeInfo structure used in shared memory block.

Most development and demos were run at 256 samples at 44.1kHz
(5.6ms); a buffer of 128 samples was tested successfully.

Our graphics card is an NVIDIA GeForce 1080Ti; it should
run on some older cards where core frequency and floating-point
throughput are sufficient. It is also expected to run with even bet-
ter performance on the newer RTX series cards. We have not
attempted a port to OpenCL to run on AMD cards, but with a
high enough core speed and floating-point throughput it should
be straightforward. For those interested in CUDA GPU program-
ming, a variety of books are available, and the NVIDIA developer
documentation[20] likely contains all that is required to get started.

3.1. CPU vs GPU limits

In synthetic benchmark settings in [17], where the entire system is
concentrated on running these filters, we found a GPU could run
over 3.5 million phasor filters at audio rate, or 1.8 million allow-
ing for continuous modulation of filter parameters (requiring addi-
tional multiplications). Porting this test to run on an Intel i7 4770k
CPU core showed the CPU could run just over 3,000 phasor fil-
ters in real-time on one thread, allowing for per-sample parameter
modulation. A synthetic benchmark constructed in FAUST using
alternate building blocks–second-order resonant filters–could run
4,600 filters on one CPU thread.

In terms of real-world use cases, a “cymbal-verb” modal re-
verberator plugin was developed with such a phasor filterbank at
its core; when running inside inside a DAW, at 128 samples, pres-
sured by audio callbacks, with a few other audio tracks plus one
instance of the modal filter effect plugin, overruns happened be-
tween 1600 and 1900 modes, with significant variance. A 2012
MacBook Pro, with a laptop Intel i7 3820QM, suffered dropouts
when synthesizing 1000-1100 modes. The GPU process running
on the desktop alongside the DAW was able to successfully syn-
thesize 100,000 modes, above which we are blocked on a need to
optimize the communication between the processes. We note in
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this case we are utilizing the GPU, while the DAW does not lever-
age that resource. Our GPU resource closest to bottlenecking in
this trial is the 32-bit floating-point units, which debugging tools
estimated at 5.5% utilization.

We note our benchmark parts in this system are slightly mis-
matched: the CPU is a mid-to-high-end 2013 consumer part while
the GPU is the flagship model from its series from 2017, and cost
over twice as much. We also note that the majority of audio plugins
will have a natural affinity for running on a CPU, but highly par-
allel tasks may take advantage from a GPU especially if it would
otherwise sit idle.

3.2. GPU Kernel Code

The code is cross-platform; Linux and Windows used different
APIs for shared memory and semaphores, so we simply guard
platform-specific code with e.g. #ifdef WINDOWS. The GPU
kernel code itself is completely platform-agnostic, however there
are two important limitations as of this writing: first, JUCE sup-
port for VST3 under Linux is under development. Second, CUDA
drivers are not available for MacOS 10.14+. We benchmarked with
the JUCE plugin wrapper, and ran integration tests with a DAW on
Windows.

GPU Kernel code is presented in Listing 3, and is available
online on the CCRMA GitLab1. It is commented at the block level
in the listing; the code walk in section 3.4 communicates a higher-
level explanation.

3.3. GPU Programming Considerations

A few notes are provided for readers unfamiliar with GPGPU pro-
gramming to get up to speed for this application. Anyone with
GPGPU experience may wish to skip to the next section.

The code provided here will be executed in parallel by many
threads. Specifically, we may have 10 instruments at 2,000 modes
per instrument, allocate one thread each, and run 20,000 threads
in parallel. In practice, the GPU will run this work in batches2,
but we expect thousands of threads to be active at any time, versus
our CPU which has four physical cores. Each of the GPU threads
is less general-purpose than a CPU thread. There is currently no
out-of-order execution or branch prediction, and arithmetic APIs
are less rich, though still very capable for many applications.

Bundles of 32 GPU threads are called a warp, execute in lock-
step, and have some memory shared between them for fast com-
munication. It is possible to send data across warps, but if we have
subtasks that can be executed with 32 or fewer threads (even in
multiple steps), it might be worth trying to keep communicating
threads inside the same warp.

Memory is allocated on the device (GPU) using a special API
call cudaMalloc that looks similar to malloc. It returns a de-
vice pointer; GPU code can read and write from this location but
CPU code cannot. Sharing data between the CPU and GPU gener-
ally involves copying it to and from, though some API calls exist to

1https://cm-gitlab.stanford.edu/travissk/dafx19-gpu-kernel
2Our request to execute 20,000 threads exceeds the 3,584 CUDA cores

supported on our GPU. In such cases, the GPU will schedule warps on
streaming multiprocessors as they become available, so our work is ac-
tually run in smaller parallel batches rather than fully parallel. Further-
more, this code will bottleneck on the availability of floating-point units
and threads will compete for that resource as well. However, from the
calling code’s perspective the kernel executes as one unit of work.

simplify this or even hide latency. Our host code uses the original
cudaMalloc for simplicity and greatest compatibility.

GPU programming is often an interesting puzzle of how to
best utilize the resources of the device. For example, we have
a very small number of extremely fast registers, a few kilobytes
per thread of fast memory, and access to slow, but plentiful RAM
(11GB on our card). Different cards may execute different num-
bers of single- and double-precision floating point arithmetic; in
particular consumer cards tend not to have strong FP64 perfor-
mance.

NVIDIA provides documentation for more details, and also
provides development, debugging, and profiling tools for Eclipse
or Visual Studio to help maximize performance.

3.4. Code Walk

First, we remember the GPU kernel code is launched, executes,
and returns to the host, and will be rescheduled again for the next
audio buffer where it is launched and returns. It may or may not
execute on the same streaming multiprocessor as it did the previ-
ous iteration. Perhaps some cards may zero memory to prevent
data leaks. And for high numbers of modes we can be sure that
this assumption can’t hold, because we have more threads than re-
sources available. We can’t depend on our state to be kept for us.

Our first task, therefore, is to decide how to save and restore
the state of the system across executions. Recall that from the de-
scription of these filters in Section 2 that the filter’s state is limited
to the prior complex output, so our state is a mere 64 bits per filter:
two 32-bit single-precision floats to make up a complex number.
We store these sequentially in global memory,
<0=0<1=1...<N−1=N−1.

The first few lines instruct each thread to determine which
mode mi ∈ [0..N ] it is responsible for computing. blockIdx
and similar are local variables provided by CUDA so each thread
may orient itself in the world in terms of the parallel problem the
developer has written.

The next lines load state in from global memory. If we had
no prior state this will be garbage, so there is a bool reset
flag that allows for easily reseting the filter state to zero; useful for
this case but also useful if we are for example switching between
presets in a plugin.

Note that accessing global memory tends to be slow; in the
digital waveguide acceleration portion of [17] we found we would
be limited in applications if we had to access main memory to read
and write each sample at audio rate speeds–but here we just need
to load the state once.

Next, all the input for this mode mi is available as the ith
ModeInfo structure. We use this data to perhaps update the inner
exponential term for the filter. Versions of the code where γm
or αm could be modulated on a per-sample basis would require
moving this computation inside the loop.

Next, we loop to compute our audio data sample-by-sample.
The complex math is provided by the CUDA library, with the ex-
ception of cexpf which needed to be written; it’s provided in
Listing 2, or in the GitLab repository.

__device__ __forceinline__
cuFloatComplex custom_cexpf(

cuFloatComplex z) {
cuComplex res;
float t = expf(z.x);
sincosf(z.y, &res.y, &res.x);
res.x *= t;
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res.y *= t;
return res;

}

Listing 2: cexpf implementation

We sum the newly-computed sample across all threads in a
warp and write this to our output buffer; some applications may
also wish to sum across warps especially if using hundreds of thou-
sands of modes.

Our computation is done; there’s nothing to clean up but we do
need to write our new system state back to device memory so it can
be read by the next kernel execution. Then, the function returns,
our host code stops waiting, it can sum audio data generated by
each warp, copy it back to shared memory, and notify the plugin
in the DAW process that computation has finished.

Next, we consider how we may use all these high-Q filters.

4. EXTENDING MODAL SYNTHESIS

4.1. Baseline: Implementing Linear Models

Using the GPU filterbank, linear modal synthesis is straightfor-
ward.

First, we compute modal frequencies and decay rates offline
and on the CPU. An offline analysis script trimmed sounds to sev-
eral seconds, then computed DFTs of a second or more, and used
these to compute modal coefficients and decay rates. This step
is not time-sensitive, but did complete faster than real-time. This
analysis step may also be performed at runtime, for example im-
porting a user’s samples, substituting an approximation algorithm
if speed is of the essence.

The modal coefficients are stored in a file on disk. A directory
with recordings captured from over a dozen cymbals is loaded into
memory of the JUCE plugin on launch. The user may assign dif-
ferent cymbals to different MIDI notes; this is done by copying
mode data from the appropriate file into ModeInfo structures in
shared memory; the data files are small and memory-mapped so
this operation is fast.

The plugin’s process method is called for each audio buffer.
If it detects MIDI notes that are assigned instruments, we feed an
excitation signal based on the input velocity into the instruments’
input signal shared memory buffer3.

Then, the GPU processes enough samples to fill our audio
buffer. Sample data is copied from the GPU’s onboard memory
to the RAM inside the GPU process, to shared RAM, which the
plugin will read and copy back out to audio buffers.

Qualitatively, this approach works very well for bar percus-
sion, cowbells, etc. where we have clear, exponentially decay-
ing modes. With enough modes allocated, cymbal tails sound
somewhat realistic. While the cymbal attack is instantaneous, and
clearly lacks the interesting “bloom” as we move from linear to
nonlinear regimes, a high density of modes bring about qualitative
time-varying behavior from beat frequencies and adjacent frequen-
cies having different decay rates. Noting the attack is limited by a
linear modal synthesis model, we explore a couple ways to intro-
duce nonlinear approximations.

3as in the GPU code description, we could alternatively just send a
note-played signal and leave the GPU to handle articulations

4.2. Multi-sampling

Sample libraries commonly include multiple velocities for a given
sound to capture tonal variation when an instrument is played at
varying intensities. Taking inspiration from this, we capture sev-
eral recordings for cymbals struck at different velocities.

The simplest use for the recordings at V velocity levels is to
compute all the modes as before for each level, and set our filter-
bank to accept the union of all modes in all files:

[m0,v0 ..mN−1,v0 ; ...;m0,vV−1 ..mN−1,vV−1 ]
Then, as the player strikes the virtual cymbal we excite one set

of V modes (or an interpolation). A few variations exist:

• Per-note velocity lookup: The control application sends a
signal such as note-on velocity, which we use to pick the
mode data closest to that velocity level. This data is used
for the every sample of that strike contributing to x().

• Per-sample velocity lookup: Similar to the above, but we
continuously vary the mode parameters excited on a sample-
by-sample basis: the early part of an excitation contributes
from low-velocity V , and the maximum amplitude portion
contributes from higher-velocity V captures (thus, the γ in
γmx(t) depends on x(t) rather than being static).

• System-energy lookup: the amount of energy in the system
governs which response we use regardless of immediate in-
put level. This may be the most physically-accurate option.

The output of a simulation using the per-sample velocity switch-
ing approach is shown in Figure 4; the model in this case is driven
by an increasing noise signal which introduces modes sampled
from higher regimes over time. Of course, we are still synthe-
sizing using a linear filterbank and not truly modeling interactions
between modes at this stage, but this modification results in a more
playable instrument for little overhead, so long as we stay with the
maximum N allowed by our system.

Figure 4: Response using switched velocity samples and ramped
input.

This is similar to cross-fading samples, with the improvement
that re-strikes will re-excite the system versus playing a duplicate
sample. However, we immediately recognize it is an inaccurate
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representation of the physical system: we would have modes ex-
cited that do not exist simultaneously in practice. As cymbals vi-
brate and bend, some modes will come in and out of existence.
Experimentally, we saw that depending on the cymbal, roughly
60%-80% of modes were shared between any set of 3-5 files.

However, qualitatively this is still an improvement, and we get
more accurate responses playing at low versus high velocities on a
drum pad.

It is likely even better results could be obtained by contin-
uously exciting the cymbal, by driving it mechanically or even
with continuous strikes with mallets at a certain velocity. This
allows for capturing the response to a narrow range of energy; if
we take the DFT of a several-seconds long recording of a high-
velocity cymbal strike, we will incorporate low-, medium-, and
high-energy regimes as the cymbal sound blooms and decays.

4.2.1. Multi-sampling for Performance Characteristics

One final note on this approach - while this paper focuses on crash
cymbals, a variation of the multisampling-based approach seems
to work well for modeling ride cymbals: we capture a few velocity
hits for each of bow, bell, and edge strikes, and use those to excite
certain modes in one shared modal system. Modifying playing
position between the bell and bow allows energy to build up and
brings out a sound that is difficult to capture with pure sampling.

4.3. Frequency Shifts

An extension to this method is to capture the frequency shifts by
pairing modes across velocity levels that are at nearby frequencies:
ωm,v1 and ωm′,v2 under some threshold frequency shift. At per-
formance time, we not only choose which modes are excited, but
are able to change their frequencies as well.

As an offline computation we have many options as far as
clustering and nearest-neighbor algorithms; if we ever needed to
perform it real-time, a tracking algorithm such as that included in
PARSHL [21] or linear programming [22] are worth considering,
if they cope with spectrally dense content.

4.4. Implementing Modal Coupling

Finally, we introduce modal coupling to approximate a phenomena
in the nonlinear regimes: identify the set of frequencies that only
appear in high-velocity captures, and couple each one of these to
one or more modes that is present at lower velocities by ψm,n,
representing a coupling from mode m to n. Modes may feed mul-
tiple other modes, for example both ψm,n1 and ψm,n2 may ex-
ist to establish a one-to-many relationship. At performance time,
with some system energy envelope, we establish an energy trans-
fer between modes ∝ kψm,n. This is one area where the high-Q
filters we’ve chosen excel; we simply immediately scale down the
previous complex output value y for one mode, and inject that en-
ergy into another mode (this can be a new term adjacent to the
input response term γmx(t)). When the update is performed at a
zero-crossing this preserves phase; qualitatively in terms of sound,
waiting for a zero-crossing does not seem critical here.

In practice, the prior sections on multi-sampling and frequency
gating may capture some of this behavior. However, this approach
has the opportunity to introduce real-time performance control over
how much coupling is present in the system – k in the above ex-
pression. It may easily be suppressed, exaggerated, made frequency-
dependent, etc.

While this evolves our synthesis beyond a simple modal filter-
bank excitation, it is still related to the linear modal model, and
is not a true physical simulation of the chaotic regime of cymbals.
Nevertheless it is a computationally efficient approximation that
starts to bridge the gap between our simple modal responses and a
real-time playable cymbal synthesizer.

GPU programming details have been absent from previous
sections, as the choice of modes is up to the plugin running in
the DAW process and we can treat the GPU as a black box. It is
relevant here, however, as modes directly influence each other and
must communicate, and the GPU kernel would need to perform the
trading of energy between modes.

The fact that threads run in groups of 32 has some relevance.
If we can keep groups of modes that couple in clusters of 32, then
programming becomes much easier since threads inside a warp
have access to a block of shared memory that may be used for
computation. It is not a showstopper if we instead must communi-
cate using global memory, just less optimal.

We tried a few sub-approaches as to how to choose modes:
modes could pair with the closest (in frequency) unused higher-
regime mode, modes could look for modes close to an octave up,
fifths, etc., or we could simply pair modes randomly. Qualitatively,
these resulted in similar effects, with more difference when using
smaller N .

A sound example for modal coupling is in Figure 5. We drive a
virtual cymbal mechanically with constant noise, and k is set fairly
high so modes are introduced quickly once crossing a manually-
specified energy threshold between regions.

As a comparison with the real cymbal spectrograms, we see
modes emerging over time, an improvement over our first step of
pure linear modal synthesis, and have model controls over when
and how quickly the modes marked as high-energy-regime emerge,
which adds an interesting performance dimension. Work remains,
however, to automatically model the attack for multiple stick hit
velocities; our examples here all involved some manual iteration.

Figure 5: Response using simulated modal coupling; coupled
sources/targets only
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__global__ void filterbankKernel(
float* yprev, // Previous state
const ModeInfo* mi, // Mode frequencies and dampings.
const float* input, // Input signal.
float* output) { // Buffer we write output samples to.

// Initialization - each thread figures out its
// place in the world (i.e., it’s the ith of N threads).
int i = threadIdx.x + blockIdx.x * blockDim.x;
int which_warp = (int)(i / 32);
bool is_first_thread_in_warp = (i % 32) == 0;

// Load prior state from global memory.
cuComplex y;
y.x = yprev[2 * i];
y.y = yprev[2 * i + 1];
// If prior state should be discarded, zero it.
if (mi[i].reset) {

y.x = 0.0f;
y.y = 0.0f;

}

// Introduce variables to make expressions more readable later.
cuComplex input_amp;
input_amp.x = mi[i].amp_real;
input_amp.y = mi[i].amp_real;
cuComplex input_complex;
cuComplex exp_term;
int which_drum = (int)(i / MODES_PER_DRUM);
const float *input_base = input + (BUFFERSIZE*which_drum);

// Regenerate the exponential term at the start of each buffer.
// This is moved inside the loop in case of parameter interpolation,
// modifying params on zero-crossings, or similar cases.
cuComplex e_term_tmp;
e_term_tmp.x = -mi[i].damp;
e_term_tmp.y = mi[i].freq;
exp_term = custom_cexpf(e_term_tmp);

// Main loop - run enough cycles to generate the whole buffer.
for (int samp = 0; samp < BUFFERSIZE; samp++) {

y = cuCmulf(exp_term, y);
// We always compute input for now, but could skip this multiply
// if we know there’s no input.
input_complex.x = input_base[samp];
input_complex.y = 0.0f;
y = cuCaddf(y, cuCmulf(input_complex, input_amp));

// Merge audio across all threads in the warp (32 threads),
// and store the sample in our output buffer.
// This sums in parallel, and completes in log_2(32) = 5 steps.
// We use the real part of the complex sample as output audio.
float merge_output = y.x;
for (int offset = 16; offset > 0; offset /= 2)

merge_output += __shfl_down_sync(0xffffffff, merge_output, offset);
if (is_first_thread_in_warp) {

output[which_warp*BUFFERSIZE + samp] = merge_output;
}

}
// Save state back to shared memory, so we may restore it
// on the next kernel launch.
yprev[2 * i] = y.x;
yprev[2 * i + 1] = y.y;

}

Listing 3: CUDA Kernel code for basic modal filterbank. A code walk is available in Section 3.4.
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6. CONCLUSIONS

This work presented a GPU modal filterbank system architecture,
with a walkthrough of CUDA code that implements the GPU ker-
nel. This enabled acceleration of our modal synthesis building
blocks; we were resource-constrained with a single cymbal on the
CPU but can run an entire ensemble of cymbals in real-time on
the GPU with room to spare. Next, a few extensions to basic lin-
ear modal synthesis were presented toward bringing modal cymbal
synthesis closer to real models which are highly nonlinear. These
extensions, while approximations still based on a linear synthesis
system, improve playing dynamics and allow introduction of new
performance controls.
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